
561

Eight Heuristic Planning Techniques
Applied to Three Increasingly Diffi cult
Wildlife Planning Problems

Pete Bettinger, David Graetz, Kevin Boston, John Sessions and Woodam Chung

Bettinger, P., Graetz, D., Boston, K., Sessions, J. & Chung, W. 2002. Eight heuristic planning
techniques applied to three increasingly diffi cult wildlife planning problems. Silva
Fennica 36(2): 561–584.

As both spatial and temporal characteristics of desired future conditions are becoming
important measures of forest plan success, forest plans and forest planning goals are
becoming complex. Heuristic techniques are becoming popular for developing alternative
forest plans that include spatial constraints. Eight types of heuristic planning techniques
were applied to three increasingly diffi cult forest planning problems where the objective
function sought to maximize the amount of land in certain types of wildlife habitat. The
goal of this research was to understand the relative challenges and opportunities each
technique presents when more complex diffi cult goals are desired. The eight heuristic
techniques were random search, simulated annealing, great deluge, threshold accepting,
tabu search with 1-opt moves, tabu search with 1-opt and 2-opt moves, genetic algorithm,
and a hybrid tabu search / genetic algorithm search process. While our results should not
be viewed as universal truths, we determined that for the problems we examined, there
were three classes of techniques: very good (simulated annealing, threshold accepting,
great deluge, tabu search with 1-opt and 2-opt moves, and tabu search / genetic algorithm),
adequate (tabu search with 1-opt moves, genetic algorithm), and less than adequate
(random search). The relative advantages in terms of solution time and complexity of
programming code are discussed and should provide planners and researchers a guide
to help match the appropriate technique to their planning problem. The hypothetical
landscape model used to evaluate the techniques can also be used by others to further
compare their techniques to the ones described here.

Keywords spatial harvest scheduling, forest planning, adjacency constraints
Authors´ addresses Bettinger & Graetz: Department of Forest Resources, Oregon State
University, Corvallis, OR 97331; Sessions & Chung: Department of Forest Engineering,
Oregon State University, Corvallis, OR 97331; Boston: Carter Holt Harvey Forest Fibre
Solutions, Tokoroa, New Zealand
E-mails Pete.Bettinger@orst.edu; graetzd@ucs.orst.edu; Kevin.Boston@chh.co.nz;
john@sessions.cof.orst.edu; Woodam.Chung@orst.edu
Received 19 September 2000 Accepted 14 February 2002

Silva Fennica 36(2) research articles

562

Silva Fennica 36(2) research articles

1 Introduction

The spatial arrangement of wildlife habitat and
forest management activities is important for a
number of reasons, such as to comply with regu-
latory restrictions and organizational goals and
policies, and to maintain or improve aesthetic
conditions. Forest regulations, for instance, are
placing increasingly restrictive limits on the size
and spatial relationships of harvest units (Daust
and Nelson 1993). As a result of a need to
manage forest land within regulatory frameworks,
forest management planning now often attempts
to achieve multiple resource goals and often uses
spatial constraints on the selection of manage-
ment activities (O’Hara et al. 1989).

Forest planning models that optimize the spatial
arrangement of forest resources to meet a set of
management goals vary from the more traditional
optimizations techniques, such as linear or mixed
integer programming (e.g., Hof et al. 1994), to
non-traditional heuristic programming techniques
(e.g., Murray and Church 1995). Forest planning
problems that incorporate spatial goals, such as
clearcut adjacency restrictions, are combinatorial
problems by nature. Thus as the problem size
increases, the solution space also increases, yet at
a disproportionately greater rate (Lockwood and
Moore 1993). Mixed integer programming and
integer programming techniques have been used
to produce management plans with adjacency
concerns, but these techniques have substantive
limitations (directly related to problem size) when
applied to large combinatorial problems (Lock-
wood and Moore 1993).

The use of heuristic techniques for forest man-
agement planning is becoming more prevalent.
Many types of complex, non-linear goals (e.g.,
spatial and temporal distribution of elk habitat,
as described in Bettinger et. al. 1997), which
have traditionally been considered too complex to
solve with traditional optimization techniques, are
now being considered. In recent years, heuristic
programming techniques have been applied to
traditional forest harvest scheduling problems
(Hoganson and Rose 1984) as well as to forest
transportation problems (Pulkki 1984, Nelson and
Brodie 1990, Weintraub et al. 1994, Murray and
Church 1995, Weintraub et al. 1995), wildlife

conservation and management (Arthaud and Rose
1996, Haight and Travis 1997, Bettinger et al.
1997), aquatic system management (Bettinger
et al. 1998), and the achievement of biological
diversity goals (Kangas and Pukkala 1996). Com-
parisons of a few of these techniques have been
made in Nelson and Brodie (1990), Murray and
Church (1995), Csuti et al. (1997), Pressey et al.
(1997), and Boston and Bettinger (1999). The
comparisons have generally been made on a lim-
ited number of techniques, and were applied to a
small range of problem complexities.

This research examines the use of eight heu-
ristic techniques applied to three increasingly
diffi cult wildlife planning problems. The eight
techniques include random search, simulated
annealing, great deluge, threshold accepting, tabu
search with 1-opt moves, tabu search with 1-opt
and 2-opt moves, a genetic algorithm, and a
hybrid tabu search / genetic algorithm search
process. The wildlife planning goals increase
in complexity from non-spatial seral-stage goals
(acquire the most acres in certain forest age
classes), to minimum patch size goals (acquire
the most acres in patches of a certain type of
forest larger than a minimum size), and then
to complimentary, adjacent patch goals (acquire
the most acres in patches of a certain type of
forest larger than a certain minimum size, that
are next to another type of forest that is larger
than a certain minimum size). The purpose of
this research is to illustrate the opportunities and
challenges to using heuristic techniques for forest
planning efforts where wildlife habitat goals are
one of the main objectives, and to discuss the rela-
tive trade-offs among a broad range of techniques
in terms of the quality of solutions and the effort
required to obtain a solution.

2 Methods

In most planning processes, consideration is given
to the decision variables which can be modifi ed
and the rules for assigning activities to variables,
the rules for selecting new plan confi gurations,
and the length of time the activity selection (i.e.,
search process) is allowed to proceed (i.e., how
long the computer program is run). Quantitative

563

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

relationships, or rules, to constrain or guide the
assignment of activities can be categorized in
many ways; one such categorization is whether
the relationships require spatial information. The
use of spatial information can make goal achieve-
ment a very complex procedure in forest planning
applications. Of the three wildlife species habi-
tat goals we describe below, two require spatial
information in their computations. The other, a
non-spatial goal, consists of simply assembling a
number of acres in certain age classes, or strata.
Spatial goals can include a wide variety of con-
fi gurations. We will examine two types of spatial
goals: those which require minimum patch sizes,
and those which require adjacent habitat types of
minimum sizes. We will fi rst describe the three
quantitative relationships, or wildlife goals, that
we hope to maximize over time, and call them
problems A, B, and C. We will then describe
the eight heuristic techniques we use to develop
forest plans which achieve these goals. Finally,
we describe the hypothetical landscape, which is
available for others to use as a standard problem
set when pursuing further analytical efforts along
these lines.

2.1 Wildlife Habitat Goals

Three types of wildlife habitat goals are exam-
ined, each utilize increasingly complex criteria in
their measurement. The fi rst, problem A, utilizes
non-spatial goals, where no spatial components
are needed to evaluate the goals, and the objective
is to achieve the most acres of land over time
meeting the conditions we note below. These
have often been considered strata-based goals.
The second, problem B, is called the minimum
patch size goal, where the objective is to develop
the most land area over time in patches of a
certain size and condition. The third, problem C,
is called the complementary patch goal, where
the objective is to develop the most land area over
time in patches of a certain size and condition
that are next to other patches of a certain size and
condition. Wildlife biologists associated with a
project aimed at developing habitat relationships
for vertebrates in the USA Pacifi c Northwest
(Johnson and O’Neil 1999) were asked to provide
examples for these three goals. These examples

should be viewed as preliminary quantitative rela-
tionships, subject to change based on further
assimilation of data and further evaluation of
research by wildlife professionals.

