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Several models and/or several variable combinations could be used to predict the diameter 
distribution of a stand. Typically, a fi xed model and a fi xed variable combination is 
used in all conditions. The calibration procedure, however, makes it possible to choose 
the measurement combination from among many possibilities, although the model used 
is fi xed. In this study, the usefulness of utilizing additional stand characteristics for 
calibrating the predicted diameter distribution is examined. Nine measurement strategies 
were tested in predicting the total stand volume, sawlog volume and pulpwood volume. 
The observed errors of these variables under each strategy were modeled as a function 
of basal area, basal area median diameter and number of stems. The models were 
estimated in three steps. First, an Ordinary Least Squares (OLS) model was fi tted to the 
observed errors. Then, a variance function was estimated using the OLS residuals. Finally, 
a weighted Seemingly Unrelated Regression (SUR) analysis was used to model the 
observed errors, using the estimated variance functions as weights. The estimated models 
can be used to anticipate the precision and accuracy of predicted volume characteristics 
for each stand with different variable combinations and, consequently, to choose the best 
measurement combination in different stands.
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1 Introduction

In compartmentwise inventory in Finland, the 
vari ables of primary interest, namely current 
stand volume and timber assortments, are pre-
dicted in two steps. First, the basal area diam-
eter distribution in a stand is predicted based on 
assessed variables. Second, the stand volume and 
timber assortments are predicted using treewise 
height and volume models or taper curve func-
tions, using diameters sampled from the predicted 
diameter distribution. The future development of 
the stand is predicted in a similar fashion, based 
on the same information.

Usually, the diameter distribution is predicted 
using one fi xed model and a few fi xed basic 
stand characteristics, which are assessed in the 
fi eld. Yet, there are many different measurement 
combinations that could be used in predicting 
the distribution, as well as several models or 
modeling approaches. It can be presumed that in 
different conditions different measurement com-
binations or modeling approaches would be opti-
mal. Nevertheless, estimating prediction models 
for all possible combinations and including them 
into a forest information system would be tedi-
ous. This problem can be overcome by using 
calibration estimation (see Deville and Särndal 
1992, Kangas and Maltamo 2000a,c). In calibra-
tion estimation, the distribution may be predicted 
with the aid of basic measurements using a fi xed 
model, and calibrated afterwards if additional 
information is available. This makes it possible, 
in principle, to use an unlimited number of dif-
ferent measurement combinations in predicting 
the diameter distribution.

Because volumes and timber assortments are 
predicted using predicted diameter distributions, 
their accuracy is diffi cult to assess analytically. 
The existing estimates of uncertainty are usu-
ally empirical estimates, which are averages for 
different conditions (e.g. Kangas and Maltamo 
2000c). Such studies provide little information 
on how the different approaches perform in dif-
ferent conditions. By calculating the uncertainty 
estimates separately for different conditions, e.g. 
for different geographical areas, more informa-
tion on the performance of the approach used can 
be obtained (Kangas and Maltamo 2000c). An 

anticipated estimate of the prediction error for 
each stand with different modeling approaches or 
dependent variables would be useful in order to 
choose the best model or best variable combina-
tion for each case.

The concept of anticipated variance originates 
from survey methodology. It is the expected vari-
ance of a sampling scheme, based on the sam-
pling design and the assumed properties of the 
forest area (e.g. Mandallaz and Ye 1999). Thus, 
it can be used for choosing an optimal sampling 
scheme. For anticipating the precision and accu-
racy of predicted stand characteristics, a purely 
model-based approach is required (see e.g. Cassel 
et al. 1977, Gregoire 1998). Kangas (1999) used a 
mixed model approach to anticipate the accuracy of 
predicted stand volume at different points of time 
(for related studies from population forecasting see 
Alho 1990, Alho and Spencer 1997). The consid-
ered stand volume predictions were obtained with 
a complex simulation system including, among 
others, treewise growth models and a standwise 
mortality model. The model used for anticipating 
the accuracy of future predictions was estimated 
from the observed errors of the stand volume.

The aim of this study is to produce models for 
anticipating the precision and accuracy of stand 
volume, sawlog volume and pulpwood volume 
estimates in each stand, based on the character-
istics of that stand and the information assumed 
to be available from the stand. The models can 
also be used to choose the variables to measure 
or assess in each stand, in order to produce as 
accurate an estimate of stand volume or timber 
assortments as possible.

