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Decision making in forest protection involves diagnosing the pest, making
predictions of the effects of the pest on forest, knowing the possible control tactics,
and cost/benefit integration. To cope with all that, a generalist forest manager needs
a tool like an expert system to support decisions.

This paper presents an expert system that approaches the goals of integrated pest
management. With the system, the user can make diagnosis and prediction of 12
North European bark beetles. Written in Common LISP and Flavors, the expert
system has a combined frame- and rule-based knowledge representation. Frames
are used to represent the hierarchy of insect taxonomy in diagnosis. Prediction is
made with qualitative reasoning with rules. The inference engine applies both
forward and backward chaining. The system has a graphical user interface that
supports exploring the sensitivity of advice on input.

It is concluded that expert systems and artificial intelligence have high
applicability everywhere in forestry where complicated decisions have to be made.
Especially, an integrated pest management system in forestry is largely equivalent
to a computerized decision making aid.

Metsinsuojelun paitoksenteko edellyttda tuholaisen tunnistamista, ennusteiden
laatimista tuholaisen vaikutuksesta metsaan, torjuntamahdollisuuksien tuntemista
ja hydtyjen ja kustannusten vertailua. Jotta metsiammattilainen, joka ei ole metsi-
tuhojen asiantuntija selvidisi niistd tehtivistd, hénelld tiytyy olla kiytettidvissiin
jonkinlainen viline paitoksenteon tukemiseen, esim. asiantuntijajarjestelma.
Tutkimuksessa esitelldan asiantuntijajarjestelma, joka on rakennettu integroidun
metsituhojen hallinnan periaatteiden mukaisesti. Sen avulla voidaan tunnistaa ja
laatia ennusteet 12 Suomessa esiintyville kaarnakuoriaiselle. Ohjelmisto on kirjoi-
tettu Common LISPilla ja sen Flavors-laajennuksella ja siina yhdistyvit kehys- ja
sadntopohjainen tietamyksen esitys. Kehysten hierarkiaa kaytetaan hyonteisten tak-
sonomian esittimiseen. Ennuste laaditaan saantopohjaisella eteen- ja taaksepiin
ketjuttavalla laadullisella paattelylla. Ohjelmalla on graafinen kayttoliittyma, jonka
avulla voidaan tutkia johtopaitdsten riippuvuutta syotttiedoista.
Asiantuntijajarjestelmat todetaan soveltamiskelpoisiksi metsitalouden monimut-
kaisten pédatosten tukemisessa. Erityisesti metsdtuholaisten integroidun hallinnan
jarjestelmit ovat tdysin riippuvaisia paatosten tukemisesta tietokoneiden avulla.
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1. Introduction

When dealing with bark beetles that
potentially can damage forest, the forest
manager must be able to diagnose the
situation and have some idea how it will
develop before decisions about control can be
made (Waters and Stark 1980). Diagnosing
the situation includes determining the pest
species, that can be many, and making
forecasts about their population dynamics
and their effects on the stand. Generally,
forest managers that are not pest control
experts can recognize a risky situation, but
are uncertain about the specific insects unless
they are dealing with major pests such as the
North American Dendroctonus species. In
making forecasts, even the experts are often
uncertain because predictive models do not
exist but for a handful of pests. Decision
making under such uncertainties can lead to
costly mistakes and is stressing for the
individuals involved.

These stresses can be relieved if there is a
decison aid that brings the knowledge of the
experts into the hands of forest managers
(Coulson and Saunders 1986, Kaila and
Saarenmaa 1990). Expert systems seem to
offer this possibility. Expert systems are
based on the paradigms of artificial
intelligence, which means that for the first
time there are computer programs that are
geared to mimic the reasoning of human
experts. In every expert system there is an
inference engine that executes the contents of
a knowledge base which contains a
description of the knowledge of the domain.
A human-like flexible line of thought and
explanation of the underlying mechanisms is
achieved by creating the actual control
program in run-time from the user input and
the contents of the knowledge base. This is
reasonable only with such artificial
intelligence languages as LISP and Prolog
where programs and data are the same (e.g.
Winston and Horn 1984, Clocksin and
Mellish 1984).

