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One of the most common applications of remote sensing in forestry is the production of 
thematic maps, depicting e.g. tree species or stand age, by means of image classification. 
Nevertheless, the absolute quantification of stand variables is even more essential for forest 
inventories. For both issues, satellite data are attractive for their large-area and up-to-date 
mapping capacities. This study followed two steps, and at first a supervised parametric clas-
sification was performed for a German test site based on a radiometrically corrected Landsat-5 
TM scene. There, eight forest classes were identified with an overall accuracy of 87.5%. In 
the following, the study focused on the estimation of one key stand variable, the stem number 
per hectare (SN), which was carried out for a number of Norway spruce stands that had been 
clearly identified in the multispectral classification. For the estimation of SN, the approach 
of Linear Spectral Mixture Analysis (LSMA) was found to be clearly more effective than 
spectral indices. LSMA is based on the premise that measured reflectances can be linearly 
modelled from a set of so-called endmember spectra. In this study, the endmember sets were 
held variable to decompose pixel values to abundances of a vegetation, a background (soil, 
litter, bark) and a shade fraction. Forest structure determines the visible portions of these 
fractions, and therefore, a multiple regression using them as predictor variables provided the 
best SN estimates. LSMA allows a pixel-by-pixel quantification of SN for complete satellite 
images. This opens the view to exploit these data for an improved calibration of large-scale 
multi-parameter assessment strategies (e.g. statistical modelling or the kNN method for 
satellite data interpretation).
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1 Introduction

Management of forest stands needs periodic sur-
veys of structural stand parameters. As the tra-
ditional inventory strategies (field observations, 
analysis of aerial photographs) are cost-intensive 
and time-consuming, multispectral remote sen-
sing data seem to be attractive to complement and 
optimise forest inventories. Based on the sensor 
specific ground resolution (e.g. Landsat-5 TM 
with 30 m pixels in the reflective domain) and the 
scene coverage (scan width of 185 km for Landsat 
TM), multiscale approaches covering both single 
stands and complete forest regions are feasible by 
the integration of satellite data.

In Germany, the forest inventory practice has 
undergone certain modifications in the last years. 
For stand age definition, the classical nomen-
clature (e.g. pole stage, timber tree) refers to 
the dominant breast height diameter; this system 
has been extended by a more multifunctional 
nomenclature – similar to the definition of forest 
ecotopes – which is based on certain develop-
ment stages (foundation and establishment of 
seedles – stand qualification – dimensioning (crop 
tree definition and treatment for target stocking) 
– maturing). Nonetheless, the classes of both 
nomenclature systems can be assigned to total 
stand ages specifically for each tree species.

Thus, providing tree species and age classes is 
one of the main objectives of a number of remote 
sensing studies. Franklin (1994), Vohland (1997) 
or Salajanu and Olson (2001), for example, have 
used multispectral satellite data for forest clas-
sification. To be operational, acceptable accuracy 
levels should be provided by remote sensing clas-
sification approaches to obtain both useful and 
regularly updated inventory data (see Czaplewski 
and Patterson 2003 for further discussion). How-
ever, accuracy actually depends on the properties 
of the forest stands (e.g. heterogeneity of tree 
species and age class composition or the vertical 
structure) as well as the remote sensor and its spe-
cific spectral and spatial resolution. Furthermore, 
an appropriate radiometric image processing is 
also crucial to obtain image products of consist-
ent quality (Woodcock et al. 2001, Peddle et 
al. 2003). In practice, radiometric preprocessing 
strategies vary from completely ignoring effects 

of atmosphere and illumination to empirical and 
eventually physically-based correction methods 
(see Peddle et al. 2003). For a reliable and consist-
ent thematic analysis of one selected Landsat-5 
TM dataset, this study realises a model based 
preprocessing approach for the correction of both 
atmospheric and topographic distortions. After 
preprocessing, a portion of the Landsat scene 
(covering a German test site) is subjected to forest 
classification for tree species and age class defini-
tion; afterwards, results are briefly discussed and 
an error matrix is prepared.

