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This study presents a comparison of the performance of four heuristic techniques with 
one- and two-compartment neighbourhoods in harvest scheduling problems including 
a spatial objective variable. The tested heuristics were random ascent, Hero, simulated 
annealing and tabu search. All methods seek better solutions by inspecting the neighbour-
hood solutions, which are combinations that can be obtained by changing the treatment 
schedule in one (one-compartment neighbourhood) or two (two-compartment neighbour-
hood) compartments. The methods and neighbourhoods were examined in one artificial 
and four real landscapes ranging from 700 to 981 ha in size. The landscapes had 608 to 
900 stand compartments, and the examined planning problems had 2986 to 4773 binary 
decision variables. The objective function was a multi-objective utility function. The 
spatial objective variable was the percentage of compartment boundary that joins two 
compartments, both of which are to be cut during the same 20-year period. The non-spa-
tial objectives were net incomes of three consecutive 20-year management periods and 
the remaining growing stock volume at the end of the third 20-year period. In another 
problem formulation, the total harvest of the first 20-year period was used as an objective 
variable together with the spatial objective. The results showed that a two-compartment 
neighbourhood was systematically and often clearly better than a one-compartment 
neighbourhood. The improvements were greatest with the simplest heuristics, random 
ascent and Hero. Of the four heuristics, tabu search and simulated annealing proved to be 
the best methods, but with a two-compartment neighbourhood the differences between 
methods were negligible.
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1 Introduction
Heuristic optimisation methods are increas-
ingly being used in forest planning (Borges et 
al. 2002). The most common reason for using 
heuristics instead of mathematical programming 
is the need to accommodate spatial objectives 
in the planning model. The spatial objectives 
may aim at controlling the maximum or mean 
size of continuous cutting areas (Lockwood and 
Moore 1992, Dahlin and Sallnäs 1993, Murray 
and Church 1995, Boston and Bettinger 1999, 
2001, Bettinger et al. 2002), at decreasing frag-
mentation (Öhman and Eriksson 1998, 2002), or 
at aggregating old forests (Öhman and Eriksson 
1998, 2002, Öhman 2000) or habitat patches of 
threatened species (Boston and Bettinger 2001, 
Van Deusen 2001, Bettinger et al. 2002, Kurttila 
et al. 2002, Palahí et al. 2004). Sometimes, spatial 
optimisation is related to the amenity values of 
the forest (Pukkala et al. 1995).

The heuristics most commonly used in forest 
planning problems include simulated annealing, 
tabu search, and genetic algorithms. In Finland, a 
method called Hero has been used for more than a 
decade for both non-spatial (Pukkala and Kangas 
1993, Kangas et al. 1996) and spatial (Pukkala et 
al. 1995) optimisation problems. A simple method 
called random ascent (or random descent in mini-
misation problems) may be added to the list of 
common heuristics (Reeves 1993). A number 
of studies have also presented various modifica-
tions and combinations of the basic techniques 
(Bettinger et al. 2002, Falcão and Borges 2002, 
Kurttila and Pukkala 2003, Pukkala 2004b).

Most of the common heuristics belong to the 
category of local improvement methods. Their 
idea is to improve the solution gradually by 
changing it locally, and usually only a little at a 
time. Such a small change is called a move. Typi-
cally, a move consists of changing the treatment 
schedule of one compartment and doing nothing 
to the other compartments. An exception to this 
principle is the genetic algorithm, which uses 
more drastic moves (e.g. Reeves 1993). Often, the 
term “solution” refers to a combination of treat-
ment schedules of stands or compartments.

Solutions that can be obtained from the current 
solution with one move form its neighbourhood. 
If a move consists of a change in just one com-

partment, the neighbourhood may be referred to 
as a one-compartment neighbourhood. If changes 
are made simultaneously in two compartments, 
we may talk about a two-compartment neigh-
bourhood. It is also possible to talk about one- or 
two-optimal (or three-optimal, etc.) heuristics 
depending on how many compartments will have 
a changed treatment schedule (Reeves 1993, p. 
13, Bettinger et al. 1999, 2002).