An expert system can be constructed in
many ways, but the most popular form, rule-
based expert system (Buchanan and
Shortliffe 1984, Hayes-Roth 1985), uses
rules of the form: IF antecedents THEN
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conclusions. Making of such an expert
system is essentially creating a rule base for
the domain where the knowledge pertinent to
problem solving is stored. By giving some
initial facts and then matching them against
the rule base and chaining these inferences,
solutions to problems can be found. When
needed, the system asks for more facts.
Explanation of the reasoning can be printed
out while the inferences are made.

Another form of expert systems utilizes
frames to represent prototypical knowledge
for situations (Aikins 1983, Fikes and Kehler
1985). This is like having a description of a
typical situation where the inferences of
matching or mismatching of facts against the
details in that frame are made in parallel.
Much of the problem solving of experts in
determining insects is like using frame-based
knowledge: “The specimen belongs to
species X, because it looks like x”. An
expert’s mind can be understood as a
collection of frames: only being able to cover
an entire field by frames a person becomes an
expert. And by using heuristics the expert can
fill the possible gaps between the frames.
Frames can store any kind of knowledge in
their slots, e.g. rules for diagnosis
verification (in the case that the specimen
does not look like anything), or lists of
actions after the situation in a frame has been
verified, and so on. A common use of frames
is to organize large rule-bases into smaller
units. Normally frames form a hierarchy.
Specialized low-level taxa inherit features
from the levels above.

Now it should be apparent how expert
systems for bark beetle related forest
management can be done. However,
previous attempts to computerize pest
management systems have not been very
successful (Coulson and Saunders 1986,
Coulson et al. 1989). Before making an
expensive commitment to still another
system, we must understand why the
technology transfer has not taken place
earlier. These systems have been stand-alone
simulation models that predict pest
population dynamics and their effects in
forests. A decision support system for
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southern pine beetle management is the only
of its kind in forestry (Saunders et al. 1986),
but has not gained wide acceptance among
potential users. Loh et al. (in prep.) and
Coulson et al. (1989) concluded that the
reasons for this unacceptance have to do with
1) interpretation difficulties with the numeric
predictions, 2) unergonomic user interface,
3) subtle confidence estimates, 4) lack of
sensitivity estimates, 5) lack of explanation
of the underlying mechanisms, and 6) lack of
computer access and skills. While time takes
care of the last one, expert systems can
address all the rest of the problems.

The purpose of this study is to study the
design of an expert system that helps the non-
expert forest manager to make decisions
about bark beetle management. The system
should be able to diagnose the pest(s) and
predict the course of their dynamics and
effects on the forest. Exploring the control
tactics and costs /benefits is left for another
context. The system should address the
problems of the previous computer-based
systems by better explanation and to create
understanding of the underlying mechanisms
in the user.

2. General structure of the system

21. Concepts of integrated pest
management in the context of
expert systems

The theory of integrated pest management
(IPM) provides the concepts along which
modern pest management systems have been
built during the last two decades. Its general
outline in forests has been described by Rabb
and Guthrie (1970), Waters and Stark (1980),
Wood (1980), Payne and Saarenmaa (1988).
Normally an IPM system has components for
1) pest population dynamics, 2) forest
dynamics, 3) pest /forest impacts, 4) control
tactics, and 5) cost/benefit integration. While
this outline provides a good start for this
project, it must be redefined for expert
systems development (Stone et al. 1987,
Stone and Saarenmaa 1988, Coulson et al.
1989). The necessary extensions can be seen
in Fig. 1.

First, a monitoring component has to be
made explicit. Monitoring results are stored
in a geographic information system that holds
data on all forest resources. These important
components are not not dealt with in the
present study. However, monitoring may
alert the diagnosis module, which also needs
to be added to the classical IPM scheme. An
explicit module for diagnostics is necessary,
because generalist forest managers seldom
are experts when diagnosing but major pests.

Silva Fennica 24 (2)

In most cases also multiple pest species are
involved. Hence, cases should rather be
diagnosed than insects.

For each of the pest species, separate
predictions of population dynamics need to
be made. With the predictions, however, we
usually have to suffice with qualitative
estimates, since for most pests there are no
quantitative models available that could be
used for exact predictions. Bearing in mind
this major gap in our knowledge, exact
reasoning further from this point is
meaningless: in pest/forest interactions,
control tactics and cost/benefit integration,
only emergent trends must be recognized and
reasoned about. This also indicates why IPM
systems have not actually been implemented
in forests yet: the large uncertainties have
made decision making more opinion- and
experience-based art than exact science. [PM
is complicated and largely equivalent to a
computerized decision making tool, but only
expert systems provide the kind of qualitative
reasoning and explanation which is needed.