The stand age has been shown by e.g. Siipilehto 
(2006) to be a key parameter for the statistical 
assessment of additional stand parameters (e.g. 
mean and dominant diameter or height, diameter 
and height of the basal area-median tree, total 
basal area, total stem number). In that study, 
predictions were made for 227 Norway spruce 
(Picea abies) stands of the Finnish national forest 
inventory and based on multiple linear regressions 
using total age and site characteristics (e.g. degree 
days, stoniness or paludification). Nevertheless, 
predictions were only moderate (RMSE 34–41%) 
for the sum variables of basal area and stem 
number, but increased significantly when calibrat-
ing the model with known stand variables; in fact, 
using only one additional sum and one additional 
mean variable for model calibration was most 
effective to obtain high prediction accuracies 
for all unknown variables. This calls attention 
to the potentials for efficient variable retrieval 
from multispectral satellite data to contribute to 
a precise prediction of all structural stand char-
acteristics. For the forest site investigated in this 
study, we concentrated on stands of Picea abies 
to go beyond the pure classification approach. We 
applied the relatively simple physical approach of 
Linear Spectral Mixture Analysis (LSMA) that 
tries to decompose the heterogeneous mixing 
of different components (e.g. soil, vegetation) 
spectrally for each image pixel. Fractional cover 
estimates derived from LSMA have proven useful 
in some studies of temperate and boreal forests to 
characterise structural canopy variables (e.g. leaf 
area index or canopy closure, see overview by 
Asner et al. 2003). In this study, LSMA is applied 
to retrieve the standwise stem number from the 
selected Landsat TM data. If known, this variable 
may be helpful to improve the assessment of other 
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stand parameters and to predict the stand struc-
ture (e.g. tree diameter distribution) by means 
of statistical models (Siipilehto 1999, 2006). In 
addition, it can be used as stand-alone variable to 
provide information about backlogs of thinning, 
and to indicate the structural diversity of forest 
stands in terms of an ecological assessment.

2 Materials and Methods

2.1 Study Area

The test site Idarwald forest (Lat. 49.85°N, Lon. 
7.15°E) is located on the north-western slopes of 
the Hunsrück low mountain range (Rhineland-
Palatinate, Germany) (Fig. 1). Near the ridge, 
poor sandy and shallow soils developed on Devo-
nian quartzite bedrock are typical. On the lower 
parts of the slopes, the solifluction of loamy 
weathering products from the Tertiary have led 
to compacted and partly impermeable strata with 
stands of Betula pubescens. In the other parts 
of the study region with permeable soils, the 
Luzulo-Fagetum typicum and the Luzulo-Fage-
tum milietosum were the original natural forest 
communities; nevertheless, Picea abies became 
dominant by silviculture since the late 18th cen-

tury. Thus, the proportion of Picea abies in all tree 
species of the Idarwald region is actually still the 
highest, although a gradual conversion to mixed 
forests has begun in the late eighties.

The total area of the Idarwald is about 7500 
ha in size. For our analysis, two forestry districts 
(Hinzerath, Bischofsdhron) with an area of about 
1773 ha were selected. In these districts, homo-
geneous stands of one species and age class can 
be found as well as heterogeneous mixed stands 
with underplanting or natural regeneration.

2.2 Forest Inventory Data and 
Aerial Photographs

Forest inventory data were integrated in the clas-
sification approach as they allow the extraction 
of training data and also the validation of the 
classification results. For this purpose, official 
inventory data were made available by the forest 
management of Rhineland-Palatinate (end of col-
lection period: October 1994). These data were 
originally included in some hierarchically ordered 
data files providing information about the forest 
region, the single forest stands and the respec-
tive tree species. After some editing for a stand-
wise data aggregation, they were integrated in a 
digital forest GIS (FIS) and related to the vector 

Fig. 1. The study site Idarwald forest (Rhineland Palatinate, Germany).
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data (stand polygons) digitised from the official 
forest map. Additionally, color infrared (CIR) 
aerial photopraphs from an overflight carried 
out on August 4, 1990 were available through 
the Research Institution for Forest Ecology and 
Forestry (FAWF) of Rhineland-Palatinate. The 
photographs were scanned and orthorectified, and 
as their scale (1:11 000) allows the separation of 
single trees, the crowns were counted standwise to 
validate the LSMA based estimates from Landsat-
5 TM data (see 2.3.3).

2.3 Satellite Imagery

2.3.1 Availabe Landsat TM Data and 
Steps of Preprocessing

In this study, one Landsat-5 TM scene cover-
ing the Hunsrück area (Landsat path: 196; row: 
25) around the time the CIR data were acquired 
was selected for analysis (15.07.1990). Landsat-5 
TM provides multispectral reflective data in the 
spectral domains of the visible, the near infrared 
and the shortwave infrared (Table 1), and there-
fore is appropriate for the study of vegetation 
characteristics.