In this study, only Scots pine observations were 
used, but similar approach could be used for total 
stand volume or volumes of other tree species 
as well. The basic stand measurements used are 
stand age, basal area and basal area median diam-
eter. Eight other measurements, such as number 
of stems and maximum diameter, are available 
for additional information. All the measurements 
are assumed to be error-free. The observed errors 
in stand volume, sawtimber volume and pulp-
wood volume estimates, assuming nine different 
measurement combinations, are modeled using a 
weighted Seemingly Unrelated Regression (SUR) 
model.
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2 Material

The data set includes the permanent sample plots 
(INKA) measured by the Finnish Forest Research 
Institute (FFRI), originally installed for growth 
modeling purposes (Gustavsen et al. 1988). The 
INKA sample plots were established on mineral 
soils across Finland. The data includes clusters 
of three circular plots within a stand. When test-
ing the diameter distribution prediction methods, 
these circular plots were combined. Altogether 
100–120 trees were measured in each stand. Of 
these trees about 30 were measured as sample 
trees. The diameter of all trees within a plot were 
measured to the nearest 0.1 cm. Correspondingly, 
tree height was measured from sample trees to 
the nearest 0.1 meters.

Tree height model of Näslund (1936) was 
fi rst constructed separately for each stand using 
sample tree measurements. The height of each 
tally tree was then predicted with these standwise 

models. A random component was added to the 
predicted heights from a normal distribution using 
the estimated standard deviation of each height 
model. Total, sawlog and pulpwood volumes were 
calculated for each tree using taper curve func-
tions presented by Laasasenaho (1982). Finally, 
stand characteristics were calculated as the aver-
ages and sums of tallied trees (Table 1).

Sample tree measurements from all stands were 
also used for constructing a random coeffi cient 
version of Näslund height model. This model was 
used in calculation of the stand characteristics 
with different assumed measurement strategies.

3 Methods

3.1 Height Model

The available height models of Scots pine were 
such that the model is adjusted exactly to the 
observed height of the assessed mean tree (i.e. a 
tree with dbh = dgM). However, a more effi cient 
calibration approach is to use a random parameter 
model and linear prediction theory. Therefore, a 
random coeffi cient version of Näslund’s model 
for tree k in plot j and stand i

y b b dbh b b dbh uijk ijk i i ijk ij ijk= + + + + +0 1 0 1 ε  (1)

was estimated, where

y
dbh

hijk
ijk

ijk

=
−1 3.

 (2)

b0 is the (fi xed) intercept term, b1 the (fi xed) 
coeffi cient of dbh, b0i the random stand effect, 
b1i is the random standwise coeffi cient of dbh, 
uij is the random plot effect and εijk the random 
tree effect (residual error) (e.g. Goldstein 1995, 
Lappi 1991). In this model, therefore, both the 
intercept term and the coeffi cient of dbh vary 
from stand to stand.

Generally, the random coeffi cient model can 
be presented as

y Xa Zb= + + εε (3)

where y is a vector of n observations, X is a n × 
p matrix of independent fi xed variables, Z is a 

Table 1. Range, mean and standard deviation (SD) 
of main characteristics of the study material.
A denotes age, dgM basal area median diameter, 
hgM height of basal area median tree, dnM frequency 
median diameter, dm arithmetic mean diameter, 
dmin minimum diameter, dmax maximum diameter, 
N number of stems, Nd>6 stem number per ha with 
dbh > 6 cm, G basal area, Gd≤6 basal area of trees 
with dbh ≤ 6 cm, Gd>16 basal area of trees with 
dbh > 16 cm, V volume, Vs sawlog volume and 
Vp pulpwood volume.