The present system that is called I-IPM
(Intelligent IPM) was designed along these
concepts (Saarenmaa 1988). At the top level
there is an IPM control program that calls the
subtasks. There are separate modules for
diagnosis and prediction, which must be
called in this order. Each pest species has its
own knowledge base for prediction. Modules
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— DIAGNOSIS

Rule-based reasoning

ENVIRONMENTAL
EFFECTS

Rule-based reasoning

CONTROL DECISION

ALTERNATIVES

Rule-based reasoning Rule-based reasoning

COST/BENEFIT

PEST POPULA-
MONITORING  — | TION DYNAMICS
Field & remote sensing Simulation
FOREST PEST/FOREST
DATABASE [ | IMPACTS
GIS & relational database Object oriented fault diagnosis

TREE & FOREST
> DYNAMICS

Simulation

INTEGRATION [—

Optimization

Fig 1. Components of an information system for integrated pest management.

for control, impacts, and decision-making
can be added later.

22. Implementation and user interface

The program I-IPM is written in Common
LISP and the object-oriented programming
package Flavors on a Symbolics 3620
workstation. Object-oriented programming
makes constructing of complex systems
relatively easy and the incremental
development on a LISP-machine greatly
accelerates the pace of prototype creation.
When running on a computer, such a
complicated system as [PM must have a clear
interface. The windowing system of
Symbolics is used for this purpose. The

screen is divided into three panes. At the top
of the screen there is a permanent top-level
IPM window that controls the other windows
(Fig. 2). Large boxes represent the separate
modules. These are represented by frames
holding task lists in the program. By clicking
a box with the mouse, the user can execute a
module, provided that its initial data from
other modules has already been retrieved.
The control can also be passed over to the
program by executing all the modules in
default order.

The lowermost pane is also permanent. It
is used for explanation of queries and
reasoning. The middle pane changes with the
program under execution. Normally it shows
graphically the dependency networks of the
knowledge that is currently being used.

3. Diagnosis

31. Knowledge representation

Medical diagnosis is the first area where rule-
based expert systems proved to be successful
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(Buchanan and Shortliffe 1984). Diagnostic
expert systems have after that spawned over
an array of fields. Identification of insects has
also been shown to work well (Stone et al.
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Flavor Examiner o

Flavor Components Flavor Methods
Flavor Dependents Flavor Operations
Flavor Instance Variables  Generic Function

avor Initialization: Flavor Handler
n-flavor Functions Function Arguments
Help Clear Display

[® 72

"PREDICTION-RULES default is *NOT_YET_DONE.LISP*, :PREFERRED-HOST-CONDITION,
:PREFERRED-SHADE, :PUPAL-MONTHS, :SPECIES,

:STAND-SHADE default is *(SUNNY MIXED SHADED), :SWARMING-MONTHS,

:SYMPTOM default is '(KILLED-TREES TIMBER-STORAGE WINDFALLS WOODBORING

:TREE-HEALTH default is ’(GOOD SUFFERING DYING DEAD UPROOTED TIMBER),
:TREE-PARTS-INJURED,
:TREE-SPECIES default is *(PINE CONTORTA SPRUCE LARCH BIRCH ASPEN-POPLAR)

TERMINAL-AND-SHOOT-BORING),

Please type commands, or click on menu above
[ You are typing 2 command at Flavor Examiner.

\ Use thefkommand names you see in the menu above,
\ or click on one with the mouse. The Help command

\ offers more detailed documentation about Flavor

\ Examiner itself, and about each of its commands.

o
N

\ >
N\ F! Initializations: SCOLYTIDAE
f Flavor Initiali n e

Flavor Instance Variables SCOLYTIDAE
ADULT-BODY-COLORS FAMILY
ADULT-BODY-HARDNESS FL-DEPENDENTS
ADULT-BODY-LENGHT
ADULT-BODY-THICKNESS FL-HIGHLIGHT
ADULT-WING-COLORS FL-HOST
ADULT-WING-LENGTH