The data set was calibrated by converting the 
original digital numbers to absolute reflectance 
values for each pixel. As the terrain of the study 
area is very rugged, the removal of topographic 
effects is important prior to the analysis of the 
forest structure. The key factor in the topographic 
correction is the correct pixel-by-pixel estimation 
of the total illumination (direct and diffuse terms), 
which is not feasible by typical “stand-alone” cor-
rection approaches (Lambertian cosine or Min-
naert correction) that do not integrate atmospheric 
processes (Conese et al. 1993, Hill et al. 1995). 
Thus, we decided to pursue an integrated approach 
of a combined atmospheric and topographic cor-
rection by means of the software package AtCPro 
(Atmospheric Correction Processing of Multi- & 
Hyperspectral Data; Hill et al. 1995). In AtCPro, a 

modified version of the 5S-radiative transfer code 
of Tanré et al. (1990) is implemented to account 
for both atmospheric scattering and atmospheric 
absorption by H2O, O3, CO2 and O2. On the basis 
of this model, terms describing illumination can 
be approximated and finally compensated for each 
raster cell by the integration of a digital elevation 
model (DEM) (Fig. 2). In addition to the radio-
metric correction, data preprocessing comprised 
a precise georectification, which allows a multi-
layer analysis combining e.g. Landsat TM image 
data and vector data of the FIS.

2.3.2 Multispectral Classification Approach

In general, classification approaches aim at the 
production of a thematic map from multispectral 
satellite imagery. They are based on the principle 
that different objects or land cover types show 
typical reflectance properties which are at best 
clearly distinguishable in the multispectral feature 
space. Thus, the actual level of detail of the con-
structed thematic map depends on the particular 
separability of the relevant categories which, in 
this study, are forest types or forest classes.

Thematic classification involves several steps 
of data analysis. After an optional preprocessing 
to convert the original data to absolute reflectance 
values (data calibration, 2.3.1), training samples 
representing different forest types are extracted 
from the image data and tested for separability 
by signature analysis. For the Idarwald classifi-
cation, this selection was based on the FIS data, 
and only homogeneous stands (i.e. stands made 
up by more than 90% of one species) were used 
for the supervised (based on a priori-knowledge) 
definition of training samples. Thereafter, repre-
sentative and also statistically differing samples 
are used to train the classifier. For multispectral 
remote sensing data, the maximum likelihood 
approach is a widely used classification method. 
In this approach, Gaussian probability distribu-
tion is assumed for each class, and the mean 

Table 1. Reflective channels of the Landsat-5 TM sensor (Kramer 2002).

Band TM 1 TM 2 TM 3 TM 4 TM 5 TM 7

Band edges [µm] 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.90 1.55–1.75 2.08–2.35
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vectors and covariance matrices are calculated 
from the selected training data to describe the 
individual class properties. After this, each pixel 
can be labelled whereas the class assignment 
depends on the highest probability of membership 
(Schowengerdt 2006). This standard parametric 
approach was applied to the TM data of 1990, 
and a detailed confusion matrix was computed 
for validation.

2.3.3 Quantitative Analysis by LSMA

In case of forest cover, an image pixel of Landsat 
TM can be assumed to comprise a mixture of 
vegetation, soil or litter components, which can be 
both sunlit or shaded. Thus, pixel analysis should 
be based on an adequate unmixing approach.

LSMA considers reflectance values of each 
pixel (R) as an additive mixture of reflectances 
of pure materials or cover types (endmembers, 
E); the contribution of each endmember is deter-
mined by its abundance (fractional coverage F) 
according to Eq. 1:

Ri Fj REij Fj
i

j

n

j

n

= ⋅ + =
= =

∑ ∑ε and
1 1

1 (1)

with
Ri = reflectance value in spectral band i
REij = spectral signature of endmember j in band i
Fj = abundance of endmember j
εi = residual in spectral band i
n = number of endmembers

Inverting this mixture model, one retrieves the 
pixelwise abundances of the considered endmem-
bers from the measured pixel values. To produce 
physically realistic results, one constraint was 
implemented that forces the retrieved fraction 
abundances to sum to 1.0. Nevertheless, negative 
values are possible and may indicate the use of 
endmembers that are not part of the given mixture 
(Rogge et al. 2006). The root mean squared error 
(RMSE) is retrieved for each pixel when compar-
ing the measured spectra with those reconstructed 
from the endmembers and their abundances; it 
represents the spectral information that cannot be 
explained by the selected mixture model. How-

Fig. 2. The radiometric preprocesssing chain for the Landsat-5 TM data.
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ever, the number of endmembers to be included 
in the model is restricted by the intrinsic dimen-
sion of the spectral data. For Landsat TM with 
highly correlated spectral bands, the number of 
endmembers should not exceed four (Drake and 
Settle 1989).