Variable Min Max Mean SD

A, years 15 183 67.3 31.9
dgM, cm 5 35 15.6 6.3
hgM, cm 3.3 27.5 11.8 5.2
dnM, cm 1.3 31.8 11.8 6.1
dm, cm 2.8 32.2 12.1 5.7
dmin, cm 0.2 21.7 4.1 3.1
dmax, cm 8.4 48.8 23.6 8.2
N, ha–1 87 4237 1190 789
Nd>6 , ha–1 79 2315 721 433
G, m2ha–1 1.1 32.7 12.2 6.5
Gd≤6, m2ha–1 0 5.4 0.8 0.9
Gd>16, m2ha–1 0 27.3 6.0 6.5
V, m3ha–1 3.6 310.3 80.3 61.7
Vs, cm 0 247.8 38.2 49.3
Vp , cm 0.7 144.0 36.3 27.1



802

Silva Fennica 36(4) research articles

n × q design matrix, a is a p-vector of unknown 
population parameters, b is a q-vector of unknown 
random parameters and e is the residual vector 
(e.g. Penner et al. 1995). If var(b) = D and
var(e) = R, the variance-covariance matrix of y 
can be presented as

var( )y ZDZ' R= +  (4)

Then, the estimates of unknown random param-
eters in each stand can be calculated as (see Lappi 
1991)

ˆ ( ) ( )

( )

b DZ' ZDZ' R y Xa

Z'R Z D Z'R y Xa

= + − =

+[ ] −

−

− − − −

1

1 1 1 1
 (5)

where (y – Xa) is the vector of differences 
between observed and predicted values of y. In 
this study, the height for each diameter class in 
each stand was predicted using model (1), which 
was calibrated according to dgM/hgM relationship 
using equation (5).

3.2 Predicting the Forest Characteristics

In the studied case, nine different measurement 
strategies were tested. One of them was the basic 
strategy, in which stand age, basal area median 
diameter, height of the median tree and basal area 
are assumed to be known. In each of the other 
strategies one additional variable was assumed 
to be known (Fig 1). The additional variables 
are minimum diameter (Strategy 3), maximum 
diameter (4), number of stems (5), basal area of 
trees smaller than or equal to 6 cm (6), basal 
area of trees over 16 cm (7), median diameter 
(8), arithmetic mean diameter (9), and number 
of stems with dbh larger than 6 cm (10). The 
diameter distribution was predicted in two steps. 
First, the basal area diameter distribution was 
predicted with the percentile method. Second, the 
predicted distribution could be calibrated using 
one additional variable. Finally, each stand had 
the stand volume, sawlog volume and pulpwood 
volume estimated with nine different measure-
ment combinations.

In the percentile method, the diameters at pre-
defi ned percentiles of the distribution function are 
predicted with models (Borders et al. 1987, Mal-

RMSE of stand volume
for each variable combination

Estimate of stand volume

Tree volumes

Tree heights

HgM

Predicted diameter
distribution

Basal area

 DgM

Stand age

Calibrated diameter
distribution

3 Min dbh

4 Max dbh

5 N

6 G, dbh ≤ 6

7 G, dbh > 16

8 Mean dbh

9 Median dbh

10 N, dbh > 6

Measured stand volume

Fig. 1. A scheme of calculating the observed errors for 
the different measurement strategies.
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tamo et al. 2000, Kangas and Maltamo 2000b). 
The models used for predicting the percentiles 
were those presented by Kangas and Maltamo 
(2000b). They estimated two model sets: in the 
fi rst set the number of stems was not included 
as a predictor and in the second set it was. The 
other regressors were the stand basal area, stand 
age and the basal area median diameter. In this 
study, the second set was utilized only when the 
stem number was assumed to be known, in all 
other strategies the fi rst model set was used. By 
interpolating between the predicted diameters, a 
cumulative basal area diameter distribution func-
tion is obtained. Interpolation was carried out 
using Späth’s rational spline, in order to obtain a 
monotone distribution (Maltamo et al. 2000).

The predicted basal area diameter distribution 
was calibrated with an approach presented by 
Deville and Särndal (1992). Kangas and Mal-

tamo (2000a,c) used this approach to calibrate 
the predicted class frequencies / basal areas of 
a diameter distribution. In the present study, the 
calibration estimator was used to modify the pre-
dicted basal area bak of each diameter class k. The 
modifi cation was carried out so that the modifi ed 
class basal areas wk are as close as possible to the 
predicted basal areas bak, while respecting the 
calibration equation(s). The calibration equations 
for strategies 5–10 are presented in Table 2.