One problem of heuristics is their inability to 
find the global optimum with certainty. If the 
optimisation problem has strict constraints or 
achievement targets for the non-spatial goals, 
the tendency of getting trapped in local optima 
may severely hinder the attainment of the highest 
possible value of the spatial objective variable. It 
may be the case that once the solution has reached 
the border of the feasible region or the target 
level of a non-spatial goal, most one-compart-
ment moves may be either non-feasible or clearly 
poorer than the current solution. One possibility 
to overcome this problem is to use a two-compart-
ment neighbourhood (Bettinger et al. 1999). If the 
treatment schedules are changed simultaneously 
in two compartments, the non-spatial objective 
variables may remain practically unchanged but 
the spatial objective may improve significantly. 
The optimisation procedure may have reached a 
solution where the harvesting goal is met, and 
any change from this level would deteriorate the 
objective function value or fall outside the fea-
sible region. However, when two compartments 
participate in the move, the total harvest does 
not need to change notably but the locations of 
cuttings may improve considerably.

The use of two-compartment moves has 
received very little attention in forestry. Bettinger 
et al. (1999, 2002) studied it with the tabu search 
technique in problems involving strict constraints, 
and a combination of one-and two-compartment 
moves performed better than one-compartment 
moves. There seem to be no studies with utility 
theoretic problem formulations, in which the fea-
sibility of solutions often plays a smaller role than 
in problems involving strict constraints. 

The objective of this study was to compare 
one- and two-compartment neighbourhoods in 
spatial utility maximisation problems, using heu-
ristics that are based on local neighbourhood 
searches. The hypothesis was that a two-com-
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partment neighbourhood should be superior to 
a one-compartment neighbourhood because the 
former is better in arranging the locations of cut-
ting areas or habitat patches without requiring 
substantial changes in the other objectives. The 
analysed heuristics included random ascent, Hero, 
simulated annealing, and tabu search. 

2 Material and Methods

2.1 Test Forests

The heuristic methods were tested in five test 
forests, four of which were real landscapes and 
one an artificial grid-like forest. The real forests 
are located in North Karelia, Finland. Their areas 
range from 700 to 981 hectares, and they consist 
of 608 to 803 compartments (Table 1). Scots pine 
(Pinus sylvestris L.) is the most common tree 
species, followed by Norway spruce (Picea abies 
(L.) Karst.) and birch (Betula pendula Roth. and 
Betula pubescens Ehrh.). The age class distribu-
tion of the stands is rather uniform with a small 
peak in 20–40-year-old stands. 

The Forest Centre of North Karelia has surveyed 
the forests using ocular compartment inventory. 
The inventory data were imported to the Monsu 
forest planning software (Pukkala 2004a). The 
simulation tool of Monsu was used to produce 
alternative treatment schedules for the compart-
ments for a 60-year planning period consisting 
of three 20-year sub-periods. A regeneration cut 
with the necessary post-cutting treatments was 
simulated when the stand reached a minimum 
regeneration age or mean tree diameter. A thin-
ning was simulated when stand basal area reached 
a so-called thinning-limit. All cuttings were simu-
lated in the middle of the 20-year sub-period. The 

simulations were based on the official silvicul-
tural instructions but the timing of cuttings was 
varied to get more than one treatment schedule 
per compartment. The total number of schedules 
simulated for the compartments was about five 
times the number of compartments, i.e., on an 
average, one compartment had five different treat-
ment schedules, differing mainly in the timing 
of cuttings. 

As is typical in Finland, the four real land-
scapes included lakes and agricultural areas that 
partitioned the forest into rather small continu-
ous forest areas and strips of forest. This kind 
of fragmentation due to water systems and other 
land uses restricts the possibilities of spatial opti-
misation to modify the structure of the landscape. 
Therefore, an artificial forest without any lakes 
and agriculture was created to see whether the 
optimisation results would be different in a con-
tinuous forest. The artificial landscape, referred 
to as Grid or Gridforest, consisted of 900 one-
hectare square-shaped compartments, arranged 
in a grid of 30 rows and columns. The site and 
growing stock data of the compartments of the 
Gridforest were taken from two real landscapes 
(803 compartments from Area 4 and the remain-
ing 97 compartments from Area 1).

2.2 Problem Formulations

The tested heuristic techniques were random 
ascent, Hero, simulated annealing and tabu 
search. They were used as implemented in the 
Monsu software (Pukkala 2004a), except that in 
searching for better solutions a two-compartment 
neighbourhood was used in addition to a one-
compartment neighbourhood. The optimisation 
problem was formulated in a utility-theoretic way 
as follows:

Table 1. Information about test forests.

