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1 Introduction

Many studies have presented models for the pre-
diction of the height-diameter (H-D) relationship 
of a stand. Most of these models use a representa-
tive sample of height sample trees from the target 
stand (Curtis 1967, Arabatzis and Burkhart 1992, 
Huang et al. 1992, Lynch and Murphy 1995, Fang 
and Bailey 1998) and the main focus in these stud-
ies lies in finding the best functional form of the 
model. However, in many situations, the sample 
size needed is too large for practical purposes. 
This is because height measurements are time-
consuming and in many situations, for example 

in a stand wise inventory for forest management 
planning, only one or a few sample trees from a 
stand can be measured. Therefore, in recent stud-
ies, models that can predict the H-D relationship 
of a stand using few or even no sample trees have 
been developed (Lappi 1997, Eerikäinen 2003, 
Mehtätalo 2004). In these models, the accuracy 
of the prediction can be improved by enlarging 
the number of height sample trees.

The H-D relationship of a stand is not stable but 
develops over time (Curtis 1967, Flewelling and 
de Jong 1994, Lappi 1997). However, Mehtätalo 
(2004) observed that with a shade-tolerant tree 
species (Norway spruce, Picea abies) the age 
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at which maturity is reached varies from stand 
to stand and he gave two reasons for this. First, 
after remaining as undergrowth for a long time, 
shade-tolerant trees may suddenly begin to grow 
as rapidly as young saplings and secondly, the 
development of a stand from a sapling stage to a 
mature stand takes longer on poor sites than on 
rich sites, i.e. the development rate varies between 
stands. On the other hand, stands that are reach-
ing maturity seem to have almost equal mean tree 
size. Thus, instead of linking the development 
of H-D relationship with stand age, Mehtätalo 
(2004) linked it with basal area weighted median 
diameter of the stand (DGM). The latter of the 
reasons given above for the variation in the age 
at which maturity is reached might hold also 
with shade-intolerant tree species. Therefore, 
this study presents an analysis similar to that in 
Mehtätalo (2004) but with two shade-intolerant 
tree species.

The aim of this study is to model the H-D 
relationship of Scots pine (Pinus sylvestris) and 
birch (Betula pendula and Betula pubescens) in 
Finland. The methodology is the same as was 
used in Mehtätalo (2004), but here it is applied to 
shade-intolerant tree species. Methodologically, 
the aim is to study if the development of the H-D 
curve of shade-intolerant tree species should also 
be linked with mean tree size rather than with 
stand age. Furthermore, the aim of this study is 
to show that the model formulation used in Lappi 
(1997) and Mehtätalo (2004) can be successfully 
applied with several tree species with only minor 
changes in the model formulation. 

2 Data
The modeling data are a subset of a larger dataset 
collected by the Finnish Forest Research Institute 
(Gustafsen et al. 1988). The sample stands of the 
data were selected randomly from those sample 
plots of the 7th National Forest Inventory which 
are situated on mineral soils and forest land. Three 
fixed-radius sample plots were established in all 
stands. Each sample plot was measured 3 times 
with 5 year intervals. In addition, when estab-
lishing the plots, the growth of the trees over the 
previous 5 years was recorded in some stands. 
Thus, the number of measurement occasions for 
each stand varied from 1 to 4. 

In this study, the three plots were combined to 
obtain the data of a stand. Only stands with on 
average more than 10 Scots pines / measurement 
occasion were selected to the Scots pine data and 
stands with more than 8 birches / measurement 
occasion to the birch data. All trees of other tree 
species than the one in question were removed 
from the data of any given tree species. How-
ever, before doing this, DGM and basal area 
were calculated from all trees belonging to the 
dominant story of the stand. The Scots pine data 
included 46338 observations from 497 stands 
(1774 measurement occasions) and the birch data 
2979 observations from 61 stands (190 measure-
ment occasions). Table 1 summarizes the mod-
eling datasets of this study.

Table 1. Some characteristics of the modeling data. 