The calibration equation for mean diameter, 
however, is truly a calibration equation for the 
sum of diameters. The calibration is successful 
with respect to the arithmetic mean diameter only 
if the number of stems is also correct, which it is 
not in the studied case except occasionally. How-
ever, it was not possible to form a real calibration 
equation purely for the arithmetic mean, since the 
number of stems, which is subject to calibration, 

Table 2. The calibration equations for strategies 5–10, where dk denotes the diameter of diameter class k, wk the 
modifi ed class basal area of class k, gk basal area of the mean tree in class k, and K the number of diameter 
classes. For other defi nitions see Table 1.

Auxiliary variable Calibration equation  Strategy

G w Gk
k

K

=
=

∑
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is a fi xed coeffi cient in the calibration equation 
(see Table 2). Similar problem occurs, for exam-
ple, with dominant diameter.

If the minimum or maximum diameters were 
assumed to be known (strategies 3 and 4), the 
distribution obtained with percentile method was 
re-scaled to the correct interval (Kangas and Mal-
tamo 2000c). The minimum (maximum) was set 
to the observed value, and the other diameters 
between minimum and mean diameter (mean and 
maximum diameter) were scaled according to

ˆ ˆ ˆ ˆ
min mind * d ((d d )/(d d )) (d d )i gM gM i= + − − −0 0

 (6)

or

ˆ ˆ ˆ
maxd * d ((d d )/(d d )) (d d )i gM gM gM i gM= + − − −12  (7)

where dmin is the observed minimum diameter, 
dmax the observed maximum diameter, d̂0  is the 
predicted minimum diameter, d̂12  the predicted 
maximum diameter, d̂i  is the predicted diameter 
at ith percentile and ˆ *di  is the re-scaled diam-
eter.

Finally, it was also required that the basal area, 
which was used in scaling the relative basal area, 
and the basal area median diameter also remained 
correct after calibration. The distance measure 
used was the square root distance of Deville and 
Särndal (1992). Minimizing this distance measure 
while respecting the calibration equation(s) is a 
constrained non-linear optimization problem (see 
Deville and Särndal 1992 for details). The result-
ing group of non-linear equations was solved 
using IMSL subroutines.

3.3 Modeling the Prediction Errors

The observed errors of each stand characteristic 
of interest, namely the total stand volume, sawlog 
volume and pulpwood volume were modeled for 
each of the nine strategies as a function of forest 
basal area, basal area mean diameter, number of 
stems and a dummy variable indicating whether 
the basal area median diameter of a stand was over 
16 cm and their transformations and interactions. 
Thus, the errors were assumed to depend on both 
forest characteristics and the measurement com-
bination used to calculate the results. The model 

consisted of a fi xed part, which represents the 
bias in the predictions, and a random part, which 
represents the variance of the predictions.

The model for each of the three stand character-
istics and nine strategies was fi rst fi tted using an 
Ordinary Least Squares (OLS) regression model. 
The residuals of these OLS models were used 
to model the variance of the residuals. First, the 
mean of the squared residuals was calculated 
for predefi ned basal area classes. Then, a non-
linear model was fi tted to these class variances 
(see Lappi 1997). The variances of the volume 
characteristics were assumed to be proportional 
to some (unknown) power a of the stand basal
area G

var( )e Ga= +σ ε2  (8)

meaning that for a > 0 the variance of the predic-
tions increases with increasing basal area of the 
stand, the faster the larger the power parameter. 
For a < 0, the variance decreases with increasing 
basal area. The obtained estimates of the param-
eter a were then used to calculate weights 1/Ga 
for the observations. Finally, estimates of the 
fi xed coeffi cients and σ2 were obtained using 
weighted SUR model (Zellner 1962). The weights 
were needed because the residuals were highly 
heteroscedastic, and the SUR approach was used 
because the errors of the timber assortments and 
volume in a stand are correlated.

In the studied case, each strategy included one 
additional measurement. In this case, 9 × 3 = 27 
models were needed. In principle, it would also 
have been possible to consider strategies with sev-
eral additional variables. However, including two 
additional measurements would have increased 
the number of strategies considerably. Therefore, 
only the simple strategies were considered.

4 Results

The height model was estimated with MLWin 
program (Rasbash et al. 2000). The estimated 
parameters are presented in Table 3. The error 
models for the three stand variables considered 
were estimated with SAS REG (the OLS models), 
MODEL (the variance functions) and SYSLIN 
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(the fi nal models) procedures. The parameters of 
these models are presented in Tables 4–6.