Variable Area 1 Area 2 Area 3 Area 4 Grid

Area, ha 981 915 700 931 900
Number of compartments 763 677 608 803 900
Number of schedules 3568 2986 3228 4274 4773
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where U is the total utility, I is the number of 
management objectives, ai is the importance man-
agement objective i, ui is a sub-utility function for 
objective i, and qi is the value of objective i. Qi is 
an operator that calculates the value of objective i, 
x is a vector of binary decision variables (xkn) that 
indicate whether stand n is treated according to 
schedule k, Nn is the number of alternative treat-
ment schedules in stand n, and N is the number 
of stands.

The objective variables (qi) can be any functions 
of decision variables (x). The values of objective 
variables are calculated with “operators” or rou-
tines programmed in Monsu. This means that 
optimisation is not restricted to objectives that 
are linear combinations of decision variables. 
Optimisation proceeds so that once provided 
with an initial solution the heuristic optimisation 
algorithm makes changes in the combination of 
schedules that are currently in the solution, and 
calls a calculation routine that first calculates 
the values of objective variables using operators 
Qi(x) and then evaluates the total utility of the 
combination using Eq. 1. The new utility value 
is passed back to the optimisation algorithm, the 
functioning of which depends on how good the 
new combination (new solution) is compared to 
the previous one.

The sub-utility functions transform the absolute 
value of the variable measured in its own units 
into a relative sub-utility value. These functions 
are determined through the smallest possible, the 
target level, and the largest possible value of the 
objective variable, and the respective priorities. 

The heuristic optimisation algorithms of Monsu 
are programmed so that only one management 

schedule of a compartment at a time can belong to 
the solution. Therefore, constraints of Eq. 3 need 
not be checked during optimisation, and there is 
no need to consider the feasibility of solutions; all 
solutions including exactly one treatment sched-
ule per stand are feasible, and only such solutions 
are produced during the optimisation process. 

The utility function that was maximised in this 
study included five objective variables

U a u V a u I

a u I a u I a u S

= + +
+ +

1 1 2 2 1

3 3 2 4 4 3 5 5
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Fig. 1. Sub-utility functions for the remaining growing 
stock volume (A), 20-year net income (B) and cut-
ting area aggregation (C) in the first optimisation 
problem (Eq. 5).
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where ai is the importance of objective i, ui is a 
sub-utility function of objective i, V is growing 
stock volume at the end of the 60-year planning 
period, Ij is net income of the jth 20-year sub-
period and S is a spatial objective variable. The 
importance of the volume objective (a1) was 0.4 
and all the other importances were 0.15. The spa-
tial objective variable (S) used in the analyses was 
the proportion of such a compartment boundary 
(in percent), out of the total boundary length, that 
joins two compartments which are both to be cut 
during the same 20-year period. Maximisation of 
this objective variable tends to aggregate cuttings, 
resulting in both economic (reduced harvesting 
cost) and ecological (decreased fragmentation) 
benefits. Because the same compartment can be 
cut more than once during a long planning period, 
the theoretical maximum of the spatial objective 
variable was 300 percent of the total boundary 
length (every compartment cut during every 20-
year sub-period).

The weights (ai) and sub-utility functions (ui) 
of goals were formulated in such a way that the 
solutions differed only with respect to the spatial 
objective variable. This was achieved by setting 
high enough weights and low enough target levels 
for the non-spatial goals, and a high enough target 
level and a low enough weight for the spatial 
goal variable. Values higher than the target level 
no longer increased the sub-utility (Fig. 1), with 
the result that the values of non-spatial objective 
variables were almost exactly equal to the target 

level. This kind of problem formulation made it 
possible to concentrate the analysis of results on 
the spatial objective.

The same optimisation problem was solved 20 
times with each of the four heuristics, and both 
with a one- and a two-compartment neighbour-
hood. This resulted in 800 optimisation runs. The 
purpose of 20 repeated optimisations with the 
same method and problem was to see how much 
the stochasticity of the method brings stochastic-
ity in the solution and objective function value.