Spectral mixtures including green vegetation 
tend to be nonlinear due to near infrared trans-
mission and scattering; the degree of nonlinear-
ity varies depending on soil reflectance and leaf 
transmittance. However, with coniferous forest 
the degree of nonlinearity is low so that the 
premise of LSMA (light interacts with only one 
material) seems to be sufficiently valid (Roberts et 
al. 1991, Roberts et al. 1993). Another shortcom-
ing of traditional LSMA using fixed endmember 
sets is its failure to account for variability in the 
endmember reflectance within images (Asner et 
al. 2003). The latter can partly be overcome by 
introducing multiple endmember sets.

For our study, we incorporated two endmem-
ber spectra of green vegetation (layer stacks of 
both dicotyledonic leaves and needles), three 
background (forest floor) endmembers (spectra 
of bark, litter and soil) and a shade spectrum. 
These spectra were measured from samples in 
the laboratory using a spectroradiometer (ASD 
FieldSpec II Pro FR). Their application to the 
Landsat data requires the preprocessing of the 
images (conversion of the raw data to ground 
reflectances) as described in Section 2.3.1. For 
shade, an idealised spectrum with absolute reflec-

tances of 0.0 for all wavelengths was used. After 
resampling the measured endmembers to the 
spectral resolution of Landsat TM (Fig. 3), alto-
gether six endmember sets were defined, each 
comprising the shade endmember as well as one 
of the foreground (green vegetation) and one of 
the background endmembers.

In the multiple unmixing approach, the most 
appropriate endmember combination is identi-
fied for each pixel statistically by comparing the 
bandwise residuals εi in the unmixing approach 
(see Eq. 1 and Fig. 4); the abundances retrieved 
with the lowest error terms are considered to rep-
resent the true proportion of the green vegetation 
fraction, the proportion of the canopy bottom 
contributing to canopy reflectance and the total 
shade fraction. Hence, this approach provides 
a statistically optimised solution of the basic 
LSMA-expression presented by Peddle et al. 
(1999) for boreal forest application:

Rp = C · Rc + B · Rb + S · Rs + ε (2)

with
Rp = pixel value of reflectance
C, B, S = areal fractions of sunlit canopy, sunlit 

background and shade
Rc, Rb, Rs = endmember reflectances of sunlit 

canopy, sunlit background and shade
ε = error term

Fig. 3. Endmember spectra incorporated in the LSMA (GV = green 
vegetation, B = background, S = shade endmember).



447

Vohland, Stoffels, Hau and Schüler Remote Sensing Techniques for Forest Parameter Assessment: Multispectral Classification and …

Unlike vegetation indices that are computed 
from some spectral combination of remote sen-
sing data (e.g. by differencing or rationing the 
measurements in the near infrared and the visible 
red), the fractional cover estimates of the LSMA 
are derived by a simple additive model of the radi-
ative transfer inside canopies and can therefore 
be interpreted as physical stand properties. This 
might allow a close and physically reasonable link 
to canopy structural properties most relevant for 
ecological issues or routinely recorded by forest 
inventory. Local variations can be accounted for 
by the multiple endmember approach, which is 
desirable in terms of a generalised application 
to a wide range of situations (Baret et al. 2000, 
Asner et al. 2003).

In this study, the unmixing approach was applied 
to the TM data and afterwards validated by the 
counts from the aerial photographs. For a detailed 
analysis and validation, a total of 42 Picea abies 
stands of the timber tree class with an area of 0.9 
to 2.5 hectares were selected from the Idarwald 
districts. With reference to the FIS data, their 
absolute age in 1990 varied from 42 to 130 years. 
For young timber tree stands, canopy closures 
and stem numbers usually vary greatly due to dif-
ferences in management and thinning activities. 
In the middle and older timber tree stands, stem 
number keeps constant whereas canopy closures 
gradually increase. After maturity, felling activi-
ties cause the reduction of both canopy closure and 
stem number. In consequence of this managerial 
differentiation, and as some of the selected stands 
were clearly affected by storm damages, the stem 

number per hectare varied greatly between 0 and 
979 trees per hectare, according to the counts 
from the aerial photographs. Due to this variation, 
not only the fraction of green vegetation, but also 
the sunlit background or the total shade fraction 
may probably provide efficient diagnostics of the 
canopy structure.