The basic strategy produced estimates of total 
volume, in which the bias increased with increas-
ing basal area (Fig 2.). The sawlog volume esti-
mates were also biased; the bias increased both 
with respect to basal area and basal area median 
diameter. Pulpwood volume was most severely 
biased in the stands with midsize dgM. These 
phenomena can also be detected from the coef-
fi cients of the error models (Tables 4–6). The 
variances of all the characteristics considered 
were heteroscedastic, the total stand volume the 
most (Fig. 3). The estimated power parameters 
a, which describe how the variance increases 
with increasing basal area varied from 1.97 for 
pulpwood to 3.11 for total volume (Tables 4–6).
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Fig. 2. The bias of stand (a), sawlog (b) and pulpwood (c) volume with respect to basal area and basal area 
median diameter in the basic strategy.

Table 3. The random coeffi cient Näslund height model, 
where b0 is the fi xed intercept, b1 is the fi xed 
coeffi cient of diameter, b0i is random stand effect, 
b1i is random coeffi cient of diameter in a stand,
u is random plot effect and ε is random tree 
effect.

Parameter Estimated value

b0 1.163
b1 0.259
Var(b0i) 0.106
Var(b1i) 0.003
Cov(b0i,b1i) 0.002
Var(uij) 0.035
Var(εijk) 0.036
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When additional variables were included, 
both the bias and the variance component could 
in many cases be reduced. For example for total 
volume, when stem number was assumed to be 
known, the bias increasing with basal area could 
be clearly reduced. When the median diameter 
was assumed to be known, the bias was negligi-
ble. In most cases, however, the bias could not 
be entirely removed by including an additional 
measurement. In principle, the error models like 
the ones estimated in this study could be used to 
remove the remaining bias. In the studied case this 
was not intended, however, because it would be 
diffi cult to distribute the bias correction correctly 
over the diameter classes. Therefore, the models 
were only used to show the approach leading to 
minimum bias in certain conditions.

In the case of pulpwood volume, the use of 
additional variables could reduce the power 
parameter markedly. Then, the variance of 
pulpwood volume obtained from a calibrated 
distribution does not increase with increasing 
basal area as rapidly as that of the basic strategy. 
For example, by using the maximum diameter for 
calibration, the parameter a reduced from 1.97 to 
1.46. In some cases, however, the power param-
eter increased when additional information was 
used. This was the case for sawlog volume, where 

the maximum diameter increased the power 
parameter from 2.22 even to 3.55. Consequently, 
using maximum diameter can markedly improve 
the RMSE of pulpwood volume estimates and at 
the same time markedly worsen that of the sawlog 
volume estimates.

Figs. 4–6 show examples of the different strate-
gies with varying basal area or basal area median 
diameter. The best measurement combinations 
depended both on the characteristics considered 
and on the stand conditions. For total stand 
volume, the best measurement combination was 
to measure median diameter as additional var-
iable, and the deviation to the basic strategy 
increased with increasing basal area. However, 
basal area of trees under 7 cm, minimum and 
maximum diameters only worsened the results 
in all cases. This can be directly seen also from 
coeffi cients in Table 4.

For sawlog volume, all the additional variables 
increased the value of the power parameter, and 
consequently, the basic strategy was in all cases 
the best with respect to variance. The worst strat-
egy with respect to RMSE was to measure maxi-
mum diameter as additional variable, and the best 
strategy was to measure minimum diameter (Fig. 
6.). Measuring minimum diameter from stands 
with large basal area and small basal area median 
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(b) and pulpwood (c) volume.
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Table 4. The coeffi cients of the error models of stand volume for the nine strategies. N denotes stem number, 
G basal area, dgM stand basal area, σ2 residual variance and a the power of G the variance is proportional 
to. For the numbers of strategies, see Fig. 4.

Strategy intercept N G2 dgM dgM
2 σ2 a

1 0.145441 –0.000534 0.013104 – – 0.01459 3.116526
3 0.353486 –0.000872 0.013790 – – 0.01410 3.132727
4 0.012627 – 0.007325 – – 0.00886 3.355337
5 –0.030237 – 0.004559 – – 0.01175 3.204359
6 1.916219 –0.000611 0.007781 –0.227484 0.005375 0.00328 3.890342
7 –0.053646 – – – – 0.01708 3.049362
8 –0.077787 – – – – 0.02059 2.969422
9 –0.068760 – 0.005116 – – 0.01407 3.120086
10 –0.074209 – – – – 0.01179 3.225479

Table 5. The coeffi cients of the error models of sawlog volume for the nine strategies. D2 is defi ned as 

d
d dgM gM2

16

0
=

>



,

,otherwise
, other defi nitions see Table 4 and Fig. 4.