In all three problems we will assume that the
decision variables related to management units
are binary (0,1), where an activity assigned to
a management unit is assigned to the entire
management unit, and not some portion of the
management unit. In addition, the activities we
consider are two: clearcut harvest or no harvest.
A minimum harvest volume is required each time
period, and a minimum harvest age is required
before a management unit can be harvested. The
time horizon is 50 years, we evaluate wildlife
habitat goals every 5 years, thus there are 10
5-year time periods. Further, we assumed that the
harvesting activities take place in the middle of a
time period, and that the evaluation of habitat is a
post-harvest evaluation for that time period.

2.1.1 Problem A: Non-spatial Goals

Non-spatial goals do not require spatial informa-
tion in the computation of their achievement, and
generally are based on achieving the amount of
some resource in a planning area. For example,
goals could be developed with the criteria that
some amount of habitat, such as old-seral habitat,
will be achieved. Four examples of non-spatial
goals related to the type of habitat required in the
USA Pacifi c Northwest include:
Sharp-shinned hawk (Accipiter striatus) prefers 25–50

year-old even-aged conifer stands.
Cooper’s hawk (A. cooperii) prefers 30–70 year-old

even-aged conifer stands.
Northern goshawk (A. gentilis) prefers 150+ year-old

conifer stands.
Red tree vole (Phenacomys longicaudus) prefers old-

growth forests that are ≥195 years old.

Our evaluation of these goals is simply based
on the age of the forests in each management
unit. The planning problem for maximizing the
amount of land in these age classes can be defi ned
as this,

564

Silva Fennica 36(2) research articles

Maximize

A H Ai i j k
k

m

i

n

j

t

i
i

n

, , /
=== =

∑∑∑ ∑

111 1

 (1)

Where:
j = a time period
t = total number of time periods
i = a management unit
n = total number of management units
k = a wildlife species
m = total number of wildlife species
Ai = area of management unit i
Hi,j,k = a binary variable indicating whether (1) or not

(0) management unit i is considered habitat for
species k during time period j

As we will note later, the landscape is composed
mainly of conifer stands, and we assume regener-
ated stands will come back as conifer stands. In
the riparian area, we assume the tree composition
is mainly hardwood, thus riparian areas, while
contributing to the landscape size, will always
have a Hi,j,k of 0. The potential objective func-
tion values amount to (10.0 * k). For example,
assume we have 4 wildlife species, and that the
entire landscape is considered habitat for these
species in every time period. The resulting objec-
tive function value is then ((10 * Σ Ai * 4) /
(Σ Ai)), or 40. The results we will soon show
are less than this theoretical maximum, however,
since not all of the landscape can be considered
habitat for any (or all) species in every time
period. Finally, none of the heuristic techniques
described shortly consider infeasible solutions
as current solutions to the problem (and thus
requiring penalty functions to drive them back
to feasibility).

Three constraints are also imposed. First, we
assume that only one regeneration harvest is
allowed per management unit during the planning
horizon.

X ii j
j

t

, ≤ ∀
=
∑ 1

1

 (2)

Where: Xi,j = a binary variable indicating whether (1)
or not (0) a management unit is harvested in time
period j.

There is no direct link between Xi,j values and
Hi,j,k values, since Xi,j is a characterization of
harvest activity, and Hi,j,k is a characterization of
whether or not a management unit is considered
wildlife habitat for species k. It just so happens
that in this example neither values can equal 1 at
the same time, but we shall see that this is not
necessarily true for wildlife species that consider
clearcuts part of their habitat.

Second, the minimum harvest age is 40 years.

If AGE Xi j i j, ,,< =40 0 (3)

If AGE Xi j i j, ,, { , }≥ ∈40 0 1 (4)

Where: AGEi, j = the stand age of management unit i
during time period j.

Thus when stands are 40 years old or greater, Xi,j
will take on a value of either 0 or 1 (from the set
{0,1}), yet can only have a value of 1 once over
the entire 50-year planning horizon.

Third, the total volume produced from timber
harvests must also exceed a minimum volume
goal:

A X V j ji i j i j
i

n

, ,() ≥ ∀
=
∑ minimum volume goal

1

 (5)

Where: Vi,j = the timber volume per unit area in
management unit i during time period j.

The minimum volume goal for the evaluation of
the heuristic techniques was set at 3000 units per
time period, which was based on stand age.

2.1.2 Problem B: Minimum Patch Size Goal

Some forest planning goals utilize spatial char-
acteristics of the landscape in the determination
of their value to particular wildlife species. One
example would be a goal which requires forest
patches to be of a minimum size, and composed
of a certain type or age of forest, before this
area can contribute positively toward the achieve-
ment of habitat. For example, the following is a
generalization of habitat requirements for three
forest birds:
Varied thrush (Lxoreus naevius), winter wren (Trog-

lodytes troglodytes), and Hammond’s fl ycatcher

565

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

(Empidonax hammondii) need intact stands of
mature or old-growth forests greater than 20 hec-
tares in size.

We will assume in our subsequent analyses that
mature or old-growth forests are stands which
are greater than 80 years of age, although this
is debatable and certainly a different age could
be assumed (or possibly some other site-specifi c
factor). Our problem formulation simply seeks
to maximize the amount of land in these types
of patch conditions.

The problem formulation is similar to that of
the non-spatial goal problem formulation, except
that the evaluation of habitat is different. Here,
a recursive function, using what Murray (1999)
describes as an area restriction method, is used to
evaluate the size of patches that consist of forests
that are ≥ 80 years old. So, management units
that are ≥ 80 years of age do not necessarily have
an Hi,j,k equal 1.0, since they must also comprise,
or be a part of, a patch that is at least 20 ha in
size.

If minimum patch size

Else

A B A B

H

H

i i j z z j
z Ni Si

i j k

i j k

, ,

, ,

, ,

+ ≥

=

=

∈ ∪
∑

1

0

 (6)

Where:
Bi,j = a binary variable indicating whether (1) or not
(0) management unit i is greater than or equal to the
minimum desired age (80 years) during period j
Ni = the set of units adjacent to management unit i
Si = the subset of adjacent units to the neighbors of
management unit i and all units adjacent to neighbors
of neighbors, and so on
z = a single management unit from the set Si

2.1.3 Problem C: Complementary, Adjacent
Patch Goal

This third and fi nal planning goal seeks to achieve
a landscape with the most area in complementary,
adjacent patches. These goals indicate that one
type of habitat (such as a patch of older forest of
a certain size, for nesting and roosting) should
be placed adjacent to another (such as a patch
of young forest of a certain size, for foraging),

to be of most benefi t to a particular species.
For example:
Great gray owl (Strix nebulosa) prefers early seral stage

forests (clearcuts) for foraging, yet they should be
adjacent to mature or old-growth stands.

In this case we will assume that “old forest
stands” are those with an average age greater than
80 years, and that “early seral stage forests” are
those with an age of 10 years or less. In addition,
to count towards the complementary habitat goals
we assume that the size of the old forest stand
must be 20 ha or greater, and that the size of the
adjacent early seral forest is 10 ha or greater.

This problem formulation is also similar to
that of the non-spatial goal problem formulation,
except that once again the evaluation of habitat
is different. Here, two recursive functions, using
what Murray (1999) describes as an area restric-
tion method, are used to evaluate the size of
patches that consist of forests that are ≥ 80 years
old, and forest that are ≤ 10 years old. These
require similar formulations to those described
in equation 6. Then a process using what Murray
(1999) describes as a unit restriction method, is
used to determine whether any of the older forest
management units that are part of patches ≥ 20
ha are touching early seral units that are part
of early seral patches ≥ 10 ha. So, management
units that are ≥ 80 years of age, or ≤ 10 years of
age do not necessarily have an Hi,j,k equal 1.0.
given the rules for evaluating the complementary
patch goal.