 Scots pine Birch
 n = 1774 n = 190

 Min Mean Max Min Mean Max

Stand age at breast height, years 1 52 166 6 58 126
y-coordinate, km 6652 7135 7568 6658 7111 7520
x-coordinate, km 204 479 716 214 478 654
Altitude, m 5 151 320 2 146 300
Temperature sum, dd 658 982 1339 696 998 1350
DGM, cm 2 15.6 38.6 2.5 16.5 32.1
Basal area, m2/ha 0.1 13.7 40.8 0.1 15.1 35.3
DGM of tree species, cm 2 15.8 38.5 2.4 13.4 31.8
Basal area of tree species, m2/ha 0.1 12.6 37.8 0.1 7.1 30.3
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3 Model Development
The model is the linearized form of the expo-
nential function (Korf function), which in many 
studies has been found good for the description 
of the H-D relationship of a stand (Zakrzewski 
and Bella 1988, Huang et al. 1992, Arabatzis 
and Burkhart 1992, Fang and Bailey 1998). The 
model formula is

ln ( )H A B D
C( ) = − +( )−

λ 1

where H is tree height and D diameter at breast 
height and A, B and C and λ are parameters. The 
parameter λ is interpreted as the expected differ-
ence between diameter at ground level and that 
at breast height. It is an alternative for the more 
commonly used subtraction of the breast height 
from the height; for more discussion on the matter 
see Lappi (1991, 1997).

Trying to fit model (1) to the data showed that 
the model is clearly overparametrized. Thus, the 
first step in the analysis was to reduce the number 
of parameters to be estimated. To do this, model 
(1) was fitted separately for each stand and meas-
urement occasion using different combinations 
of parameters C and λ. The value of λ giving the 
lowest mean error variance over all stands and 
measurement occasions was selected as the fixed 
value of λ (see Mehtätalo 2004). The selected 
values were 7 for Scots pine and 6 for birch. For 
each stand and measurement occasion, the value 
of C giving the lowest error variation was selected 
and these values were modeled as a function of 
DGM to fit a heuristic trend function for param-
eter C (see Lappi 1997). The trend function of C 
for Scots pine was C = 0.9823 + 0.05753 × DGM 
but for birch no trend was found and thus the con-
stant C = 1.809 was used.

The model for tree i in stand k at time t is 

ln ( )H A B Dkti kt kt kti
C

kti
kt( ) = − +( ) +

−
λ ε 2

where parameters Akt and Bkt need to be esti-
mated. The next step in the analysis was to study 
whether DGM is a better descriptor of the stage 
of development than the stand age. If it is, then in 
the subsequent longitudinal analysis (Diggle et al. 

2002) rather than using stand age, we use DGM 
as the variable describing the development of the 
stand. Model (2) was fitted separately for each 
stand and measurement occasion. The obtained 
parameter estimates were plotted against stand 
age and DGM (Fig. 1). Only the estimates of 
parameter A are shown here; it is interpreted as 
the asymptote of the H-D curve of a stand, i.e. it is 
the maximum tree height of the stand. In any one 
stand, parameter A seems first to develop rather 
rapidly and later level out at some level, which 
can be interpreted as the maximum height of a tree 
of that tree species growing at that site (Figs. 1a 
and 1b). This level varies considerably between 
stands. Another, more interesting feature is that 
in those stands where the maximum height is low, 
the overall development of the stand takes longer 
than in those stands where the maximum height 
is high. In other words, the development rate of 
parameter A varies between stands, being higher 
in stands where trees get higher. This implies that 
two stands of equal age are not at the same stage 
of development. Plotting the parameters against 
DGM (Figs. 1c and 1d) shows that the form of the 
trend as a function of DGM is quite similar in all 
stands except for a vertical shift in the level of the 
curve. This implies that stands with equal DGM 
are at the same stage of development, but, because 
of site properties, location, etc., the asymptote of 
the H-D curve is not equal in all stands with any 
given DGM. Thus, a good strategy in modeling 
is to link the H-D relationship with DGM in the 
model and take the vertical shift in the parameters 
into account with stand-specific predictors and 
random parameters. 

The estimates of A and B and their estimation 
errors are strongly correlated. To reduce these cor-
relations, the diameter was reparametrized as 

x
D DGM

kti
kti

C
kt

C

C

kt kt

k
=

+( ) − + +( )
+( )

− −

−

λ λ

λ

10

10 tt ktC
− +( )−
30

3
λ

( )

The model using this parametrization is 

ln ( )H A B xkti kt kt kti kti( ) = − + ε 4

Parametrization (3) provides interpretations for 
the parameters of (4): A is the expected logarith-



58

Silva Fennica 39(1) research articles

mic height of a tree with a diameter of DGM + 10 
and B is the expected difference in the logarithmic 
height between diameters of 30 and 10 cm.