LARVAL-MONTHS

NUMBER-OF -LEGS
NUMBER-OF -WINGS
PREDICTION-RULES
PREFERRED-HOST-CONDITION
FL-MATCH PREFERRED-SHADE

FL-NAME PUPAL-MONTHS

FL-FINNISH-NAME

\ > Flavor Initializations SCOLYTIDAE =k
\ > [u]
N Flavor Instance Variables: SCOLYTIDAE

\ » Flavor Instance Variables SCOLYTIDAE
N Flavor Initializations: TOMICUS-PINIPERDA

\ »» Flavor Initializations TOMICUS-PINIPERDA

o7

Flavor Initializations TOMICUS-PINIPERDA

Instances of TOMICUS-PINIPERDA are created in the default area

Another area can be specified with the keyword :AREA
i Initialization keywords:
» :ADULT-BODY-COLORS, :ADULT-BODY-HARDNESS, :ADULT-BODY-LENGHT,
:ADULT-BODY-THICKNESS, :ADULT-WING-COLORS, :ADULT-WING-LENGTH,
:AGE default is '(THINNING-STAND MATURE-STAND QVER-AGED-STAND),
:BARK-THICKESS default is (MODERATE GREAT VERY-HIGH),
N | :BARK-THICKNESS default is *(THICK-MEDIUM THICK), :BLUE-STAIN-TYPE, :CLASS,
\ :CONTROL-RULES default is *NOT_YET_DONE.LISP*, :DIAGNOSTIC-FEATURES,
:EFFECTIVE-TREATMENTS, :EGG-MONTHS,
:EXTENT-OF -DAMAGE default is '(POTENTIAL-CASE SINGLE-TREE FEW-TREES SMALL-SP

:FL-DEPENDENTS default is NIL, :FL-FINNISH-NAME default is 'PYSTYNAVERTAJA,

:FL-HIGHLIGHT default is NIL, :FL-HOST default is "'SCOLYTIDAE,

:FL-MATCH default is NIL, :FL-NAME default is "TOMICUS-PINIPERDA,

:FL-PRESENTATION default is NIL, :FL-XCOO default is NIL,

:FL-YCOO default is NIL, :GALLERY-SHAPE, :GENUS,

:GEOGRAPHICAL-LOCATION default is (SOUTHERN EASTERN-LAKE WESTERN-CENTRAL
QULU-KAINUU

:LARVA-COLORS, :LARVAL-MONTHS, :NUMBER-OF-LEGS default is 6,

:NUMBER-OF -WINGS default is 4, :PREDICTION-RULES default is *TPING.LISP",
:PREFERRED-HOST-CONDITION, :PREFERRED-SHADE, :PUPAL-MONTHS, :SPECIES,
:STAND-SHADE default is *(SUNNY MIXED SHADED), :SWARMING-MONTHS,

:SYMPTOM default is *(WINDFALLS TIMBER-STORAGE KILLED-TREES TERMINAL-AND-SHO

SCATTERED-TREES WIDESPREAD-DAMAGE), :FAMILY,

LAPLAND), :INJURING-LIFE-STAGE,

: Read arguments for Flavor Initializations; Mouse-R: Menu for Flavor Initializations.

Wed 17 Rug 3:48:33] Hannu CL-USER:

see other commands, press Shift, Control, Control-5hift, Meta-Shift, or Super.
User Input

Fig 3. SCOLYTIDAE and TOMICUS-PINIPERDA flavors in the Symbolics’ flavor examiner.

1986a, 1987). Most of the diagnostic expert
systems have been rule-based, but especially
in industrial fault diagnosis where the system
under study is closed and well-defined,
frame- and model-based systems have also
been created (IntelliCorp 1986).
Frame-based representation offers several
advantages in entomological diagnosis. The
most formidable one is that the natural
system of taxonomy can be used as a model.
The inheritance among frames representing
the individual pest taxa can be modeled after
it. E.g. the bark beetle frame has slots that
contain attributes found in all bark beetles
such as egg gallery type, preferred bark
thickness, and aggressiveness. These
attributes are inherited from the family level
to the individual species. Any special data at
the species level overrides the family data
where needed. The pest hierarchy is shown in
the middle window of Fig. 2 and the
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SCOLYTIDAE and TOMICUS-
PINIPERDA flavors in Fig. 3. The frames
were implemented by the outlines given by
Aikins (1983).