If and then

Else if and then

Else

O Y H

i t

Y O H

i t

H

i t z t
z Ni

i j k

i t z t
z Ni

i j k

i j k

, , , ,

, , , ,

, ,

,

,

= > =

∀

= > =

∀
=

∈

∈

∑

∑

1 1 1

1 1 1

0

 (7)

Where:
Oi,t = a binary variable indicating whether (1) or not
(0) management unit i belongs to a set of manage-
ment units that describe a patch where all of the
management unit are ≥ 80 years of age and the total
patch size is ≥ 20 ha
Yz,t = a binary variable indicating whether (1) or not

566

Silva Fennica 36(2) research articles

(0) management unit z belongs to a set of manage-
ment units that describe a patch where all of the
management unit are ≤ 10 years of age and the total
patch size is ≥ 10 ha
Ni = the set of units adjacent to management unit i
z = a single management unit from the set Ni

To increase the complexity of this problem, the
size of the openings created in each time period
are limited to 48.56 ha (120 acres), to resemble
a forest green-up policy. The green-up constraint
also uses an area restriction model technique to
determine how large the clearcuts are in any one
time period.

A X A X j

i j

i i j z z j
z Ni Si

, ,

,

+
∈ ∪

≤

∀

∑ maximum clearcut size (8)

Where:
Ni = the set of units adjacent to management unit i
Si = the subset of treated adjacent units to the neigh-
bors of management unit i and all units adjacent to
neighbors of neighbors, and so on
z = a single management unit from the set Si

Thus clearcuts that, in aggregate, are larger than
48.56 ha, result in an infeasible solution.

2.2 Heuristic Planning Techniques

Eight types of heuristic techniques were used
to solve the three wildlife planning problems.
The techniques include random search, simulated
annealing, the great deluge algorithm, threshold
accepting, tabu search with 1-opt moves, tabu
search with 1-opt and 2-opt moves, a genetic
algorithm, and a hybrid tabu search / genetic algo-
rithm search process. We next briefl y describe
these algorithms and provide a fl ow chart for each
detailing how they were used to solve the wildlife
planning problems. In addition, problem A was
solved using an integer programming technique,
thus providing an optimal solution to compare
against the heuristic techniques. Problems B and
C were not solved with an integer programming
technique, due to the complexity of the wildlife
goals in these problems.

2.2.1 Random Search

Random search serves as a baseline method of
scheduling; to be considered viable, an opti-
mization technique should perform better than
random searching for solutions (Valsta 1993).
Monte Carlo integer programming techniques
have long been studied for use in forest manage-
ment (e.g., Nelson and Brodie 1990). There are
a wide variety of Monte Carlo methods, some
variants of which we discuss shortly, but when
we illustrate “random search” (RS) results in this
research, we indicate that we are examining a
very simple Monte Carlo technique that incorpo-
rates no information about the problem to help
guide the search process, and simply randomly
assigns harvest timing choices to management
units. The process (Fig. 1) works like this: ran-
domly assign a harvest timing (including the
possibility of a no-harvest prescription) to all
management units; evaluate the wildlife goals; if
the resulting objective function is feasible, and
better than the best solution that has been located
to this point, save the solution as the best solu-
tion. We developed 100 random search solutions,
each representing the best solution from an inde-
pendent process that evaluated 2 million random
solutions. Thus 2 million independent, and ran-

Randomly develop
an initial solution

Evaluate wildlife goals

Stop and report
the best solution

found during search

 Have we
reached the
 stopping
 criteria?

Yes

No

Fig. 1. A fl ow chart of the random search process.

567

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

domly defi ned solutions are generated for each
100 attempts to solve the problem. This process
is different from the following seven other proc-
esses, where generally only a small change is
made to a solution from one iteration to the next.
There may be other ways to enhance a Monte
Carlo search process, but we have chosen to use a
generic process here, random chance, to compare
the other techniques against.

2.2.2 Simulated Annealing

Simulated annealing (SA) is a search technique
that began to be used in a widespread manner
in the early 1980s (Dowsland 1993). The ideas
that form the basis for SA were fi rst published
by Metropolis et al. (1953) in an algorithm to
simulate the cooling of materials in a heat bath –
a process known as annealing. The approach is a
Monte Carlo method that uses a local search in
which a subset of solutions is explored by moving
from one solution to a neighboring solution. To
avoid converging and becoming stuck in a local
maximum (or minimum) the procedure provides
for an occasional acceptance of an inferior solu-
tion to allow it to move away from a local maxi-
mum. SA has been used in a wide variety of
disciplines to solve optimization problems. In
forestry, SA has been investigated by a number
of researchers to solve spatial harvest scheduling
problems involving adjacency constraints, includ-
ing Lockwood and Moore (1992), Murray and
Church (1995), and Öhman and Eriksson (1998).
The SA process is illustrated in Fig. 2.

In our implementation of SA, we used the fol-
lowing parameters, which were based on several
trial and error runs of the search process on the
hypothetical landscape:

Problem A
Beginning temperature: 0.05
Ending temperature: 0.00001
Repetitions between temperatures: 400
Temperature reduction factor: 0.999

Problem B
Beginning temperature: 0.05
Ending temperature: 0.0001
Repetitions between temperatures: 400
Temperature reduction factor: 0.99

Problem C
Beginning temperature: 0.15
Ending temperature: 0.0001
Repetitions between temperatures: 200
Temperature reduction factor: 0.999

The beginning and ending temperatures were
selected to provide an appropriate range of prob-
abilities of acceptance of solutions during the

Set initial temperature;
randomly develop
an initial solution

Randomly choose unit
and period of harvest to

change in current solution

Stop and report
the best solution

found during search

 Is
 proposed
solution better
 then current
 solution?

 Have we
reached the
 stopping
 criteria?

YesNo

Yes

 Time
 to change
temperature
 ?

Yes

No

No

iterations = iterations + 1;
total iterations = total

iterations + 1

New temperature = old
temperature x temperature

reduction factor

Calculate acceptance
value

Current solution =
proposed solution

 Accept
 solution?

NoYes

Fig. 2. A fl ow chart of the simulated annealing search
process.

568

Silva Fennica 36(2) research articles

search process. The temperature reduction proc-
ess was employed after the number of repetitions
were made at each temperature level. Feasibil-
ity with respect to the constraints was evaluated
as each new solution was proposed; infeasible
proposed solutions were not allowed, and did not
count toward the number of repetitions between
temperatures.

2.2.3 Great Deluge Algorithm

The great deluge algorithm (GDA) is a recently
developed variant on simulated annealing. It is
similar to SA in that only a single change is
considered to a “current” solution, the resulting
temporary solution is evaluated, and a decision
is made whether or not to convert the temporary
solution to the current solution. The GDA was
introduced by Dueck (1993) and proved superior
to similar Monte-Carlo based algorithms in solv-
ing a 442-city and 532-city Travelling Salesman
Problem. The form of the GDA as presented
by Dueck (1993) consisted of using a single
parameter in the determination of whether or not
to convert the temporary solution to the current
solution (and perhaps change to an inferior solu-
tion). The use of one parameter rather than two, as
in a simulated annealing algorithm, is believed to
de-sensitize the algorithm thus leading to equally
good results even when parameter estimation and
formulation is poor.

The GDA derives it name from the conceptual
framework on which the algorithm works. Con-
sider a problem where the objective is to fi nd
the highest elevation in a fi ctitious landscape
by simply walking around the landscape and
measuring the elevation. Logically you would
want to continuously measure higher and higher
ground rather than lower and lower ground (or
the entire landscape). The GDA algorithm would
start at some unknown location in the landscape,
and subsequently it would begin to “rain without
end”, fl ooding the landscape and making it easier
to locate the higher elevations. As the water rises,
the GDA algorithm “walks” around the landscape
trying to “keep its feet dry” (by only walking on
higher and higher ground). However, if we were
to further humanize this process, the algorithm
will tolerate walking in water up to its ankles

(accepting a small subset of lower quality solu-
tions) and so is allowed to walk in some inun-
dated areas with the hope that there is higher
dry land nearby. Since the rain never ends, the
water continues to rise and the amount of dry
land and acceptable ankle-deep water diminishes
until what is left is only (hopefully) the highest
point in the landscape. The rain intensity in this
process is typically constant but a process can be
devised to make it rain more in the earlier stages
of the search process, to rather quickly get to
higher ground, and to reduce the computational
time requirements.