In this context, some existing studies (Hall et 
al. 1995, Peddle et al. 1999, Sabol et al. 2002) 
have demonstrated the power of the shade fraction 
for assessing biophysical structural information 
(biomass, leaf area index, net primary productiv-
ity, canopy closure). For example, in the study of 
Sabol et al. (2002) a combination of the LSMA 
fractions of vegetation and shade proved to be 
more efficient for identifying increasing crown 
closure associated with forest regrowth than the 
classical NDVI (Normalized Difference Vegeta-
tion Index; Rouse et al. 1974, see Eq. 3). Never-
theless, the stem number – selected in this study 
as structural forest attribute – is more typically 
recorded in forest management systems than the 
crown closure. In the following, the power of the 
LSMA as predictor for the stem number of the 
selected Picea abies stands is investigated and 
also compared to the concept of spectral vegeta-
tion indices.

NDVI
R R

R R

nIR red

nIR red
=

−
+

 (3)

with
RnIR = reflectance in the near infared
Rred = reflectance in the visible red

Fig. 4. LSMA approach with multiple endmember sets.
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3 Results

In the spectral signature analysis some of the 
training classes turned out to be not separable due 
to their spectral similarity; thus, altogether eight 
forest classes potentially separable were defined 
by training samples (Table 2) and afterwards used 
for assigning all forest pixels in the classification 
process for the TM data (Fig. 5).

To assess the accuracy of the classification 
results, we selected possible reference points 
(pixels) randomly in the area of the classified 
forest districts. From this sample, those points 
were finally chosen which could be assigned 
to one stand unambiguously (no mixed pixels 
at stand borders), which allowed a clear stand 
characterisation from the available FIS data, and 

which had not been used as training data. For the 
latter, the quantity of data was sufficient for five 
of the eight classes to avoid an overlap between 
training and validation data (669 reference points); 
however, for three forest classes (deciduous forest 
both pole and timber stage, pole stage of doug-
las fir and larch) no independent validation data 
could be extracted, and a total of 220 points that 
had been used in the training were now applied 
for validation (Table 3). In the following, the 
extracted validation points were compared to the 
multispectral classification results in terms of a 
confusion matrix (Table 3), which is the standard 
error matrix for reporting the accuracy of remote 
sensing classification results (Congalton 1991, 
Foody 2002). For the Idarwald classification, 
the overall accuracy was 87.5% (778 from 889 
pixels were classified correctly), and the accu-

Table 2. Forest classes as defined by FIS selection and signature analysis from Landsat TM data (15.07.1990).

Age class Development stage Species

Clearcuts, windfalls – –
Seedles Establishment Fagus sylvatica, Quercus robur, Quercus petraea, Alnus glutinosa,
  Picea abies
Thickets Stand qualification Picea abies, Pseudotsuga menziesii, Abies alba1

Pole stage Dimensioning Picea abies
Pole stage Dimensioning Pseudotsuga menziesii, Larix decidua, Larix kaempferi
Pole stage Dimensioning Fagus sylvatica, Quercus robur, Quercus petraea, partly mixed
  with Betula pendula, Alnus glutinosa
Timber and matured Maturing Fagus sylvatica, Quercus robur, Quercus petraea,
   timber stage  Betula pubescens
Timber and matured Maturing Picea abies2 

   timber stage

1 no occurrence of homogeneous thickets of deciduous species
2 no occurrence of timber tree stands of other coniferous species

Table 3. Confusion matrix of the TM data classification resulting from randomly sampled pixels.

 Reference data from FIS
 A B C D E F G H J

A Clearcuts, windfalls 6 1 1 0 0 0 0 0 8
B Seedles 2 9 5 1 0 0 0 0 17
C Thickets 0 1 167 8 4 8 4 3 195
D Norway Spruce pole stage 2 0 7 90 4 9 0 0 112
E Douglas Fir, Larch pole stage1 0 0 0 3 34 4 0 0 41
F Norway Spruce timber stage 0 2 4 11 7 313 0 0 337
G Deciduous Forest pole stage1 0 4 7 0 0 0 133 2 146
H Deciduous Forest timber stage1 0 0 0 0 0 0 7 26 33

J Sum 10 17 191 113 49 334 144 31 889

1 reference points were also used as training data
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racies retrieved for the individual classes were 
generally in excess of 75%. Solely the class of 
seedles showed poorer results, but significance 
is limited here and also for the class of clearcuts 
and windfalls due to a very small number of 
reference points.