In the present system, frame-based
representation is used also to store data about
the forest. However, representing the forest
for this or for any purpose where tree health
is considered is more complicated than just
asking for inital data. In its simplest form, the
slots in pest frames determine the data from
the forest that is needed for diagnosis. These
are also presented as frames, and shown in
the right hand side of the middle window of
Fig. 2. However, in the present model these
have no bearing to the functioning of forest at
all and hence are typical surface
knowledge”. In the present work we accept
this representation, but in further work a
deeper model-based representation of forest
will be sought for.
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32. Reasoning and sensitivity

The user gives the initial data by clicking on
the nodes in the tree representing the forest.
The nodes will be highlighted (see Fig. 2).
When the user is satisfied with the
desciption, s/he clicks on 'DIAGNOSE-
PEST’ and the highlighted forest-nodes will
be matched against the values of the instance
variables in the pest nodes. The matching
pest nodes are then highlighted. This shows
another  advantage  of  frame-based
representation: determining bark beetles in
the forest is determining a situation. The bark
beetles that are possible pests in a forest can
be inferred from the stand and infestation
characteristics rather than from scrutinizing
the actual insects. Multiple pests are usually
found for a case.

The sensitivity of the diagnosis can be
explored by turning nodes off and on and
redoing 'DIAGNOSE-PEST’. The analysis
works also inversely like a Prolog program.
By marking insects, the user can show the
conditions in which they can occur by
clicking 'PEST-INFORMATION’. Imple-
menting this is easy when there is a model to
be reasoned about.

Sometimes the trees may not fit in the
m}ddle window. To overcome this, the
window has scroll bars and the trees can also
be shown dynamically from the part that is
only needed. Should the user know the
species already, s/he can directly mark it and
click 'DONE’ to transmit diagnosis to other
modules.

4. Prediction

41. Knowledge representation

There are many ways to predict the course of
an infestation. Experts do that by reasoning
from the environmental facts and pest-related
knowledge. For a handful of pests there are
simulation models available that do the same
in quantitative measures. In the present
domain, such a model exists only for
Tomicus piniperda (Saarenmaa 1985) and
partially for Ips typographus (Schlyter 1985,
Anderbrandt et al. 1988). In most cases the
prediction has to be done in qualitative
reasoning using textbook knowledge and
expert opinion. This is a typical domain for a
rule-based expert system.

In I-IPM after the diagnosis, prediction
rules that are stored in a slot of the pest flavor
are loaded, and the course of the infestation
is inferred. Starting from such facts as tree
characteristics, pest density, climate, etc.,
rough quantitative estimates for pest
population dynamics are derived, and their
effects on trees evaluated the same way.
What comes up from this rule-based
qualitative reasoning is a rough estimate of
the damage, e.g. "moderate”. Some of the
rules for prediction in the case of Tomicus
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piniperda are shown in Table 1 and the
dependency network of the rule base in the
middle window of Fig. 4. Rule bases fot
other bark beetles are underway.

Before a rule base can be written, a
dependency network like the one in Fig. 4
must be first drawn on a paper and then
translated into the rule language. In I-IPM
these dependencies are shown graphically as
a network of entities affecting each other.
This knowledge is readily available in
publications and, enriched with the heuristics
that the expert has acquired during his life,
very well can be represented as rules. The
“deepness” of the knowledge (Kinnucan
1984, Koton 1985) does not depend on the
representation chosen, but on the proximity
in which the elements in the knowledge base
model the essential causal components of the
real system.

These rules as well as functions for
simulation models can be stored in the slots
of the particular pest frame to be invoked
after the diagnosis. This representation is
good also because later knowledge about the
control tactics and further actions can be
stored in other slots for each pest species.
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Table 1. An excerpt of the prediction rule base for Tomicus piniperda. The language and notation are declared in
Whiston and Horn (1984) with the following additions: <- is negative correlation, << apply funcall to the
following list. Cf. the middle window of Fig. 4.

setq rules ’(

;3 THIS META-RULE FORMS A HIERARCHY OUT OF THE THREE GOALS

(rule decision-meta-rule
(if (number of killed trees is (> killed))
(amount of growth losses is (> loss))
(rate of staining of timber is (> stain)))
(then (decision is possible-to-do)))

TINC SINCE INTURING OF TREES

Low

ANOUNT OF RAINFALL

CAEAT

DONE [

Decision

ZERO
LOw
MODERATE

CREAT]