Randomly develop
an initial solution

Randomly choose unit
and period of harvest to

change in current solution

Stop and report
the best solution

found during search

 Are
any constraints
 violated?

 Have we
reached the
 stopping
 criteria?

Yes

No

Yes

 Is
 objective
value better than
 the best
 value?

Yes

No

Yes

 Is
 objective
value better than
 current
 value?

Save best solution

No

Save solution as current
solution, increase lower
threshold by rain level

No

Fig. 3. A fl ow chart of the great deluge search process.

569

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

The formulation of the GDA used here is pri-
marily a stochastic process. The algorithm starts
by generating a feasible random solution then
calculating the objective function to obtain an
initial objective function value (Fig. 3). Through a
trial and error process (for each goal), a “subtrac-
tion” value is determined and used to subtract
from the objective function value, the result of
which is used as the initial “water level” (which
represents the lower threshold value above which
only solutions of this value are acceptable – i.e.,
getting the ankles wet). A programming loop
is started that undergoes several steps until the
stopping criteria is met. First, a random manage-
ment unit is selected for a “move”. A move rep-
resents changing the solution with a 1-opt move.
The harvest volume, harvest age, and habitat
constraints are then evaluated. If the constraints
are violated, the move is rejected and another
random management unit is selected for a move.
If the constraints are not violated the new solu-
tion’s objective function value is calculated. If
the new solution is better than the current “best”
solution, it becomes the best solution. If the new
solution is better than the current solution, the
rain level is increased, by an amount equivalent
to a “rain” event, closing the gap between the
lowest acceptable solution value and the current
solution value. If the move’s objective function
value is lower than the lower threshold, the move
is rejected. This process continues until the lower
threshold level is equal to the best solution value.
At this point, the search process is allowed to
continue for a set number of additional iterations
before stopping. The number of iterations and
the level by which the water rises (increasing
the lower threshold) were made through trial and
error for each of the three planning problems.

In our implementation of GDA, we used the
following parameters, which were based on sev-
eral trial and error runs of the search process on
the hypothetical landscape:

Problem A
Subtraction value: 1.00
Rain event: 0.00009
Additional iterations: 70 000

Problem B
Subtraction value: 0.05

Rain event: 0.00005
Additional iterations: 40 000

Problem C
Subtraction value: 0.08
Rain event: 0.000035
Additional iterations: 20 000

2.2.4 Threshold Accepting

Threshold accepting (TA) is similar to both simu-
lated annealing and the great deluge process, and
was introduced by Dueck and Scheuer (1990).
TA, as implemented here, also examines a single
change to a current solution, yet uses a process
which has a different set of acceptance rules than
SA. TA accepts every new (proposed) solution
which is not much worse than the previous cur-
rent solution (within a pre-set limit of the value
of the current solution), whereas in SA there is
only a small probability that a worse proposed
solution would replace the current solution.

In the TA process, the initial threshold level T
is set by the user, then a random initial solution
is generated (Figure 4). A management unit and a
proposed new harvest timing for that unit are then
randomly selected. The difference (∆E) between
the resulting proposed solution (if the harvest
timing were actually changed) and the current
solution is computed by subtracting the current
solution’s objective function value from the pro-
posed solution’s objective function value. If ∆E
is greater than –T, and the proposed solution
is feasible with respect to the constraints, the
proposed solution becomes the current solution.
If ∆E is not greater than –T, and it has not been
a “long time” (defi ned by the user as the number
of iterations of the process using this T) since
the quality of the best solution has changed, the
process continues. If it has been a “long time”
since the quality of the best solution has changed,
the threshold is made smaller (T = T – ∆T). We
used three stopping criteria: (1) the number of iter-
ations since the best solution has been improved
(number of “non-improving iterations”) exceeds a
maximum level C; (2) the total number of search
process iterations (number of “total iterations”)
exceeds a maximum level S; or (3) T reaches a
level denoted as the stopping point. If any of these

570

Silva Fennica 36(2) research articles

are true, the search process ends and the best
solution is reported. Feasibility with respect to the
constraints was evaluated as each new solution
was proposed; infeasible proposed solutions were
not allowed, and did not count toward the number
of iterations within threshold levels.

In our implementation of TA, we used the fol-
lowing parameters, which were based on several
trial and error runs of the search process on the
hypothetical landscape:

Problems A, B, and C
T: 0.05
Change in T (∆T): 0.001
Stopping point for T: 0.002
Maximum number of “total iterations” (S): 2 000 000
Maximum number of “non-improving iterations”

(C): 200 000
Number of iterations with no change in solution value

before changing T: 20 000

Fig. 4. A fl ow chart of the threshold accepting search process.

Set initial threshold T;
randomly develop
an initial solution

Calculate ∆E = (value of
proposed new solution -
value of current solution)

Randomly choose unit
and period of harvest to

change in current solution

T = T - ∆T;
iterations = 0; non-

improving iterations = non-
improving iterations + 1

Stop and report
the best solution

found during search

 Is
 ∆E <
 - current
threshold
 (T)?

 Have we
reached the
 stopping
 criteria?

YesNo

Yes

 "Long
 time" no
 increase in
best solution
 quality?

Current solution =
proposed solution;

iterations = 0;
non-improving iterations = 0;

total iterations = total
iterations + 1

Yes

No

No

iterations = iterations + 1;
total iterations = total

iterations + 1

non-improving
iterations = non-

improving iterations + 1

571

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

2.2.5 Tabu Search with 1-opt Moves

Tabu search originated as a method for solving
real-world combinatorial problems in scheduling,
and has been successfully applied to a number
of important problems outside of forestry and
wildlife management, such as telecommunica-
tions, transportation, shop sequencing, machine
scheduling, and layout and circuit design prob-
lems (Glover 1990, Glover and Laguna 1993).
Within forestry it has been applied, e.g., to prob-
lems formulated for scheduling timber harvests
subject to adjacency (green-up) requirements
(Murray and Church 1995), for meeting spatial
goals for elk (Bettinger et al. 1997) and aquatic
habitat (Bettinger et al. 1998). Our implementa-
tion here is similar to SA in that only a single
change is considered to a “current” solution, the
status of the proposed change and the resulting
temporary solution are evaluated, and a decision
is made whether or not to convert the temporary
solution to the current solution. The neighbor-
hood, in effect, is a full neighborhood of 1-opt
moves, calculated by temporarily changing the
timing of harvest (including considering a change
to “no-harvest”) of a single management unit.
The neighborhood values can be considered to
be the potential objective function values if the
1-opt move is made. Infeasible potential moves
are assigned a potential objective function value
so inferior that they are never selected as potential
moves. The move selected from the neighborhood
is the move with the best potential objective func-
tion value. The tabu state (z) is then considered,
along with, perhaps aspiration criteria.

Tabu search, in general, is a hill-climbing pro-
cedure consisting of two key characteristics: (1)
the search is constrained by considering certain
choices as forbidden (i.e., tabu), and (2) when
encountering a forbidden choice, the search can
be freed by a memory function (aspiration crite-
rion) that allows “strategic forgetting” that certain
choices are forbidden (Glover 1989). The process
we implemented is illustrated in Fig. 5. Feasibil-
ity is maintained at all times, thus strategic oscil-
lation is not used here. Based on trial runs of the
algorithm, where z values ranged from 50 to 400
moves, z values were set at 200 moves. The total
number of iterations of the tabu search process for
each of the 100 independent runs was limited to

5000, which was based on an examination of the
number of iterations required to reach a steady
state (see Bettinger et al. 1997), and the amount
of time required for each independent run.