Another widespread estimate of accuracy is 
provided by Cohen’s kappa coefficient (κ) (Cohen 
1960, Hudson and Ramm 1987), an omnibus 
index comparing the actual agreement of categori-

cal data against that which might be expected by 
chance. In reality, the kappa coefficient, that is 
computed from the confusion matrix as shown 
in Eq. 4, usually ranges between 0 (no agreement 
above that expected by chance) and 1 (perfect 
agreement) (Lillesand and Kiefer 2003). For the 
Idarwald classification, a relatively high kappa 
coefficient of 0.836 was calculated which again 
suggests reliable classification results. Neverthe-
less, the analytical value of the kappa coefficient 

Fig. 5. Distribution of the forest classes for the Idarwald 
districts (1990).
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may be questionable as discussed in detail by 
Stehmann (1997).
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with
r = number of rows in the error matrix
xii = the number of observations in row i and 

column i (major diagonal)
xi. = total of observations in row i
x.i = total of observations in column i
n = total number of observations (pixels)

In the classification map (Fig. 5), the high rate of 
clearings (4.8% of the classified area) is striking. 
This is due to extreme damages in early spring 
1990 by severe windstorms (Vivian and Wiebke) 
which primarily attacked stands of the shallow 
root Picea abies. Nevertheless, Picea abies is 
the most widespread tree species in 1990, and its 
pole and timber tree stands amount to 42.5% of 
the classified area.

All pixels of the TM data that had been clas-
sified multispectrally were also subjected to the 
linear spectral unmixing, and the total six pre-
defined spectral endmember sets were allowed 
for unmixing. Finally, 45.3% of all pixels were 
unmixed with the spectrum of green spruce nee-
dles, whereas in 54.7% of all cases the beech 
leaves endmember provided better model fits. In 
terms of the background endmember, the bark 
spectrum was used for the clear majority of pixels 
(66.4%, soil spectrum: 18.8%, litter spectrum: 
14.8%). In view of the forest classes, unmixing 

results were consistent (Table 4). For nearly all 
pixels falling into the class of deciduous forest 
(> 99%), the spectrum of beech leaves was identi-
fied as the most appropriate, and the vast majority 
of the spruce stands were unmixed with the spruce 
needle spectrum as foreground endmember. For 
all classified pixels, a small RMSE in terms of 
absolute reflectance was obtained (0.0074), which 
reveals a nearly accurate reconstruction of the 
pixel spectra by the multiple mixing models.

For each of the 42 selected stands, a spec-
tral sensitivity analysis was performed; spectral 
indices were calculated from the spectral stand 
signatures and the pixel-based unmixing results 
were aggregated for each stand.

The sensitivity analysis (Fig. 6) reveals clear 
changes in the spectra connected with an increas-
ing number of stems per hectare. Evidently, the 
signatures are highly variable in the channels 
TM 3 (visible red), TM 4 (nIR) and TM 5 and 
TM 7 (shortwave infrared/swIR). Nevertheless, 
the prediction power of one channel-reflectances 
is limited by saturation tendencies for canopies 
exceeding a number of 400 stems per hectare 
and by ambiguities (e.g. the reflectances in the 
nIR can be high for both windfalls with low stem 
numbers and also dense canopies). The latter is 
partly compensated by the normalised difference 
concept used for the NDVI. However, the spec-
tral sensitivity analysis showed the swIR to be 
promising for predicition; thus, another normal-
ised difference index known as broadband NDWI 
(Normalised Difference Water Index (Gao 1996, 
Jackson et al. 2004), see Eq. 5) was applied.

Table 4. Results of the multiple LSMA for the classified forest pixels (foreground and background endmembers 
as used for unmixing (in %); mean RMSE (in absolute reflectance) of mixture analysis).

 Foreground (leaves) Background RMSE
 spruce beech barch soil litter

Clearcuts, windfalls 40.1 59.9 94.9 3.1 2.0 0.013
Seedles 24.1 75.9 97.1 2.4 0.5 0.015
Thickets 31.8 68.2 68.1 22.7 9.2 0.008
Douglas fir (pole stage) 67.3 32.7 50.7 37.5 11.8 0.005
Norway spruce (pole stage) 70.2 29.8 64.5 14.2 21.3 0.005
Norway spruce (timber stage) 87.1 12.9 47.5 15.5 37.0 0.004
Deciduous forest (pole stage) 0.3 99.7 40.5 56.4 3.1 0.011
Deciduous forest (timber stage) 0.6 99.4 78.1 18.8 3.1 0.009
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Although NDVI and NDWI are highly correlated 
(r = 0.97), saturation tendency is less distinct for 
the NDWI which leads to more accurate estimates 
of the stem number (Table 5, Fig. 7).

In terms of spectral unmixing, the results for 
each endmember fraction were plotted against 
SN to get an idea of the individual response to SN 
variation (Fig. 8). Obviously, the green vegeta-
tion (GV) abundances form the most appropriate 
stand-alone SN predictor. Quite different from 
the vegetation indices, the GV fraction is linearly 

Fig. 6. Sensitivity analysis: Stands of Picea abies (timber tree class) with different stem numbers per hectare 
(SN).