To examine the effect of problem formulation 
and to visualise differences between one- and 
two-compartment neighbourhoods, another objec-
tive function was formulated for the Gridforest, 
covering only the first 20-year sub-period:

U a u H a u S= +1 1 1 2 2 1 6( ) ( ) ( )

where H1 is the total harvested volume of the 
first 20-year sub-period and S1 is the percentage 
of such a compartment boundary that joins two 
compartments which are both to be cut during the 
first 20-year period. Both a1 and a2 were 0.5. The 
sub-utility from the spatial objective variable was 
linearly proportional to S1. Three sub-utility func-
tions were used for the harvested volume, each 
aiming at a different total harvest (Fig. 2). One 
utility function aimed at a harvest of 55 000 m3, 
which is practically the same as a random solution 
would produce. Therefore, the main task of opti-
misation was to aggregate cuttings, i.e. increase 

Fig. 2. Sub-utility functions for the total 20-year drain in the one-period 
optimisation problems (Eq. 6). The target drain is 40 000 m3, 55 000 
m3, or 70 000 m3.
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boundaries that join cut stands from the value of 
a random solution (about 13% of the total bound-
ary length). In the other sub-utility functions the 
target harvest was 15 000 m3 lower or higher than 
in a random solution, with the consequence that, 
in addition to relocating them, optimisation had 
to either decrease or increase cuttings.

2.3 Heuristics

The following explains briefly how the tested 
heuristics were used and which are the param-
eters through which the user can affect the algo-
rithm. They are described in the way they are 
used with a one-compartment neighbourhood. 
A two-compartment neighbourhood is otherwise 
similar except that a move consists of changing 
the treatment schedule simultaneously in two 
compartments.

Random Ascent

In random ascent, a set of initial solutions is 
produced by selecting a random treatment sched-
ule for each compartment from all schedules 
simulated for it. The best random solution is 
the initial solution of random ascent, which first 
selects a random compartment and then a random 
treatment schedule for the selected compartment. 
If the selected schedule improves the objective 
function value, it is included in the solution, oth-
erwise it is not. The search procedure is stopped 
when the maximum number of trials, as specified 
by the user, is reached. To decrease problems 
arising from getting stuck to local optima, the 
whole process of generating an initial solution 
and applying random ascent can be repeated for 
a user-specified number of times. The parameters 
of the random ascent heuristic are: number of 
random searches to produce an initial solution, 
number of iterations (attempted moves) in random 
ascent, and number of repeated optimisations.

Hero

In Hero the initial solution is also the best of 
a user-defined number of random solutions. 

Starting from the initial solution, the stands and 
their treatment schedules are explored sequen-
tially to see whether another treatment schedule 
would improve the objective function value. If 
an increase is detected, the treatment schedule 
that improves the solution replaces the previous 
one. When all treatment schedules of all stands 
are examined in this sequential way, the process 
is repeated until no schedules that would further 
improve the solution can be found. The param-
eters of Hero are the number of random searches 
to produce an initial solution and the number of 
repeated optimisations. With a two-compartment 
neighbourhood the first compartment in which a 
change is made is selected in the same way as 
described above, i.e. sequentially, but the other 
compartment is selected randomly. Otherwise 
the method and the stopping criteria are exactly 
the same.

Simulated Annealing 

Simulated annealing, like the previous methods, 
uses the best of a set of random combinations of 
stands’ treatment schedules as the initial solution. 
It differs from the previous techniques in that it 
may also accept inferior solutions to avoid prema-
ture convergence to a local optimum (Dowsland 
1993). A candidate move consists of selecting 
first a random compartment and then a random 
schedule that would replace the current schedule 
of the selected compartment. Moves that improve 
the objective function value are always accepted. 
Non-improving moves are accepted with a prob-
ability of p = exp((–UNew – UOld) Ti

–1), where Ti is 
the current “temperature”, and U is the objective 
function value. During the optimisation process, 
the temperature cools according to a given cooling 
schedule. The search stops when a user-speci-
fied stopping temperature is reached or a certain 
number of consecutive temperatures (5 in this 
study) go without any change in the solution. 
The user can affect simulated annealing through 
six parameters: number of random searches to 
produce an initial solution, starting temperature, 
freezing (stopping) temperature, cooling mul-
tiplier, number of iterations (attempted moves) 
in the initial temperature, and an iteration mul-
tiplier to get the number of iterations in the next 
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temperature. The cooling multiplier is a number 
smaller than one (usually 0.8–0.999) with which 
the current temperature is multiplied to get the 
next temperature. An iteration multiplier greater 
than one makes it possible to intensify search as 
a function of cooling.