2.2.6 Tabu Search with 1-opt and 2-opt
Moves

While λ-opt (1-opt, 2-opt, 3-opt, etc.) moves have
been evaluated with heuristic search processes in
the broader literature (e.g., Glover 1996, Hanafi
and Freville 1998), 2-opt (and greater) moves
have been little used in forestry, but have shown
good results when applied to a forestry problem
which contained an even-fl ow goal and adjacency
constraints (Bettinger et al. 1999). 2-opt moves
involve simultaneously changing an attribute of
one management unit with that of another. These
moves have been shown to reduce the magnitude
of the impact on the objective function value, as
compared to 1-opt moves, and allow a heuristic
technique to refi ne the solution to a manage-
ment problem. And, it is not necessarily true
that two 1-opt moves, made in sequence, would
produce the same solution as a single 2-opt move.
Therefore, the use of 2-opt moves may allow
refi nements in the exploration of the solution
space, and allow an exploration of more of the
solution space than the 1-opt moves allow.

The tabu search process we implemented (TS2)
is similar to the one described above, with a 1-opt
(changing the harvest timing of a single unit)
neighborhood being available to select moves
from during every iteration of the process, yet a
2-opt (swapping the harvest timing of two units)
neighborhood is also available every other itera-
tion of the search process (Fig. 6). Again, feasi-
bility is maintained at all times, and strategic
oscillation is not used here. The best move from
the current solution is temporarily selected after
examining the available neighborhood(s). The
tabu criteria is similar to that described above,
with the unit / harvest timing combination being
tabu for 1-opt moves, yet the unit / unit combina-
tion being tabu for 2-opt moves. If a 1-opt move
is selected and permanently changes the solution,
it is given a tabu state value of z, and the tabu
state values of all other tabu moves (related to
both 1-opt and 2-opt moves) are decreased by

572

Silva Fennica 36(2) research articles

one until they equal 0 once again, and are then
not tabu.

Aspiration criteria are still utilized if we fi nd
that the move chosen is tabu, as are the other oper-
ations in the 1-opt tabu search process described
above. Based on trial runs of this algorithm,
where z values ranged from 50 to 500 moves, z
values were set at 400 moves. The total number
of iterations of the tabu search process for each
of the 100 independent runs was limited to
2000, which was based on an examination of the
number of iterations required to reach a steady
state (see Bettinger et al. 1997), and the amount
of time required for each independent run.

2.2.7 Genetic Algorithm

Genetic Algorithms (GA) were developed ini-
tially by Holland (1975) and his associates in
the 1970s. GAs are optimization heuristics that
are used to search for good solutions to com-
plex problems (Mullen and Butler 2000). Diverse
areas such as music generation, genetic synthesis,
strategic planning, and machine learning have
profi ted from these methods (Srinivas and Patnaik
1994). In forestry, GAs have been applied, e.g.,
to forest operational planning and harvest sched-
uling problems by Falcao and Borges (2001),
Lu and Eriksson (2000), and Mullen and Butler
(2000).

Randomly develop
an initial solution

Choose a candidate move

Calculate 1-opt
neighborhood

Update solution by
incorporating the

candidate move, set z value

Stop and report
the best solution

found during search

 Is
 candidate
 tabu?

 Have we
reached the
 stopping
 criteria?

Yes

No

YesNo

 Will
 solution be
the absolute
 best?

Reject candidate move,
adjust the neighborhood

Yes No

Fig. 5. A fl ow chart of the 1-opt tabu search process.

573

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

GAs are based on the mechanics of natural
selection and genetics (Holland 1975). A GA
technique starts with a set of feasible solutions
(a population) with each solution corresponding
to a chromosome. Solutions are selected from
the population either randomly or according to
their fi tness (objective function value), and are
combined to form new solutions (offspring). This
process is repeated until a stop criterion (for
example number of generations, improvement
of the best solution, or homogeneity of solu-
tions) is satisfi ed. Crossover and mutation are two
basic aspects of GAs. A crossover routine denotes
the place where two parents are split, then
re-combined to form offspring, allowing benefi -
cial genes on two different parents to be com-

bined in their offspring and hopefully to produce
better solutions. Mutation, generally applied in a
random manner, provides background variation,
and occasionally introduces benefi cial material
into chromosomes (Davis 1987).

In our implementation of a GA technique, we
start with a randomly generated set (a popula-
tion) of feasible solutions (chromosomes, Fig.
7). Population size was chosen after several ini-
tial trials, and was based on computing time
and quality of the fi nal solution generated from
the technique. A chromosome (a single solution)
consists of 74 genes representing units and each
gene is encoded as a harvest period from 0 to 10
(0 means not harvesting the unit).

Each chromosome in the initial population is

Fig. 6. A fl ow chart of the 1-opt and 2-opt tabu search process.

Randomly develop
an initial solution

Choose a candidate move
by evaluating 1-opt and

2-opt neighborhoods

Calculate 1-opt and
2-opt neighborhoods

Update solution by
incorporating the

candidate move, set z value

Stop and report
the best solution

found during search

 Is
 candidate
 tabu?

 Have we
reached the
 stopping
 criteria?

Yes

No

YesNo

 Will
 solution be
the absolute
 best?

Reject candidate move,
adjust the neighborhood

Yes No

574

Silva Fennica 36(2) research articles

evaluated by computing the objective function
value, thus each solution must be feasible with
respect to the constraints. One parent chromo-
some is then selected based on fi tness (the better
the fi tness value [objective function value], the
higher the chance of it being chosen), while the
other parent is chosen randomly. They are then
‘mated’ by choosing a crossover point at random,
then the crossover occurs, and two offspring chro-
mosomes (two new solutions) result. For exam-
ple, if we have two solutions X and Y, each having
5 harvest units,

X = (9,4,0,0,2)
Y = (6,2,7,4,0)

and if the crossover point is noted as being just
before the management unit 3 values, the pieces
prior to the crossover would be

X1 (9,4) X2 (0,0,2)
Y1 (6,2) Y2 (7,4,0)

and the resulting offspring would become:

Fig. 7. A fl ow chart of the genetic algorithm search process.

Generate initial population
of chromosomes

Apply crossover and
mutation routines

Select mating pair
of chromosomes

COUNT = COUNT + 1

Stop and report
the best solution

found during search

 Has the
 best solution
been improved?

 Have we
reached the
 stopping
 criteria?

No

No Save best solution;
COUNT = 0

Yes

Evaluate feasibility
and fitness of offspring

Insert the best one (among
four individuals)

into the next population

 Is the
next population
 full?

Yes

No

Yes

575

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

X1Y2 (9,4,7,4,0)
X2Y1 (6,2,0,0,2)

A random mutation may then be applied to these
offspring. If a random number on the range
between 0 and 1 is less than the mutation prob-
ability (set to 0.01 in this implementation), the
current harvest period of a randomly chosen gene
(a harvest unit) will randomly change. After the
harvest volume and wildlife goals are evaluated
for the offspring, the best one of the feasible
offspring (assuming it is feasible with respect
to the volume and wildlife goals) and parents will
be kept as new chromosomes in the next genera-
tion. If neither offspring are feasible with respect
to the constraints, only the better parent is kept
for the next generation. The process ends when
100 generations have passed without improving
upon the very best solution located during the
search process.