S int N G G2 ln(G) dgM dgM
2 dgM/G d2 d2/G σ2 a

1 2.7742 –0.00056 0.1285 0.0059 .– –0.4191 0.01068 .– 0.0898 .– 0.01376 2.2219
3 –0.0362 .– .– .– .– .– –0.00205 .– 0.3115 –0.9170 0.01320 2.2965
4 –0.3690 –0.00023 .– 0.0077 0.5786 .– 0.00291 .– .– –0.2270 0.00604 3.5505
5 0.2839 .– 0.3109 –0.0108 –0.8199 .– 0.00246 –0.1309 .– .– 0.00906 2.7429
6 1.3161 .– .– .– .– –0.2069 0.00395 .– 0.2110 –0.6269 0.00315 3.3734
7 –0.1186 .– .– .– .– .– .– .– .– 0.1673 0.01315 2.6808
8 0.9751 .– .– .– .– –0.1959 0.00743 .– .– .– 0.01579 2.6317
9 –0.1182 .– .– .– .– .– –0.00094 .– 0.2112 –0.6430 0.01085 2.7545
10 0.8366 .– .– .– .– –0.1740 0.00632 .– .– .– 0.00897 3.2511

Table 6. The coeffi cients of the error models of sawlog volume for the nine strategies. For defi nitions see Tables 
4 and 5 and Fig. 4.

S int N G G2 ln(G) dgM dgM
2 dgM/G d2 d2/G σ2 a

1 –3.6323 .– .– 0.0064 .– 0.5759 –0.01709 .– –0.0617 .– 0.01526 1.9699
3 0.5615 –0.00125 0.1854 0.0133 .– .– .– .– –0.3209 1.0587 0.01372 2.0283
4 1.2518 –0.00062 .– .– 0.8372 –0.2753 .– 0.2038 .– 0.3344 0.00818 1.4593
5 0.7568 –0.00088 .– 0.0086 .– .– .– .– –0.1268 0.3191 0.01035 1.6668
6 0.6630 –0.00089 .– 0.0085 .– .– .– .– –0.2200 0.7029 0.00343 1.9448
7 0.3339 –0.00111 .– .– 1.5989 –0.2180 .– 0.2594 .– .– 0.01405 1.8108
8 0.4600 –0.00072 .– 0.0076 .– .– .– .– –0.1336 0.4037 0.01611 1.7607
9 0.5430 –0.00061 .– 0.0112 .– .– .– .– –0.2681 0.9079 0.0143 1.5595
10 0.3841 –0.00061 .– 0.0053 .– .– .– .– –0.1000 0.2723 0.00923 1.9603

diameter improved the RMSE. However, even 
if the variances increased when additional vari-
ables were used, the biases markedly decreased 
(Fig 7b).

The largest improvements in terms of variance 
and RMSE were obtained for pulpwood volume. 

In the case of pulpwood, measuring the mini-
mum diameter proved to be the worst strategy 
and measuring the maximum diameter the best 
strategy (Fig. 6). This is just the opposite to the 
sawlog volume case. Especially with large basal 
area, all strategies except measuring minimum 
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Fig. 4. The anticipated RMSE of predicted total stand 
volume using different strategies, with respect to 
basal area median diameter (A) and basal area 
(B), the other variables were assumed fi xed. The 
strategies were: basic (1), minimum diameter (3), 
maximum diameter (4), number of stems (5), basal 
area of trees smaller than or equal to 6 cm (6), 
basal area of trees over 16 cm (7), median diameter 
(8), arithmetic mean diameter (9), number of stems 
with dbh larger than 6 cm (10).