The next steps in the analysis were as follows 
(for more in-depth description, see Mehtätalo 
2004 and Lappi 1997): 
1) Model 4 was fitted with OLS for each stand and 

measurement occasion.
2) Appropriate trend functions for the estimates of 

parameters A and B were searched for and fitted 
as multilevel random effects models using stand 
and measurement occasion levels.

3) The trend functions were written into Model 4. The 
nonlinear parameters were used as fixed constants 
and the linear parameters were re-estimated. An 
appropriate model for the residual variation as a 

function of tree diameter was defined and fitted 
concurrently.

4) Step 1 was repeated using WLS, where the weights 
were calculated as the inverse of the variance func-
tion obtained in step 3. Furthermore, steps 2 and 
3 were carried out again.

5) The intercepts of the trend functions were assumed 
to depend linearly on some stand variables. Dif-
ferent predictor combinations were used to obtain 
an appropriate model for different practical situa-
tions. The assumed dependencies were written into 
the model, the model was fitted and nonsignificant 
predictors were dropped stepwise. 

The analysis was carried out with the R-imple-
mentation of the S-language (Chambers 1998, 

Fig. 1. Estimates of parameter A of model (2) against stand age (a and b) and stand DGM 
(c and d) in Scots pine data (a and c) and birch data (b and d). The estimates of the 
same stand at different points in time are connected by lines.
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Venables and Ripley 2002, see http://www.
r-project.org), where package nlme (Pinheiro 
and Bates 2000) was used for the random effects 
models.

4 Fitted Models

For both tree species, an appropriate trend func-
tion for parameter A was the Chapman-Richards 
function (Richards 1959)

A p p ekt a a
p DGM

p
k kta kt

a= + −( ) + +−
1 2 1 53

4 α α ( )

and for parameter B, a linear function of the 
form 

B p p DGM p DGMkt b b kt b kt k kt= + + + +1 2 3
2 6β β ( )

was used. In (5) and (6), p1a, p2a, p3a, p4a, p1b, p2b 
and p3b are fixed parameters, αk and βk stand-level 
random parameters and αkt and βkt the residual 
errors, which are later interpreted as measurement 
occasion level random parameters. In the birch 
model, the parameter p3b was 0.

The complete model for both tree species is

ln H p p z

p x

kti a k kt a kt

b k kt k

( ) = + +( ) +

− + +( )
1 2

1

α α

β β tti b kt kti

b kt kti kti

p DGM x

p DGM x

−

− +
2

3
2

7

ε
( )

where zkt is the nonlinear part of (5) and the 
parameters are as explained before. It is assumed 
that the random effects are normally distributed 
with a mean of 0 and constant variance. Covari-
ances cov(αk, βk) and cov(αkt, βkt) may be nonzero 
but all other covariances between the random 
effects and the error term are zero. The error term 
εkti is assumed to be normally distributed with a 
variance that depends on tree diameter according 
to the formula 

var max , ( )ε σ
δ

kti ktiD( ) = ( )( )





−
2

2

8∆

where Δ = 4.5 for Scots pine and Δ = 9.5 for birch. 
These values were determined by visually exam-

ining a figure where the means and standard 
deviations of the OLS residuals were plotted in 
one cm diameter classes (see Lappi 1997). The 
estimated nonlinear part of the trend function of 
A was

z ekt
DGMkt= −( )− ×1 90.1046

1.823
( )

for Scots pine and 

z ekt
DGMkt= −( )− ×1 100.06371

0.5981
( )

for birch. In step 5, the fixed parameters p1a and 
p1b were written as linear combinations of the 
predictors used in the model, i.e. p1a = b0a + b1ax1a 
+ b2ax2a + … and p1b = b0b + b1bx1b  + b2bx2b + …, 
where x1a, x1b, x2a, x2b,… are the additional pre-
dictors and b0a, b0b, b1a, b1b,… are their coef-
ficients.