In our implementation of GA, we used the fol-
lowing parameters, which were based on several
trial and error runs of the search process on the
hypothetical landscape:

Problem A
Population size: 5000
Mutation rate: 0.01

Problem B
Population size: 1000
Mutation rate: 0.01

Problem C
Population size: 2000
Mutation rate: 0.01

2.2.8 Hybrid Genetic Algorithm / Tabu Search

The hybrid genetic algorithm / tabu search
(GA/TS) heuristic technique utilizes techniques
we have previously described: a 1-opt tabu search
process, a 2-opt tabu search process, and a genetic
algorithm crossover process (Boston and Bet-
tinger 2002). In addition, the GA/TS technique
uses a diversifi cation routine in an attempt to
move the search process to other regions of the
solution space. In the tabu search processes of
this technique a change is made to a current

solution by either altering the harvest timing of
a single, or of two, management units. In the
genetic algorithm process, the two best solutions
(saved in memory) are mated to form two new
solutions.

The GA/TS technique begins with a random
starting solution (Fig. 8). In this random start
process, management units and their harvest
timing are randomly selected until 10% of the
harvest volume goal has been met in each time

Fig. 8. A fl ow chart of the hybrid tabu search / genetic
algorithm process.

Tabu search 1-opt process

Stop and report
the best solution

found during search

 Have 3
genetic routines
 routines been
 used?

Yes

No

Randomly develop
an initial solution

Tabu search 2-opt process

Tabu search 1-opt process

Tabu search 2-opt process

Diversification routine

Genetic crossover
routine

576

Silva Fennica 36(2) research articles

period. The GA/TS technique then uses 1000
iterations of a 1-opt tabu search process, and
subsequently 200 iterations of a 2-opt tabu
search process. The two best solutions (one from
the 1-opt process, the other from the 2-opt
process) are saved in memory throughout the
scheduling process. The diversifi cation routine
is then employed, where the management units
which have been evaluated the least (so far) are
scheduled for harvest. The diversifi cation routine
unschedules all management units from harvest,
then schedules (by randomly selecting a harvest
timing) the least-evaluated units until 10% of the
volume goal has been met. This process essen-
tially re-starts the heuristic by forcing into the
solution those management units which were
least used in the tabu search processes.

The 1-opt and 2-opt processes are then repeated
before the genetic crossover routine is used. The
two best feasible solutions (again, one from the
1-opt process, the other from the 2-opt process)
found to this point in the search process become
the parents for the mating. A random crossover
point was determined, and the two chromosomes
were split, and then re-combined to form two
new solutions. The resulting child with the high-
est objective function value becomes the starting
solution for another loop through the tabu search
and diversifi cation processes. For Problem C, if
feasibility with regard to clearcut size limitation is
not maintained, one (or more) of the units affect-
ing infeasibility is randomly unscheduled from
harvest until feasibility is once again achieved.

After 6 sets of 1-opt and 2-opt tabu search
processes, 3 diversifi cation routines, and 3 genetic
crossover routines, the search process stops and
reports the best solution that it located. Based on
trial runs of the algorithm, the tabu state, z, for
the 1-opt process was set to 100 iterations, while
z for the 2-opt process was set to 20 iterations.

2.2.9 Comparing Heuristic Techniques

The solutions generated by the eight heuristic
techniques are compared in several ways: the
best solutions from 100 independent runs of each
heuristic are compared; the minimum, maximum,
mean, and standard deviation from each of the
three planning problems are compared; the global

optimum solution for each of the three problems
is either generated or estimated, and the percent-
age of solutions within 1% of this value is pre-
sented; and while differences in computers may
provide the least serious impediment to competi-
tive testing (Hooker 1995), the time necessary to
generate a single solution on a single computer
(a Pentium III 550 MHz computer) is presented.
More diffi cult to measure are the differences in
coding skill, fi ne-tuning of algorithms, and testing
of parameters (Hooker 1995), all areas which we
fail to address here, but leave for further explora-
tion. In addition, Hooker (1995) suggests that the
amount of processing time per iteration, and its
effect on total computation time, is important.
This too, we leave for future exploration.

When using heuristic techniques, one cannot
be certain that the global optimum solution to
a planning problem will be found, nor that the
resulting solutions are even close to the global
optimum. To evaluate the quality of the solutions
that are produced by heuristic techniques, one can
solve the global optimum solution to a problem
using a traditional mathematical technique, and
subsequently the comparisons can be made. For
example, an integer programming formulation
was developed for the non-spatial goals (Prob-
lem A), and the optimal solution produced was
9.8105. This is diffi cult to do for more complex
goals, however, thus integer programming for-
mulations were not developed for the minimum
patch size or complementary patch problems,
since these are in fact very complex problems.
A relaxed linear programming problem, (where
some of the spatial constraints are ignored) could
also be formulated and assumed as an upper-
bound on the potential solutions derived from
heuristic techniques, although we did not develop
relaxed linear programming formulations for the
three wildlife planning problems. Finally, it may
be possible to develop an estimate of the global
optimum solution using extreme value theory,
which is described in Bettinger et al. (1998),
Los and Lardinois (1982), and Golden and Alt
(1979). We developed estimates of the global
optimum solutions for the three wildlife planning
problems, and compared them against the solu-
tions generated by the heuristic techniques.

577

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

2.3 Hypothetical Landscape

The landscape we apply the three increasing dif-
fi cult wildlife planning goals to is 2500 acres
in size, and consists of 74 management units.
A GIS database of the hypothetical landscape,
along with a list of management unit acres, initial
age (age during period 1, if not harvested during
period 1), and potential volumes is available
on the internet (http://cof.orst.edu/cof/fr/people/
bettingp/wlc/index.htm). Adjacent units are those
units that share an edge, rather than both an
edge or a corner (point). This is a hypothetical
landscape, and can be used as a standard model
for others to use in their efforts to solve these
problems. Users of this data should note that one
management unit consists of hardwood stands
and represents riparian areas, thus while it con-
tributes to the total number of acres on the land-
scape, it does not count toward wildlife goal
achievement.

3 Results

To compare the results, we produced 100 solu-
tions with each of the eight heuristic techniques
for each of the three wildlife planning problems.
These 100 resulting solutions can be considered
an independent sample from a population of solu-
tions, since the starting point for each of the
search processes was a randomly developed solu-
tion. We employ several methods to evaluate
the quality of the resulting solutions, including
a comparison of the statistics (mean, median,
mode) of the solution values, a discussion of the

quality of the entire set of 100 solutions, and
a discussion of the estimated global optimum
solutions from the sample solutions of each tech-
nique.

Of the eight heuristic techniques, six found
very good solutions to Problem A, the non-spatial
wildlife goals (Table 1). The values represented
in Table 1 represent the best solution of the 100
sample solutions generated by the eight tech-
niques. Only the RS and TS1 techniques located
considerably lower-quality solutions. Problem B,
with the minimum patch size goals, was more
diffi cult for the GA technique to solve, and RS
and TS1 also produced lower results than the
other 5 techniques. In Problem C, with the com-
plementary, adjacent patch goals, four techniques
produced the best solutions: SA, GDA, TA, TS2.
The TS1, GA, GA/TS techniques also produced
very good solutions to Problem C.

Now that we have illustrated how the “best”
solution from each technique compares to the best
from the other techniques, one may ask how the
quality of the entire set of 100 solutions compare,
to give us an understanding of the variation in
solution quality among techniques. In Problem
A (Table 2) several notable results can be seen.
First, SA, GDA, and TS2 produced the highest
minimum solution values, so their worst solutions
were better than the best solution for TS1, yet TA
had a much lower minimum solution value than
SA, GDA, and TS2. However, the average solution
values for SA, GDA, TA, and TS2 were all very
similar. Of the 100 sample solutions produced by
each technique, those produced by SA had the
lowest variation, and those produced by TS1 had
the highest variation in solution quality.

In Problem B, while 5 of the techniques pro-

Table 1. Quality of the best solutions generated by the eight heuristic techniques.