Tabu Search

Tabu search is based on searching the neighbour-
ing solution space before accepting one change in 
the solution. Typical of tabu search are also tabu 
lists (e.g. Glover 1989, 1990). They memorise 
recent moves, and can be used to prohibit them for 
some time. Typically, a move is kept in the tabu 
list for a certain number of iterations. This number 
is the initial tabu tenure of the move. Every itera-
tion reduces the tabu tenures of all moves in the 
list by one. A move is again allowed once its tabu 
tenure has decreased to zero. In this study, itera-
tion refers to the production of a set of random 
candidate moves (Table 2) and acceptance of one 
of them. Full neighbourhood was not used, since 
it is very large with two-compartment neighbour-
hood. The best non-tabu move is accepted. If all 
candidates are in the tabu list the one with the 
shortest tabu tenure is accepted. If a candidate 
move would yield a solution better than the best 
obtained so far, it is accepted even if the move is 
tabu (aspiration criterion; see Glover and Laguna 
1993). Tabu search can also have lists other than 
the one described above, but they were not used 
in this study. In the tabu search method of Monsu, 
the initial tabu tenure is different for the entering 
schedule (schedule that enters the solution) and 
the leaving schedule. The initial tabu tenure of 
the entering schedule is one fifth of the initial 
tenure of the leaving schedule. This means that 
the whole compartment in which a change was 
made is forbidden for one fifth of the “length 
of tabu list” (i.e. initial tabu tenure of a leaving 
schedule). The user can control Monsu’s tabu 
search through the number of iterations, number 
of candidate moves per iteration, and the initial 
tabu tenure of a leaving schedule.

2.4 Optimisation Parameters

The values of the parameters that the optimi-
sation methods need were “optimised” using 
the real forests and a one-compartment neigh-
bourhood (Table 2). The optimisation software 
(Monsu) proposes reasonable parameter values. 
One parameter at a time was changed from this 
value to see if the change improves the objec-
tive function value. An improving change was 
maintained. However, changes that improved the 
objective function value only marginally at a high 
computational cost were not accepted.

Since the purpose of the study was not to 
compare different heuristics, but to analyse the 
use of different neighbourhoods, the main target 
of parameter setting was to find values that do 
not favour one of the two neighbourhoods, at 
least not the two-compartment neighbourhood. 
Because of this, the parameters were “optimised” 
for a one-compartment neighbourhood, and the 
same values were used with a two-compartment 
neighbourhood. An exception was tabu search, in 
which the parameters were different for one- and 
two-compartment neighbourhoods (Table 2). The 
reason was that with a two-compartment neigh-
bourhood the number of tabu moves is twice as 
high as with a one-compartment neighbourhood, 
forcing the method to accept poorer moves. To 
counteract this, a shorter tabu list and a higher 
number of candidate moves were used with a 
two-compartment neighbourhood. It was checked 
that the parameters used with the two-compart-
ment neighbourhood were not better with a one-
compartment neighbourhood than the ones that 
were actually used with the one-compartment 
neighbourhood.

3 Results

The mean objective function values calculated 
from 20 repeated optimisations with the first 
problem formulation (Eq. 5) were systematically 
higher with a two-compartment neighbourhood 
(Table 3). The standard deviations were very 
small compared to the differences between means, 
indicating that the differences between neigh-
bourhoods are significant and not caused by the 
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stochasticity of the optimisation algorithms. Of 
the four tested heuristics, simulated annealing and 
tabu search found better objective function values 
than random ascent and Hero, especially with a 
one-compartment neighbourhood. All objective 
function values were rather close to one, and the 
absolute differences were small. This was because 
the objective function was formulated in such a 
way that all goals except the spatial one could 
be fully attained in all optimisations, resulting in 
a total utility of 0.85 from the non-spatial goals 
alone. The differences in the objective function 
value therefore reflect differences in the attain-
ment of the spatial objective.