The estimates of the fixed parameters and vari-
ances of the random parameters are in Tables 2 
and 3. For both tree species, 5 models with dif-
ferent predictor combinations were estimated. 
Model I uses only DGM as the predictor. In 
model II, variables describing the geographical 
location are included. Models III and IV include, 
in addition to the predictors of model II, stand 
characteristics measured from the whole growing 
stock and furthermore, model V includes those 
measured by tree species. The difference between 
models III and IV is that model IV includes stand 
age. Only predictors with statistically significant 
coefficients were included. The significance level 
used was 1% in Scots pine models and 5% in 
the models for birch. The significant predictors 
were searched stepwise, refitting the model and 
eliminating the least significant parameter until all 
remaining coefficients were significant.

One can see that the variances of the random 
parameters decrease when the number of predic-
tors increases. This happens because the varia-
tion explained by the additional fixed predictors 
belongs to the random part in the more sparse 
models. 
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5 Prediction with the Model
If no heights have been measured, predictions of 
logarithmic heights are obtained using the fixed 
part of the model only. If sample tree heights have 
been measured, they can be used in the prediction 
of the stand and time effects. If predictions are 
made for a point in time that is different from the 
point in time of measurements, the measurements 
can still be used. In this case, the measurements 
provide information about the stand effects. Thus, 
information can be carried from one point in time 
to another. 

The model for logarithmic measurements is

ln ( )y Zb e= + +µµ 11

where measured heights are in vector y, the predic-
tion of the fixed part in vector µ, random param-
eters in vector b and residuals in vector e. Vector 
b includes stand effects and time effects for those 
points in time from which we have measurements. 
The number of time effects depends on how many 
points in time the measurements have been taken 
from. It is convenient to write the time effects after 
stand effects as b = (αk, βk, αk1, βk1, αk2, βk2, …)’. 
Matrix Z is the design matrix of the random part 
(see Lappi 1997). The number of rows in Z equals 
the number of height measurements and the number 
of columns equals the length of b. The first column 
consists of ones and the second column of the 
values of z for the sample trees (Eqs. 9 and 10). 
The following columns repeat the first two columns 
for those measurements that have been taken from 
the corresponding point in time; the other cells 
of Z are zeros. Let D = var(b) be the variance-
covariance-matrix of random parameters, which 
is constructed using the estimated variances and 
covariances from Tables 2 and 3, and R = var(e) the 
diagonal matrix of residuals variances, which are 
obtained from variance function 8 using parameter 
estimates from Tables 2 and 3. The best linear 
unbiased predictor of random parameters is 

BLUP( ) ˆ ' ' ( )b b Z R Z D Z R y= = +( ) −( )− − − −1 1
1

1 12µµ

and its prediction variance is

var ˆ ' ( )b Z R Z D( ) = +( )− − −
1 1

1
13

For more details, see e.g. Lappi (1991), Lappi 
(1997) and Mehtätalo (2004).

To predict heights of trees with given diameters, 
stand effects and the time effects for the point in 
time for which heights are being predicted are uti-
lized. These are obtained from vector b̂ and writ-
ten to vector %b. Correspondingly, matrix var %b( )is 
obtained from matrix var b̂( ) . If no heights were 
measured from the point in time being predicted, 
the time effects of %b are zeros and the variances 
and covariances of the time effects for matrix 
var %b( ) are obtained from matrix D. If no tree 
heights were measured at all, all elements of %b 
are zeros and var %b( ) = D. Furthermore, matrix %Z 
is constructed. Its first and third columns con-
sist of ones and its second and fourth columns 
of the values of variable z (Eqs. 9 and 10) for 
those diameters of which the heights are being 
predicted. The logarithmic heights of trees with 
given diameters are predicted using

ln ( )% % %y Zb= +µµ 14

where µ includes the predictions of the fixed part 
and % %Zb the predicted stand and time effects of the 
trees. Ignoring the estimation error of the fixed 
parameters, we get the variance-covariance matrix 
of the prediction errors 

var ln var var var (% % % % % % %y Zb e Z b Z' R( ) = ( ) + ( ) = ( ) + 115)

where %R is a diagonal matrix including the vari-
ances of the residual errors of the trees whose 
heights are being predicted (Eq. 8). 