Heuristic technique Problem A Problem B Problem C

Random Search (RS) 8.4607 1.3548 1.7254
Simulated Annealing (SA) 9.8079 2.0475 3.0323
Great Deluge (GDA) 9.8084 2.0475 3.0559
Threshold Accepting (TA) 9.8085 2.0475 3.0591
Tabu Search 1-opt (TS1) 9.7434 2.0045 3.0158
Tabu Search 1-opt and 2-opt (TS2) 9.8093 2.0475 3.0522
Genetic Algorithm (GA) 9.7941 1.9912 2.9823
Genetic Algorithm / Tabu Search (GA/TS) 9.7996 2.0475 3.0148

578

Silva Fennica 36(2) research articles

duced what seems to be the global optimum
solution (2.0475), the minimum solution value
produced by TS2 and GA/TS was higher than
that produced by the other techniques (Table 3).
These two techniques also had the lowest vari-
ation in solution values. The mean values for
SA, TA, TS2, and GA/TS were also very good
compared to the other techniques. In Problem C,
TS2 produced one of the best overall solutions,
yet its lowest valued solution was much lower
than that produced by SA, GDA, or TA (Table
4). The story for TS1 is similar; it produce a
fairly good maximum, but its minimum solution
value was quite low. This indicates that while
the potential to produce good solutions using
TS1 or TS2 is good, there is a chance, if only
a few solutions are generated, that the resulting
solutions are not very good. The mean values,
however, for SA, GDA, TA, TS2, and GA/TS
were all very similar. The techniques which pro-
duced solutions with the most variation in solu-
tion quality were TS1, TS2, and GA, although
TS1 and GA solution values were generally lower
than TS2 solution values.

Since the global optimum solution for Problem
A was solved using integer programming tech-
niques, we can directly compare it to the heuris-
tic results. The best solutions from SA, GDA,
TA, and TS2 were all within 0.02% of the
global optimum solution. The best solution from
TS1 (within 0.69% of the global optimum), GA
(within 0.17%), GA/TS (within 0.12%), were
also very good. The best RS solution was within
13.76% of the global optimum.

Estimates of the global optimum solution for

Problems B and C were generated using tech-
niques described in Bettinger et al. (1998), which
views the set of solutions from each technique as
an independent sample, continuously distributed,
from a population of solution values. A three-
parameter Weibull curve is fi t to the sample solu-
tions, and the location parameter of the resulting
Weibull curve is used as the estimate of the
global optimum. To verify the goodness of fi t of
these curves, the distribution of sample solutions
was rotation about the location parameter, and
re-fi t using BestFit software (Palisade Corpora-
tion 1997), which fi ts a two-parameter Weibull
curve (assumes the location parameter has the
value 0), and also tests the goodness of fi t using
Chi-square and Anderson-Darling statistics.

The estimates of the global optimum solutions
are presented in Table 5, and show limited useful-
ness of this approach to gauge the quality of

Table 2. Statistics regarding the sample of 100 solutions
generated by the eight heuristic techniques for
Problem A, the non-spatial wildlife goals.

Heuristic Maximum Minimum Mean Standard
technique deviation

RS 8.4607 8.3168 8.4010 0.0396
SA 9.8079 9.7775 9.7933 0.0055
GDA 9.8084 9.7493 9.7838 0.0106
TA 9.8085 9.6479 9.7750 0.0354
TS1 9.7434 9.2481 9.5222 0.1092
TS2 9.8093 9.7651 9.7928 0.0106
GA 9.7941 9.6481 9.7456 0.0275
GA/TS 9.7996 9.7060 9.7579 0.0174

Table 3. Statistics regarding the sample of 100 solu-
tions generated by the eight heuristic techniques
for Problem B, the minimum patch size wildlife
goals.

Heuristic Maximum Minimum Mean Standard
technique deviation

RS 1.3548 1.2387 1.2941 0.0359
SA 2.0475 1.9485 2.0330 0.0156
GDA 2.0475 2.0057 2.0277 0.0114
TA 2.0475 2.0033 2.0342 0.0112
TS1 2.0045 1.6123 1.9226 0.0666
TS2 2.0475 2.0263 2.0397 0.0088
GA 1.9912 1.8110 1.9309 0.0356
GA/TS 2.0475 2.0181 2.0410 0.0087

Table 4. Statistics regarding the sample of 100 solu-
tions generated by the eight heuristic techniques
for Problem C, the complementary, adjacent patch
wildlife goals.

Heuristic Maximum Minimum Mean Standard
technique deviation

RS 1.7254 1.6047 1.6680 0.0415
SA 3.0323 2.9228 2.9897 0.0217
GDA 3.0559 3.0008 3.0282 0.0130
TA 3.0591 2.9769 3.0403 0.0148
TS1 3.0158 2.2683 2.7212 0.1666
TS2 3.0522 2.5932 2.9817 0.0791
GA 2.9823 2.5317 2.8553 0.0648
GA/TS 3.0148 2.8087 2.9555 0.0370

579

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

solutions generated by heuristic techniques. For
example, in Problem B only one technique (GA)
produced a distribution of results which when
fi t with a Weibull curve, was not rejected by the
test statistics, yet we know this estimated global
optimum (1.9958) to be well below other actual
values produced by other heuristic techniques.
In Problem C we see similar results from the
estimated global optimum values for SA and
GA/TS heuristic techniques. The estimated global
optimum values from TA and TS1 are both plau-
sible, but TS1 had more variation in its results
than TA, and TA results were clustered more
closely around its estimated global optimum. For
Problem A, we found three estimated global opti-
mum values (from SA, GDA, and TS2) which
were very close to the integer programming
solution, providing some reassurance that using
extreme value theory to estimate the global opti-
mum may have some value, yet researchers and
planners should take caution when using this
process, as noted by the results above and by
Boston and Bettinger (1999).

We compared the eight heuristic techniques
one fi nal way using the information we have
compiled regarding the optimum solutions for
each of the three problems. We fi rst make some
assumptions regarding the best possible solution
values from the three planning problems. The
optimum solution for Problem A (9.8105) was
derived from the integer programming results,
for Problem B (2.0475) was concluded based on
the consistency which several of the techniques
located these solutions and found no better, and

for Problem C (3.0593) was derived from the
estimate of the global optimum using the TA tech-
nique. We then ask how many, of the 100 sample
solutions generated by each heuristic technique,
were within 1% of these values. As Table 6 shows,
there are some techniques which are well suited
to certain problems, while other techniques, using
our implementation of the techniques, may need
some refi nements to be able to consistently pro-
duce higher quality solutions.

Solution times for each of the eight heuristic
techniques is presented in Table 7. These solution
times should be viewed from a broad perspective,
since the heuristic programs were developed, in
some cases, independently of the others, and
standard logic or protocols were not employed.
What is clear is that solution times increase as
problem complexity increases, and that solution

Table 5. Estimated global optimum from the eight heu-
ristic techniques.

Heuristic Problem A Problem B Problem C
technique

RS 8.4612 1.4609 1.7585
SA 9.8109 a 2.0480 3.0361 a

GDA 9.8115 a 2.0477 3.0633
TA 9.8086 2.0490 3.0593 a

TS1 9.8011 a 2.0051 3.0657 a

TS2 9.8110 a 2.0490 3.0522
GA 9.7959 a 1.9958 a 2.9869
GA/TS 9.8051 2.0501 3.0184 a

a Results were not rejected by Chi-square, Kolmogorov-Smirnov,
nor Anderson-Darling test statistics using BestFit software (Palisade
Corporation 1997).

Table 6. Percentage of sample solutions that are within
1% of the global optimum or assumed “best”
values for each of the three planning problems.

Heuristic Problem A Problem B Problem C
technique

RS 0 0 0
SA 100 69 2
GDA 100 68 67
TA 89 77 81
TS1 3 0 0
TS2 100 82 22
GA 87 0 0
GA/TS 97 80 0

Table 7. Average time to develop a single solution
for each of the three planning problems (min-
utes), using a Pentium III 550 MHz processor,
and all algorithms coded in the C programming
language.