Fig. 7. Spectral indices: NDVI vs. NDWI (left) and NDWI-based estimates of SN (right).

Table 5. Statistics for estimates of stem number per hectare by vegetation indices (n = 42).

Index Estimation model r² a RMSE r²cv
 a,b RMSEcv

 b

Rred SN = –390.17 × ln(Rred) – 978.6 0.55 172.8 0.52 179.3
RnIR SN = 4387 × RnIR – 290.96 0.13 240.5 0.04 258.4
RswIR SN = –459.85 × ln(RswIR) – 682.3 0.58 166.6 0.55 173.3
NDVI SN = exp(8.5456 × NDVI – 0.3268) 0.67 168.2 0.65 175.3
NDWI SN = exp(5.6225 × NDWI + 4.006) 0.76 152.1 0.74 158.1

a all correlations statistically significant with α < 0.05
b results after internal validation performing a leave-one-out crossvalidation (cv)
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related to SN and not affected by saturation. 
Thus, by (SN = 2612.5 × FGV – 100.6) one retrieves 
quite accurate estimates with a low RMSE term 
(r2

cv = 0.76, RMSEcv = 126, Fig. 9), which is a 
clear improvement compared to the results of the 
best-predicting index NDWI (RMSEcv = 158).

Evidently, the quantified endmember abun-
dances are strongly related to each other, which 
plausibly follows from the constrained sum-to-
one unmixing approach. The question is whether 
a significant multiple (linear) regression model 
can be identified to explain any more variation 
of SN, beyond the variation explained by the 
simple GV regression model. Compared to GV, 
the contribution of the background fraction is 
opposite in trend; it consistently diminishes with 
increasing SN, and becomes insensitive for all 
plots with SN > 400. The interrelation between 
FB and SN can simply be linearized by taking the 
logarithm of FB.

The quantified shade fraction abundances 
clearly reveal the overall high contribution of 
shade to the spruce canopy reflectances. They 
steadily increase with SN reaching the maxi-
mum within values of 300 to 400 stems per 
hectare. Here, still moderate densities induce a 
rough texture and the shadows dropped by the 
approximately conic crowns are largely visible 
for the nadir viewing remote sensor. Nevertheless, 
further SN increase reduces roughness, and the 
shaded fractions decrease, while the visible sunlit 
crown fraction grows proportionally to SN.

From the scatterplot it follows that the shade 
fraction abundances cannot provide satisfactory 
SN estimates when used solely due to the non-
uniqueness of the FS–SN relation. Nevertheless, 
this does not exclude a gain in estimation power 
by FS in a multiple analysis. The most appropriate 
linearizable model to partly represent the interre-
lation between the shade fraction abundances and 
SN is formed by a second order polynomial regres-
sion (SN = –10 551 × FS

2 + 12 294 × FS – 2989.7). 
Based on that, a stepwise linear multiple regres-
sion with SN as dependent and FGV, ln(FB), FS

2 
and FS as predictor variables was established. 
In this approach, FGV was selected as first vari-
able as it provides the most significant univariate 
regression. After this, all other variables were 
selected successively (the second was FS

2, then 
ln(FB) and FS), as they all turned out to explain 
residual variation of SN significantly (Table 6, 
all partial correlation coefficients with α < 0.05). 
In this process, the coefficient of determination 
(r²) gradually increased from 0.78 to 0.85, and 
r²cv also increased from 0.76 to 0.82 (Fig. 9). 
Compared to the simple regression with FGV, the 
multiple approach yields a notedly lower RMSEcv 
(110 instead of 126). Results particularly improve 
for stands with 600 to 900 stems per hectare 
with a now clearly reduced scattering around the 
1:1-line in the plot of measured versus estimated 
values (Fig. 9).

Fig. 8. Fractions of green vegetation (GV), background (B) and shade (S) 
as function of SN (n = 42).
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4 Discussion and Conclusions

Many papers have dealt with the question of accu-
racy assessment strategies for land cover clas-
sification from remote sensing data (e.g. Trodd 
1995, Thomlinson et al. 1999, Foody 2002). As 
one outcome, an overall accuracy (percentage of 
cases correctly classified) of 85% with no class 
less than 70% has been claimed (Thomlinson 
et al. 1999). Referring to that, the accuracies 
obtained for the multispectral classification of 
the 1990 data are more than adequate, and they 
agree with or are superior to results achieved by 
other multispectral forest classifications (Franklin 
1994, Vohland 1997, Salajanu and Olson 2001, 
Schlerf 2006) Nevertheless, the actually reach-
able accuracies depend on the complexity of the 
classification issues and thus seem to be restricted 
in terms of a direct comparison. In our study, the 
integration of a broad deciduous forest timber 
stage-class and a high proportion of spectrally 
well-defined Norway spruce stands (timber stage) 

have certainly contributed to an overall high clas-
sification accuracy.