The model predicts logarithmic heights but we 
need arithmetic heights. If the predicted logarith-
mic heights are transformed straightforwardly to 
an arithmetic scale, the obtained predictions are 
downward biased (Flewelling and Pienaar 1981). 
The bias can be corrected by adding half of the 
prediction error variance to the predicted loga-
rithmic height before exponential transformation 
(e.g. Lappi 1991, Eerikäinen 2003):

% % %y y yunbiased diag= + ( ) 






exp ln var ln
1

2  ( )16
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6 Prediction of DGM in the 
Future

In the prediction of the H-D curve of a stand at a 
given point in time, the DGM of the stand at that 
point in time needs to be known. With current and 
past points in time this is not a problem, since in 
Finnish inventories DGM is a very commonly 
measured mean stand characteristic. However, in 
order to be able to predict the H-D curve in the 
future, a model for the DGM was estimated. Since 
the DGM used in the models is the DGM of all 
trees species belonging to the dominant canopy 
layer, one and the same model can be used with 
Scots pine, birch and Norway spruce. To construct 
such a model the modeling data comprised both 
the full data used in this study and that used in 
Mehtätalo (2004). However, if a cutting had been 
carried out in the stand during the last 5 years 
prior to the measurement, the observation was 
deleted from the data and either the time series 
before or that after the cutting, whichever was 
longer, was used. 

As seen in Fig. 2a, the DGM of a stand with 
a given age varies considerably, especially with 
older stands. However, the change in DGM is 
stable with respect to stand age. Thus, if we have 
an observation of stand DGM at some age, we can 
predict the DGM at some other age rather well. 
The nonlinear trend in Fig. 2a was linearized by 
taking logarithms from DGM and age to obtain 
the model

ln ln ( )DGM u v T u ekt kt k kt( ) = + ( ) + + 17

where Tkt is age of stand k at time t, u and v 
are fixed parameters, uk is a stand level random 
parameter and ekt is the residual. The random 
parameters and residual error were assumed to be 
normally distributed with a constant variance. The 
parameter estimates obtained were u = 0.3260 (s.e. 
0.03816) and v = 0.6321 (s.e. 0.009543), var(uk) 
= 0.32122 and var(ekt) = 0.068562. The linearized 
model seems to fit the data well (Fig. 2b). When 
utilizing the model to predict the DGM of a stand 
with a given age, the stand effect uk is predicted 
using the best linear unbiased predictor (Eq. 12). 
When the predicted logarithmic DGM is trans-

formed back to the arithmetic scale, the bias 
correction needs to be applied (Eq. 16).

7 Application Example

To demonstrate the use of the estimated models, 
H-D curves were predicted with each of the 

Fig. 2. Stand DGM against stand age in the combined 
data. Subfigure a shows the relation on the arith-
metic scale and subfigure b shows the relation 
between logarithmic DGM and age. The solid line 
in subfigure b is the expected development obtained 
with the fixed part of model (17).
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models for one stand selected from the modeling 
data. The stand was a 35-year-old mixed-species 
forest with a DGM of 12 cm and a basal area of 
22m2/ha, of which 17.7m2/ha was Scots pine 
and 3.4m2/ha birch. The correction for bias was 
applied to all predictions (Equation 16).

Fig. 3 shows the fixed part predictions obtained 
with each of the models in Tables 2 and 3. The 
predictions obtained with the various models 
differ slightly from each other. However, for both 

Fig. 3. Predicted H-D curves of Scots pine (a) and 
birch (b) in a 35-year-old mixed pine-birch stand 
selected from the modeling data. The predictions 
are calculated with each of the models I–V using 
only the fixed part of the model. The marks show 
the observed heights and diameters.

Fig. 4. Predicted H-D curves of the Scots pines in the 
stand of Fig. 3. Dashed lines are the predictions 
of the models obtained using the fixed part only 
and solid lines are localized using one measured 
height-diameter pair at the age of 35 years (the 
big solid ball in the figures). Subfigure a shows 
the predictions obtained using models II and V at 
the age of 35 years. In subfigure b, the H-D curves 
after 10 years growth are predicted with model II. 
Small symbols are the observations (● at the age of 
35 years and ▲ at the age of 45 years). The DGM 
of the stand at the age of 35 years was 9.6 cm and 
the predicted DGM at the age of 45 years was 
11.4 cm.
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tree species all models give too low heights in 
this stand.