The benefit of using a two-compartment neigh-
bourhood was greatest with the Hero technique 
and smallest with the two best methods, i.e. simu-
lated annealing and tabu search (Fig. 3). There-
fore, the use of a two-compartment neighbourhood 
decreased differences in the performance of opti-
misation methods. The use of a two-compartment 
neighbourhood increased the share of the com-
partment boundary joining two cutting areas by 

about 10 percentage points with the Hero method, 
and 5, 3 and 2 percentage points, respectively, 
with random ascent, tabu search and simulated 
annealing. Since the absolute values of the spatial 
objective (percentage of border joining two com-
partments both of which are to be cut during the 
same 20-year period) were less than 100%, in fact 
mostly between 50 and 80%, the relative changes 
were somewhat higher than the above-mentioned 
percentage points. 

The standard deviations of the objective function 
values, calculated from 20 repeated optimisations, 
were usually smaller with a two-compartment 
neighbourhood than with a one-compartment 
neighbourhood (Fig. 4). An exception is simu-
lated annealing, with which a one-compartment 
neighbourhood gave a smaller standard devia-
tion. The standard deviations indicate that the use 
of a two-compartment neighbourhood improves 
the robustness of optimisation with all methods 
except simulated annealing.

The optimisation times were longest in tabu 
search with a two-compartment neighbourhood, 

Table 2. Optimisation parameters (N is number of compartments; try is attempted move).

Method and parameter Parameter value

Random ascent; 1- and 2-compartment neighbourhood 
Number of optimisations 5
Number of random searches to produce initial solution 0.03 × N
Number of tries per optimisations 20 × N

Hero; 1- and 2-compartment neighbourhood 
Number of repeated optimisations 5
Number of random searches to produce initial solution 0.05 × N

Simulated annealing; 1- and 2-compartment neighbourhood
Number of random searches to produce initial solution 0.1 × N
Starting temperature 0.1 × 1 / N
Freezing temperature (0.1 × 1 / N) / 20
Cooling multiplier 0.9
Tries in initial temperature (I0) N
Tries in other temperatures 1.1 × It–1

Tabu search, 1-compartment neighbourhood
Number of iterations 3 × N
Tabu tenure (tabu duration), number of iterations 0.05 × N
Number of candidate moves per iteration 50

Tabu search, 2-compartment neighbourhood
Number of iterations 3 × N
Tabu tenure (tabu duration), number of iterations 0.03 × N
Number of candidate moves per iteration 0.2 × N
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Table 3. Mean and standard deviation of objective function value (Eq. 5) in 20 repeated optimisations for different 
heuristics with one- and two-compartment neighbourhood, and the average time required for convergence. 
Boldface indicates the best mean or maximum objective function value found for the test forest.

Variable Random ascent Hero SA Tabu search

 One Two One Two One Two One Two

 Area 1
Mean 0.9417 0.9465 0.9445 0.9548 0.9568 0.9594 0.9539 0.9582
Maximum 0.9441 0.9495 0.9466 0.9579 0.9584 0.9613 0.9555 0.9600
Standard dev. 0.0021 0.0014 0.0013 0.0010 0.0010 0.0014 0.0016 0.0013
Time, s 45 76 71 270 54 106 61 341

 Area 2
Mean 0.9247 0.9240 0.9235 0.9345 0.9378 0.9390 0.9353 0.9389
Maximum 0.9265 0.9317 0.9265 0.9364 0.9395 0.9403 0.9388 0.9404
Standard dev. 0.0011 0.0012 0.0014 0.0008 0.0008 0.0009 0.0014 0.0009
Time, s 34 55 52 143 40 82 50 290

 Area 3
Mean 0.9466 0.9548 0.9565 0.9675 0.9664 0.9689 0.9629 0.9692
Maximum 0.9504 0.9564 0.9599 0.9700 0.9685 0.9718 0.9658 0.9718
Standard dev. 0.0021 0.0013 0.0020 0.0009 0.0016 0.0018 0.0024 0.0015
Time, s 34 56 55 283 44 86 52 238

 Area 4
Mean 0.9482 0.9560 0.9487 0.9673 0.9673 0.9704 0.9619 0.9694
Maximum 0.9506 0.9592 0.9527 0.9699 0.9705 0.9736 0.9667 0.9709
Standard dev. 0.0016 0.0015 0.0024 0.0013 0.0018 0.0016 0.0022 0.0015
Time, s 56 89 113 423 64 122 70 452