Fig. 5. The anticipated RMSE of predicted sawlog 
volume using different strategies, with respect to 
basal area median diameter (A) and basal area (B), 
the other variables were assumed fi xed. For the 
number of strategies see Fig. 4.

diameter were better than the basic strategy. 
However, with respect to bias the situation was 
not so clear (Fig. 7a). When the bias was largest, 
namely with the values of dgM between 13–16 cm, 
nearly all the strategies reduced the bias mark-
edly. However, with very small or large values 
of dgM, most of the strategies were worse than 
the basic strategy.

5 Discussion

In this paper, a model-based method was pre-
sented for anticipating the precision and accuracy 
of interesting variables predicted with a system of 
models. In the studied case, the stand volume and 

timber assortments were calculated using height 
and taper curve models as well as diameter dis-
tribution models and calibration, so that analyti-
cal variances of the results would be diffi cult to 
obtain. The anticipated variance of a variable is 
its expected variance under a chosen measure-
ment combination and a given stand condition. 
It is calculated using a model estimated from the 
observed errors of the variable of interest. Even if 
the conditions included in the error model remain 
the same, the actual errors of the variable may 
vary markedly from stand to stand.

The estimated models show that estimated 
sawlog and pulpwood volumes are especially 
biased with respect to basal area median diam-
eter of the stand. For sawlog volume, the largest 
biases are observed in stands with biggest dgM, for 
pulpwood volume, the largest biases are observed 
in stands with dgM around 15 cm. This phenom-
enon is most probably due to the nature of timber 
assortments: the volume of both pulpwood and 
sawlog change in steps as the mean diameter in 
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Fig. 6. The anticipated RMSE of predicted pulpwood 
volume using different strategies, with respect to 
basal area median diameter (A) and basal area (B), 
the other variables were assumed fi xed. For the 
number of strategies see Fig. 4.

the stand increases. With calibration, these biases 
could be somewhat reduced. With all the stand 
characteristics, the variance is heteroskedastic, 
increasing with increasing basal area.

According to the results, the best measure-
ment strategy varies between the characteristics 
of interest. For each of the three variables con-
sidered, a different strategy was best. In such a 
case, the accuracy of the different characteristics 
has to be given weights describing their relative 
importance, in order to choose the best strategy 
for the whole stand. These weights could also vary 
with respect to conditions. For example, in old 
stands, the accuracy of sawlog volume estimates 
could be given a large weight, and in young stands 
total volume may be given the largest weight.

The best strategy also varied according to stand 
conditions. In the case of total volume, measur-
ing the median diameter was uniformly the best 
strategy, but in the case of timber assortments 
the best strategies varied. What was problematic, 
was that the best strategy for estimating pulpwood 

volume was often the worst for estimating sawlog 
volume and vice versa.

The cases of sawlog and pulpwood volume are 
also problematic, since the additional variables 
may clearly increase the variance but reduce the 
bias, or increase the bias but reduce the variance. 
In the case of one stand, the variance component 
may dominate the RMSE value. However, when 
several stands are measured according to the 
same strategy, the bias component may be more 
important. Then, the number of stands under 
similar conditions also may have an effect on the 
best measurement strategy.

In the studied case, the strategies compared 
included different kinds of information. A simi-
lar approach, however, could be used to compare 
different modeling approaches. For example, 
in the case of diameter distributions, Weibull 
function based distributions may work well in 
certain stands, percentile based distributions in 
other stands. In many studies it has been observed 
that the best approach varies in different data sets 

Fig. 7. The anticipated bias of predicted pulpwood (A) 
and sawlog (B) volume using different strategies, 
with respect to basal area median diameter. The 
other variables were assumed fi xed. For the number 
of strategies see Fig. 4.
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(e.g. Kangas and Maltamo 2000), but so far it is 
unclear under which conditions the differences 
between these methods are negligible and under 
which they should be noted.

There are many interesting avenues for future 
research in this topic. Using a Bayesian frame-
work for the error model would enable state-
ments, for example, about the probability of 
observing an error larger than a certain value 
or a value within a certain interval. Accounting 
for the possible measurement errors in the vari-
ables assessed in the fi eld is another important 
issue. For example, even if the use of the median 
diameter is the best strategy with respect to 
total volume, when measurement errors are not 
included, another strategy might be better when 
the errors are accounted for.

As a conclusion, this study demonstrates that 
no measurement combination is uniformly best 
for predicting the stand volume and timber 
assortments. The best measurement combination 
depends on the variable of interest as well as 
the conditions in the stand considered. To choose 
the best measurement combination for any one 
stand, weights for the the accuracy of different 
variables need to be applied.