Classification results may be linked to an appro-
priate radiometric image preprocessing. This 
issue was not examined explicitly in this study, 
but it seems to be highly recommendable to pay 
close attention to the radiometric consistency of 
remote sensing data and image products, as the 
users interested in forest applications will rely on 
standardised (certified) high-quality data (Peddle 
et al. 2003).

Furthermore, an adequate preprocessing is 
mandatory for quantitative approaches combining 
spectroradiometer and image data. Here, labora-
tory measured endmember spectra were integrated 
for the LSMA approach with multiple endmember 
sets. By unmixing the pixels of Norway spruce 
stands, the provided fractions of green vegetation 
were more powerful for stem number estimation 
than classical spectral vegetation indices, and the 
RMSE of prediction clearly improved. For the 
indices, the NDWI was superior to the NDVI, and 

Fig. 9. Estimates of SN based on simple and multiple linear regression using endmember fractions.

Table 6. Coefficients of the final linear multiple regression model for predicting SN.

 Constant FGV FS
2 ln(FB) FS

Coefficient –883.9 1278.3 –3582.8 –127.2 3507.9
Partial correlation – 0.36 –0.38 –0.38 0.33
Significance (α) – 0.024 0.017 0.017 0.041
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it continued to reflect changes of SN by increasing 
moderately, whereas the NDVI already saturated. 
This coincides with the findings of Jackson et al. 
(2004) who tested both indices for retrieving the 
total vegetation water content that is intrinsically 
tied to the mass of green vegetation.

The GV fractions provided by LSMA did not 
saturate and provided reliable SN estimates. 
Nevertheless, the prediction power again was 
enlarged significantly by integrating the shade and 
background fractions in a multivariate regression 
analysis. This again proves the LSMA to provide 
a realistic mapping of both sunlit and shaded frac-
tions, which is diagnostic for the forest structure 
and also depends on the actual sun-sensor geo-
metry. To normalise the effects of variable solar 
zenith angels during the Landsat overflight, the 
vegetation fraction is commonly divided by (1 
– shade) to obtain an estimate for the vegetation 
ground cover (Adams et al. 1995, Asner et al. 
2003). Nonetheless, valuable structural informa-
tion is eliminated by this normalisation, and for 
the SN variable studied here, normalised vegeta-
tion abundances tended to saturate for high SN 
values and lost much of their predictive power 
(in fact, the r2

cv dropped to 0.51 and the RMSEcv 
clearly increased to 181).

For an operational use, the LSMA approach 
described in this study may be applied to forest 
strata identified within multispectral and large 
area mapping satellite images (of ideally medium 
to high spatial resolution; e.g. Landsat TM, 
ASTER, IRS, SPOT). After a careful calibra-
tion with some representative reference plots, the 
prediction model may be used on a pixel-by-pixel 
basis to provide continuous fields of SN estimates. 
These data will possibly assist statistical models 
for forest parameter retrieval or be integrated 
as a reference for multi-source forest invento-
ries based on the k-Nearest Neighbour algorithm 
(kNN). This aproach, originally developed for the 
Finnish national forest survey by Tomppo (1990, 
1991), is a non parametric classification strategy 
based on reference pixels with known ground 
truth forest data. For each pixel with unknown 
parameter values, k spectrally nearest neighbours 
are selected and used for forest parameter retrieval 
by a respective weighting of their terrestrial refer-
ence data. Thus, the spectral information is used 
to carry forest data from reference points to the 

whole of forest plots (Holmström et al. 2002).
Nevertheless, the accuracy of this approach 

simply depends on having enough up-to-date 
reference data or ground samples “to cover all 
variations in tree size and stand density for each 
cover type” (Franco-Lopez et al. 2001).

One way to retrieve reference data is to update 
the aged information of past inventories by the 
application of forest growth models, which is 
limited to the reconstruction of a regular tree 
and stand development; disturbed plots (due to 
thinnings, windfalls or calamities) have to be 
excluded as no input data are available for the 
growth modelling (Holmström et al. 2002). As 
alternative, the described pixel-by-pixel approach 
applied to currently available and full area map-
ping satellite data may contribute to close the gap 
of up-to-date reference data by providing spatially 
distributed SN estimates.
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