VERY-HIGH
CHANGE-VALUES

;s FIRST GOAL

Decision [J

) (rule killed_trees
(if (number of offspring is (> offspring))
(stand health is (> health)))
(then (number of killed trees is (<< (mini ((< offspring) (<- health)))) )))

AROUNT OF BACEDING WATERIAL IN EARLIER YEMRS

PROPORTION OF TNICK BUTT BARK
YEAY-NICH

NORTHMESS OF STAND LOCATION
YERY-NICH

GAEAT

7 WNOUNT OF TINBER STORAGE
ANOUNT OF LOGLING WASTE

S AMOUNT OF THINNING WASTE

N ANOUNT OF SNOM BAOKEN TAEELS

¥ ANOUNT OF WINDBLOMN TAELS
NODLRATE

MATC oF DRYING oF T

MORERATL

DENSITY PER AREA OF PINE IN STAND

.
’
.

NG maTERIAL § 7 7
»

Impacts

s SECOND GOAL

Impacts [J

(rule growth_loss
f (if (number of offspring is (> offspring))
(distance from breeding material to stand is (>dist))
(density per area of pine in stand is (> dens)))
(then (amount of growth losses is (<< (mini (< offspring) (<- dist) (<- dens)))) )))

SIZE OF FORNATION

NACROCLINATE

Prediction
Menu Choose

(rule offspring
(if (attack density is (> attack))
(rate of development of offspring is (> devel)))
(then (number of offspring is (<< (mini ((< attack) (< devel)))))

Prediction E

INTEGRATED PEST MANAGEMENT

BENSINY PER ARER OF PINC IN STAND

CL-USER:

(rule attack_density
(if (number of parent beetles is (> parents))
(suitability of breeding material is (> suitab))
(amount of potential breeding material is (> mater)))
(then (attack density is (<< (mini ((< parents) (< suitab) (< mater)))) )))

Control O

Control

" e

:; THIRD GOAL

£
s
-
5

2
s

ANOUNT OF CAONTN LOSSES
WURBER OF KILLED TAEES

(rule staining
(if (attack density is (> attack))
(temperature sum of microclimate is (> dd))
(number of wounds or cutting edges in trees is (> wounds)))
(then (rate of staing of timber is (<< (mini ((< attack) (< dd) (< wounds)))) )))

Diagnosis J

(RATE OF DEVELOPMENT OF OFFSPRING IS LOW)

(NUMBER OF OFFSPRING IS LOW)
(ATTACK DENSITY IS LOW)

Diagnosis
TOMICUS-PINIPERDA
oo

TOMICUS-NINOR

TRYPODENDRON-LINERTUN

IPS-ACUNINATUS

)

..the following unknown fact for which please give a value:

asserts:
because:

Cannot conclude more with the assertions - ending forward-chaining...

Now doing backward-chaining inference to determine the goal...

(DECISION) which is dependent on ...

(AMOUNT OF GROWTH LOSSES) which is dependent on ...

(DENSITY PER AREA OF PINE IN STAND)

Prediction inference window

/PM typeout wmdow o

PECIST

Wed 17 Aug 12:88:56] Hannu

RUN SCHEDULE O
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m]
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Fig 4. Screen of the Symbolics workstation showing the prediction phase of a consultation.
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42. Reasoning and sensitivity

The production system for prediction must be
able to reason forward, backward, solve
internal conflicts ghat may rise from parallel
rules, and use mathematical functions. In I-
IPM, when the forward-chaining part gets
stuck, a backward-chaining depth-first
search is started. It leads to a meaningful
inquiry of further facts from the user. The
user is not asked about such things as attack
density of bark beetles because he is not
supposed to know these. Instead, the search
directs questions to such end nodes as type of

breeding material, size of formation,
temperatures this year, etc., from which the
population parameters are concluded.
Qualitative or rough quantitative estimates
(such as zero, low, moderate, high, very-
high) are used for variables. The result is a
kind of simulation with rules. The results of
the reasoning are shown graphically (Fig. 4).

During and after the reasoning the user can
change the values inferred or given by
himself if he wants to explore with the
sensitivity of the predictions. The changes
are reflected in a way similar to a spreadsheet
in the graph of the dependency network.