 Gridforest
Mean 0.9397 0.9443 0.9404 0.9556 0.9588 0.9612 0.9567 0.9590
Maximum 0.9421 0.9458 0.9428 0.9583 0.9601 0.9620 0.9580 0.9598
Standard dev. 0.0014 0.0007 0.0012 0.0006 0.0006 0.0008 0.0010 0.0009
Time, s 68 107 119 452 79 137 86 560

Fig. 3. Change in the spatial objective when using a two-compartment instead 
of a one-compartment neighbourhood (RA = random ascent, SA = simulated 
annealing, Tabu = tabu search).
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Fig. 4. Change in the standard deviation of objective function value, calculated 
from 20 repeated optimisations, when using a two-compartment instead of 
a one-compartment neighbourhood (RA = random ascent, SA = simulated 
annealing, Tabu = tabu search).

Fig. 5. Development of objective function value in the best (highest utility value) of 20 repeated optimi-
sations in Area 1 when using a one-compartment (thick line) or a two-compartment neighbourhood 
(thin line).
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followed by Hero with a two-compartment neigh-
bourhood (Table 3, Fig. 5). The use of a two-
compartment neighbourhood always lengthened 
optimisation time. This is understandable because 
the evaluation of the effect of changes in two com-
partments takes more time than evaluating only 
one change. Another reason is related to the stop-
ping criterion: in Hero, optimisation stops when 
no improvements can be found during one scan of 

all treatment schedules. Because a two-compart-
ment neighbourhood is better at finding improv-
ing moves, optimisation also continues for much 
longer. In tabu search, with a two-compartment 
neighbourhood 140 to 196 candidate moves per 
iteration were produced and evaluated but with a 
one-compartment neighbourhood only 50, which 
explains most of the computing time difference. 
Generally, a one-compartment neighbourhood 
improved the objective function value faster in 
the beginning of the search, but improvements 
continued for much longer with a two-compart-
ment neighbourhood (Fig. 5).

The second problem formulation (Eq. 6), cover-
ing only one 20-year period, supports the results 
obtained with the first objective function (Eq. 5): 
the use of a two-compartment neighbourhood 
improves the attainment of the spatial objective 
(Fig. 6). However, the benefit clearly depends on 
the amount of cuttings and on the difference in 
cuttings between the initial solution and the target 
level. With the smallest cutting target (Fig. 6A), 
random initial solutions produce more cuttings 
than required, and the optimisation algorithm must 
drop cuttings schedules from the solution, prefer-
ably from compartments that are not surrounded 
by other cuttings. With a somewhat higher cutting 
target (Fig. 6B) the main task of optimisation is 
to place the cuttings in a more aggregated way. 
With the highest cutting target of 70 000 m3 (Fig. 
6C) good solutions require more cuttings than 
random initial solutions would produce, located 
in an aggregated way. It seems that especially 
the last sub-problem with a 70 000-m3 cutting 
target is difficult to solve satisfactorily with a 
one-compartment neighbourhood. Fig. 7 shows 
that the improvements with two-compartment 
neighbourhoods are rather evident and clearly 
discernible with the naked eye. The figure also 
shows that tabu search is by far the best method 
to be used for solving this problem if a one-com-
partment neighbourhood must be used.

4 Discussion

The results suggest that the use of a two- instead of 
a one-compartment neighbourhood in the neigh-
bourhood search clearly improves the results of 

Fig. 6. Change in the value of spatial objective variable 
when using a one- or two-compartment neighbour-
hood in optimisation. The target 20-year drain is 
40 000 m3 (A), 55 000 m3 (B) or 70 000 m3 (C). 
(RA = random ascent, SA = simulated annealing, 
Tabu = tabu search).
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local improvement heuristics in spatial problems. 
The problems of this study were formulated in a 
utility theoretic way so that the target levels of 
objective variables were given through sub-utility 

functions. No strict constraints were included in 
the problems although the use of a utility func-
tion as the objective function would not prevent 
it. In formulations including strict constraints 
the problem of getting trapped in local optima 
might be even greater than in the utility theo-
retic formulation in which there is no infeasible 
region. With problem formulations involving a 
feasible region the search may stop once it hits 
the region boundary although the solution may 
be far from the global optimum. To alleviate this 
problem, various means such as strategic oscilla-
tion (Reeves 1993) and perturbation (Falcão and 
Borges 2002) have been proposed. The use of 
two-compartment moves is an additional possible 
way of alleviating the problems that the algorithm 
may have near the border of the feasible region. 
The results of Bettinger et al. (1999, 2002) in fact 
show that, at least with tabu search, in problems 
involving strict constraints the use of two-com-
partment moves may lead to better solutions than 
one-compartment moves.