Acknowledgements

The study material was provided by the Finnish 
Forest Research Institute. The authors wish to 
thank Dr. Juha Lappi for his advice and criticism 
through the study. The study was funded by Acad-
emy of Finland (decision number 73392).

References

Alho, J.M. 1990. Stochastic methods in population 
forecasting. International Journal of Forecasting 
6: 521–530.

— & Spencer, B. 1997. The practical specifi cation of 
the expected error of population forecasts. Journal 
of Offi cial Statistics 13: 203–225.

Borders, B.E., Souter, R.A., Bailey, R.L. & Ware, K.D. 
1987. Percentile-based distributions characterize 
forest stand tables. Forest Science 33: 570–576.

Cassel, C-M. Särndal, C-E. & Wretman, J.H. 1977. 
Foundations of inference in survey sampling. John 
Wiley & Sons, New York. 192 p.

Deville, J-C. & Särndal, C-E. 1992. Calibration estima-
tors in survey sampling. Journal of the American 
Statistical Association 87: 376–382.

Goldstein, H. 1995. Multilevel statistical models. 2nd. 
edition. Kendall’s library of statistics 3. Arnold, 
London. 178 p.

Gregoire, T.G. 1998. Design-based and model-based 
inference in survey sampling: appreciating the differ-
ence. Review. Canadian Journal of Forest Research 
28: 1429–1447.

Gustavsen, H.G., Roiko-Jokela, P. & Varmola, M. 
1988. Kivennäismaiden talousmetsien pysyvät 
(INKA ja TINKA) kokeet: Suunnitelmat, mitta-
usmenetelmät ja aineistojen rakenteet. Metsän-
tutkimuslaitoksen tiedonantoja 292. 212 p. (in 
Finnish)

Kangas, A. 1999. Methods for assessing the uncertainty 
of growth and yield predictions. Canadian Journal 
of Forest Research 292: 1357–1364.

— & Maltamo, M. 2000a. Calibrating predicted diam-
eter distribution with additional information. Forest 
Science 46: 390–396.

— & Maltamo, M. 2000b. Percentile based basal 
area diameter distribution models for Scots pine, 
Norway spruce and birch species. Silva Fennica 
34: 371–380.

— & Maltamo, M. 2000c. Performance of percentile 
based diameter distribution prediction method and 
Weibull method in independent data sets. Silva 
Fennica 34: 381–398.

Laasasenaho, J. 1982. Taper curve and volume func-
tions for pine, spruce and birch. Communicationes 
Instituti Forestalis Fenniae 108. 74 p.

Lappi, J. 1991. Calibration of height and volume equa-
tions with random parameters. Forest Science 37: 
781–801.

— 1997. A longitudinal analysis of height/diameter 
curves. Forest Science 43: 555–570.

Maltamo, M., Kangas, A., Uuttera, J., Torniainen, T. & 
Saramäki, J. 2000. Comparison of percentile based 
prediction methods and Weibull distribution in 
describing diameter distribution of heterogeneous 
Scots Pine stands. Forest Ecology and Manage-
ment 133: 263–274.

Mandallaz, D. & Ye, R. 1999. Forest inventory with 
optimal two-phase, two-stage sampling schemes 
based on the anticipated variance. Canadian Journal 



811

Kangas and Maltamo Anticipating the Variance of Predicted Stand Volume and Timber Assortments …

of Forest Research 29: 1691–1708.
Näslund, M. 1936. Skogsförsöksanstaltens gallrings-

försök i tallskog. Meddelanden från Statens Skogs-
försöksanstalt 29. 169 p.

Penner, M., Penttilä, T. & Hökkä, H. 1995. A method 
for using random parameters in analyzing perma-
nent sample plots. Silva Fennica 29: 297–309.

Rasbash, J., Browne, W., Goldstein, H., Yang, M., 
Plewis, I., Healy, M., Woodhouse, G., Draper, D., 
Langford, I. & Lewis, T. 2000. A User’s Guide to 
MLwiN. University of London. 280 p.

Zellner, A. 1962. An effi cient method for estimating 
seemingly unrelated regressions and tests for 
aggregation bias. Journal of American Statistical 
Association 57: 348–368.

Total of 21 references