5. Discussion

Validation of an expert system is different
when compared with the validation of a
conventional simulation model. The modular
structure of a rule-base makes validation easy
because it can be targeted to the individual
rules that contain usually only qualitative
estimates, textbook  knowledge, and
heuristics, all expressed in natural language.
On the other hand, formal methods for testing
the consistency and completness of a rule set
still are few (cf. Buchanan and Shortliffe
1984). From the individual rules it is
relatively easy to say when they produce
reasonable estimates. It can happen that a set
of valid rules does not explain the phenomena
consistently and completely. In this case
rules have interactions or they do not cover
the entire problem domain. Besides
sensitivity analysis, statistical methods have
been presented that reveal those rules that are
invoked most often with incorrect
conclusions (Politakis and Weiss 1984).
Dealing with expert systems quickly points
out things of problem solving that do not
come up otherwise. Researchers seldom
analyse their own reasoning, but knowing
how the problems can be solved is half of the
solution and it guides further research. An
expert system is essentially a model of the
knowledge in the problem domain
(Feigenbaum 1977), and abreast with
publications, video, audio, etc., knowledge
based systems form a new class of knowledge
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medium. Trying to bring the applicable
knowledge of a domain into usable form also
leads to a new definition of fundamental and
applied research: knowledge that can not be
applied in decision making or execution of
those decisions in the field, is basic research
regardless of topic, and vice versa.

In the rule base the mechanisms of the
particular system must be in clearly encoded
form which creates some resemblace with
mechanistic simulation models (Shannon et
al. 1985). Indeed, qualitative reasoning
(Kuipers 1989) approaches modeling and
simulation from the standpoint of reasoning
about the first principles of physical systems.
When an exact model is too incomplete,
possible behaviors of a system can still be
produced from its emergent properties and
attractors by reasoning with such possible
values as “increasing”, ’'stable”, and
“decreasing”, or with ordered qualitative
estimates as in this study. Although
quantitative models are advantageous in
many ways, chaos reasearch has shown us
the limits of such an approach. Furthermore,
producing simulation models for all the pest
species is an extremely costly way to make
research. If simulation models are available,
there is no obstacle for incorporating them
into the present system to make quantitative
estimates. However, rule based simulation
has its advantages. The mechanisms how
things affect each other are clearly isolated in

Hannu Saarenmaa

individual rules and the rule base is like an
extremely reduced biophysical model. New
knowledge can be easily added and changes
can be made because of the modularity.
There is no obstacle of using quantitive
estimates, either, in which case the functions
in the THEN part must be available. If we
connect the goal states in the rule net into the
input, we can have a simulation loop from
generation to generation.

Artificial intelligence is much wider than
just expert systems. One particularly
important technique for ecological modeling
is object-oriented programming which
merges programs in the data objects in
simulation. This creates a powerful and truly
mechanistic simulation where action is not
caused by an artificial program loop, but by
signals like in real world. Such a model has
been made for moose behavior and its effect
on natural resources (Saarenmaa et al. 1988).
It can be concluded that AI techniques
promote scientific method by introducing a
mechanistic point of view to the systems
under study.

The next step in this project would be the
construction of the modules for control
tactics. This can be done in two ways: as a
strict consultation system or as a planning
system. Planning is still very poorly handled
in the expert systems world because in that
case we are not dealing with deducting
knowledge from existing rules or frames, but

we must by inductive reasoning expand into
an empty area. To generate a plan of actions,
we need a set of constaints and lots of
heuristics to reduce the search (Stefik 1981).
Stone et al. (1987) present a fine example
how biological and economical analyses can
be integrated in an expert system
implementation of IPM.

So far, integrated pest management in
forests has been more theory than practice
(Waters and Stark 1980). This can been seen
to be a consequence of the complicated
nature of forest ecosystems which makes
decision making very difficult. The forester
must be aware of such a number of different
facts, rules and regulations that their handling
without a computerized decision aid often
becomes too unwieldy. I.e., a forest [PM
system is largely equivalent to computer
based decision making in the field
(Saarenmaa 1985, Stone and Saarenmaa
1988). Earlier attempts to create such
systems have more or less failed for reasons
that could not be seen beforehand. Expert
systems along with the new wave of powerful
workstations promise to solve most of the
problems (Naegele et al. 1986, Stone et al.
1986b, 1987). New problems may rise,
though. Among the most apparent ones are a
possible rise of “knowledge czars”, liablity in
the case of wrong decisions, and the tease of
giving decision making entirely to the
computer.
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