Because two-compartment moves seem better 
than one-compartment moves, a logical question 
is whether three- or four-compartment moves 
would improve the solutions further. With many 
simultaneous changes in the solution the method 
begins to resemble a genetic algorithm in which 
treatments are changed in several compartments 
through crossing-over and mutations. Some 
studies with problems fairly similar to the ones 
in this study suggest that a genetic algorithm 
indeed works better with spatial problems than 
the methods tested in this study work with a one-
compartment neighbourhood (Palahí et al. 2004, 
Pukkala and Kurttila 2005). In these studies, a 
genetic algorithm was the worst method in non-
spatial problems but the best method in spatial 
problems. However, in Bettinger et al. (2002) 
genetic algorithms were not particularly good in 
spatial problems.

Of the four methods tested, simulated anneal-
ing and tabu search were the best ones, simu-
lated annealing being slightly better with the 
first problem formulation (Eq. 5, Fig. 1) and tabu 
search with the second (Eq. 6, Fig. 2). This was 
quite an expected result (see e.g. Bettinger et al., 
1999, 2002, Pukkala and Kurttila 2005) because 
simulated annealing and tabu search have means 
to get away from local optima: simulated anneal-

Fig. 7. Spatial distribution of 20-year cuttings in the 
optimal solutions found by different heuristics 
when using a one-compartment (left) or a two-com-
partment neighbourhood (right). In all solutions the 
total 20-year harvest is 70 000 m3. Dark shadings 
indicate regenerative cuts and light shadings thin-
ning treatments.
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ing by accepting inferior solutions with a small 
probability, and tabu search by accepting the best 
candidate move even when it is poorer than the 
current solution. However, it seems that the use 
of two-compartment moves greatly decreases the 
differences between methods, indicating that it 
significantly mitigates the harmful influence of 
local optima on the search process of the simplest 
heuristics.

Inspection of the temporal development of the 
objective function value during the optimisation 
process (Fig. 5) suggests that it might be benefi-
cial to use a one-compartment neighbourhood 
in the beginning of the optimisation and a two-
compartment neighbourhood near its end to refine 
the exploration of the solution space (Boston 
and Bettinger 2001, Bettinger et al. 2002). In the 
same way, many other combinations of techniques 
may work better than a single technique alone 
(Boston and Bettinger 2002, Bettinger et al. 2002, 
Falcão and Borges 2002, Kurttila and Pukkala 
2003, Pukkala, 2004b). In this study the use of a 
two-compartment neighbourhood with the Hero 
technique can be interpreted as being a hybrid 
of random ascent heuristic and the original Hero 
method (Pukkala and Kangas 1993). It is possible 
to switch to another algorithm during optimisa-
tion, or to change the parameter settings. As the 
number of possibilities with various hybrid tech-
niques is very high, useful research on heuristic 
optimisation techniques will certainly continue 
in the near future.

The performance of a heuristic algorithm 
depends on the parameters controlling it, in addi-
tion to the type of the optimisation problem. 
Therefore, no single study can give an overall 
ranking of methods. In this study, the optimisation 
parameters were “optimised” for a one-compart-
ment neighbourhood, and the same values were 
used with a two-compartment neighbourhood. 
The exception was tabu search, for which good 
optimisation parameters were found separately for 
one- and two-compartment neighbourhoods. The 
use of one-compartment neighbourhood param-
eters with two-compartment moves in tabu search 
had resulted in a slightly better performance of the 
two-compartment neighbourhood in all four real 
forests, but clearly poorer in the artificial Grid-
forest. In addition to clear differences in objec-
tive function values, the choice of optimisation 

parameters in such a way that they do not favour a 
two-compartment neighbourhood is a justification 
for the conclusion that two-compartment moves 
are better than one-compartment moves in spatial 
optimisation problems. 
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