Fig. 4a demonstrates the effect of localization 
on the predictions. Models II and V for Scots pine 
were localized for the sample stand by predict-
ing the stand and time effects of the H-D models 
using one measured height sample tree from the 
stand (Eq. 12). The localized models give much 
better height predictions than the fixed parts only. 
Note that in Fig. 4a the localized models are very 
close to each other even if the fixed part predic-
tions are not. This is because the information of 
one measured sample overrides the information 
of the additional fixed predictors of model V. This 
demonstrates the somewhat self-evident fact that 
it is more efficient to improve the prediction of 
the H-D curve of a stand by measuring heights 
and diameters than by measuring the covariates 
of model V.

Fig. 4b demonstrates the projection of the H-D 
curve of a stand into the future. The measure-
ments were made at the age of 35 years and the 
H-D curve is projected to the age of 45 years. This 
required knowledge about the DGM at the age of 
45 years, which was predicted using model (17). 
The random effects of model (17) were predicted 
with BLUP using the known DGM at the age of 35 
years to obtain a stand-specific DGM-age -curve. 
It was used to predict the DGM of the stand at the 
age of 45 years. The projected H-D curves were 
calculated using the predicted DGM. The projec-
tions obtained with the localized model are again 
clearly better than the predictions of the fixed 
part only but they seem to be underestimates of 
the height. In fact, all localized models in Fig. 4 
seem to give slightly underestimated heights. This 
is because the expected H-D curve is so far from 
the observations that one measurement does not 
move it far enough. Using more than one sample 
tree would reduce the bias of the predictions.

8 Discussion

In this study H-D models for Scots pine and birch 
were estimated for practical use in Finland. The 
models can be used to predict the H-D relation-
ship of a stand with known DGM. If other stand 
characteristics than DGM are measured, they can 

be used through selecting from models I,…,V 
the model that best suits the situation. Measured 
height-diameter pairs can be used in localizing the 
model for a target stand and, due to the longitudi-
nal character of the model, information from any 
point in time, i.e. any stage of development, can 
be utilized. Furthermore, the H-D curve of a stand 
in the future can be predicted, but this requires the 
prediction of DGM at that point in time. These 
properties of the model are discussed in Lappi 
(1997) and Mehtätalo (2004).

The number of parameters in the model is quite 
high. Some of the parameters are so called second 
level parameters, which are included in order to 
improve the properties of parameter estimates and 
to provide interpretations for the actual param-
eters of the model. The statistical significance 
of these parameters was not tested and a more 
parsimonious model might have lead to an equally 
accurate prediction. However, because the aim of 
this study was predicting, not studying the effects 
of different factors on the height-diameter rela-
tionship, and because the second level parameters 
did not cause any harm in the estimation phase 
and the models also worked well in the predic-
tion, there was no need to decrease the number 
of parameters. 

Mehtätalo (2004) observed that the develop-
ment of the H-D curve of a shade-tolerant tree 
species (Norway spruce) depends on mean tree 
size in the stand rather than on stand age. The 
present study continued this work and showed 
that the observation made with shade-tolerant 
tree species is true also with shade-intolerant tree 
species. The reason for this is that the site proper-
ties affect the development rate of a forest stand, 
so that stands on poor sites develop more slowly 
and for longer than stands on rich sites. Because 
of this, the models predicting the development 
of the H-D curve of a stand perform better when 
mean diameter of the stand is used as the vari-
able describing the maturity of the stand instead 
of stand age. This effect on the performance is 
probably also true of models predicting other 
things than H-D curves. Hence, when modeling 
the development of any stand characteristics, for 
example, diameter distribution and stand growth, 
the use of stand age as the only variable determin-
ing the stage of development of the stand should 
be viewed critically. 
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However, the method for taking into account the 
effect of DGM on the development of H-D curves 
which has been presented here is not the only cor-
rect one; other approaches may also lead to equally 
good results. For example, the development of 
parameters A and B can be linked with stand age 
and the DGM can be used in the prediction of the 
random effects as Lappi (1997) did in his models 
6 and 7. Thus, if both DGM and age are known, it 
is not obvious that the development of H-D curves 
should be linked with DGM and linking it with 
age may work as well, if the DGM is taken into 
account in the models. However, using age only 
will not lead to as good models as will the use of 
DGM only and thus, if one of them must be chosen, 
it would be preferable to use the DGM.
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