Heuristic Problem A Problem B Problem C
technique

RS 5.0 5.2 13.0
SA 0.8 0.3 8.0
GDA 0.3 1.5 9.0
TA 5.0 12.5 22.0
TS1 4.5 11.5 27.0
TS2 1.5 12.0 30.0
GA 4.3 4.0 45.0
GA/TS 12.0 50.0 72.0

580

Silva Fennica 36(2) research articles

time increases as the complexity of heuristic proc-
ess increases. We found that the opinion of each
researcher varied regarding the degree of com-
plexity required to develop each technique. The
level of familiarity each of us has with the intrica-
cies of the eight search techniques probably infl u-
ences these opinions.

4 Discussion

If an organization makes a decision to utilize a
heuristic programming technique to develop a
land management activity schedule, the level of
sophistication of the resulting technique will vary
depending on the type of system desired and the
time allowed to develop the system. For example,
heuristic programming techniques can be closely
integrated with geographic information systems
(GIS) or simply linked to GIS via the transfer of
certain databases (inventory, adjacency, etc.) as
was illustrated with each of the eight techniques
in this research. In addition, the programming lan-
guage employed is important, as some languages
may provide effi ciencies in programming logic,
may provide faster computations for similar tasks,
may be easier to use (for the people involved in
scheduling efforts), and may result in a product
with better end-user acceptability.

The time to develop a solution is a function
of the programming skill employed, which deter-
mines the effi ciency at which the search pro-
ceeds. Although none of the researchers were
professional programmers, all had considerable
programming experience, yet each may use dif-
ferent programming logic, and each may have
preferences for certain processes, such as check-
ing solution values, which may affect how fast
a solution is ultimately generated. Thus the effi -
ciency of generating solution values for the eight
techniques should be viewed in a general sense.
What is important is that the time to generate
an adequate number of solutions should be short
enough so that an analyst has time to develop
alternative formulations and thus to test the
robustness of the model and the planning prob-
lem. Others exploring the use of heuristics should
keep in mind that each method does require a

certain amount (defi ned by the comfort of the
programmer) of skill and creativity to make a
complex heuristic perform both well, and fast.

When considering development time for a heu-
ristic scheduling process, analysts should con-
sider the time to develop the scheduling code,
to verify the logic, to develop the databases, and
to develop graphic capabilities. Code develop-
ment generally consists of input and output func-
tions, logic to measure or evaluate management
goals, logic to schedule activities, and criteria to
determine when to stop the process. Verifi cation
of this code is time-consuming, and may consist
of tracing the location of errors with “print state-
ments” located at strategic points in the computer
code, manually simulating the scheduling process
to determine what the process should be doing,
checking loops and the conditions that satisfy
entering or leaving a loop, and isolating sec-
tions of code, checking them separately (Rojiani
1996). Manual verifi cation of solutions on maps
is a simple, yet invaluable technique that should
be employed. In fact, some spatial scheduling
problems may only be noticed once the maps
have been developed. A standard program was
used here to check the quality of the solutions
to each problem; it was developed independently
of the eight heuristic techniques. A separate goal
evaluation technique is often employed within a
scheduling problem to periodically examine the
solution values and to verify feasibility. If one
were using techniques such as strategic oscilla-
tion, which allows some deviation from feasibility
during the search process, a periodic independent
check of feasible solutions may be appropriate.

Database development is often one of the most
under-appreciated tasks in planning efforts, and
often scheduling problems can be traced to inad-
equate examination of the quality of the data-
bases. Graphics capabilities are available for most
programming software packages; a decision one
must make regarding viewing the graphics is
whether one needs to view the solution within a
programming language structure, or within GIS.
This, of course, assumes that the two are not
integrated, and is moot if they are, in fact, inte-
grated.

There are a variety of trade-offs associated with
the eight techniques employed in this research
(Table 8). Some of these techniques examine only

581

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

a single change to a solution with each iteration
of an algorithm, while others examine multiple
changes to a solution with each iteration. Many
of the techniques use random changes to a
solution to move about the solution space, in
fact tabu search, which generally uses determin-
istic changes, can be formulated to use random
changes as well. The level of change allowed in
the value sequential solutions that are generated
can vary considerably, especially with Monte
Carlo techniques that allow multiple changes to
sequentially generated solutions. Thus the level
of change may vary widely between iterations
of the search process. TA and GDA generally
have a “fl oor” below which no worse solutions
are allowed, and SA can be viewed as having
a fl oor as well, yet there is a chance that more
inferior solutions are allowed in a comparable SA
technique. Finally, speed is an important factor
to those who desire to develop a high volume
of good solutions in a reasonable amount of
time. While speed is also related to the type
of programming language employed, the time
required to move through a single iteration of
these techniques also varies based on the com-
plexity of the scheduling process. Certainly GA
and TS2 techniques can be developed which are
fast, but comparable SA, TA, and GDA tech-
niques will be faster. What is not clear is how
the size of a planning problem may infl uence
solution times. As problems get quite large, the
ability to use parallel processing techniques may
greatly increase the effi ciency of those tech-
niques which are most suited (TS and GA), since
many different potential solutions (in the case of
TS, fi lling out the neighborhood; in the case of

GA, developing a population) must be generated
before a decision is made.

In addition, the fl exibility and complexity of the
techniques may prevent or facilitate alternative
formulations of the planning problems and inter-
pretation of results. For example, these tech-
niques do not require the generation of a detached
coeffi cient matrix common to linear program-
ming problems – the goals and constraints are
embedded in the computer programming code
that allows the heuristics to solve the planning
problems. Whether the programming code is
developed in such a way to allow alternative
specifi cations of the problem is problematic, and
not necessarily limited to the use of a subset of
the eight heuristics. We have, through our experi-
ence, seen both extremes. The development of
a fl exible heuristic would require an investment
in an interface that would allow a variety of
variables related to the problem formulation to
be modifi ed by the user prior to solving the
problem.

While we have provided some insight into the
relative differences of eight heuristic techniques,
it is possible that each of the eight techniques
described here can be modifi ed to produce better
solutions than we have illustrated. Our intent
was to develop the standard techniques, with
some investigation into effi ciencies such as using
an appropriate tabu tenure in the tabu search
techniques, or the appropriate cooling schedule
for the SA technique. However, others may fi nd
that there are processes that can enhance these
search techniques, such as strategic oscillation or
a variety of λ-opt moves or a different integration
of multiple search techniques. The issue of allow-

Table 8. Trade-offs associated with the eight heuristic techniques employed in this research.

Heuristic No. of changes Random or deter- Level of acceptable Speed per
technique per iteration ministic changes change per iteration iteration

RS multiple random unlimited fast
SA one random limited fast
GDA one random limited fast
TA one random limited fast
TS1 one deterministic unlimited moderate
TS2 one/two deterministic unlimited slow
GA multiple random unlimited slow
GA/TS variesa both unlimited slow

a The number of changes per iteration depends on the type of search process used at each iteration: 1-opt tabu search,
2-opt tabu search, diversifi cation, or genetic crossover.

582

Silva Fennica 36(2) research articles

ing infeasible solutions to become valid local
optima (thus using some sort of penalty function
to temper the infeasibilities) in the search for the
global optimum is an area of debate among those
creating and using heuristic search algorithms.
While some may argue that not allowing the
search process to examine infeasible solutions
restrictive, we welcome others to develop search
algorithms that allow these infeasibilities, and
subsequently to compare those results with the
work we have performed here.

A good example of a technique that may benefi t
from further developmental work is the GA/TS
technique. The GA/TS technique does provide
consistently good solutions to the non-spatial
problem as well as the minimum patch size prob-
lem, and given these results, should be appropri-
ate for problems with clearcut size limitations
that utilize adjacency constraints. However, the
technique needs more developmental work if it
is to be applied to complex planning problems
that have goals similar to the complementary
patch problem (Problem C). Future developmen-
tal work on this hybrid heuristic may explore
several areas, such as the use of longer tabu
tenures for the two tabu search portions of the
technique, or different tenures for each of the
two techniques. In addition, an expanded use of
the genetic crossover routine may allow a wider
search into the solution space, as might the use of
mutation processes. An exploration into diverse
selection criteria may also prove to result in better
solutions for complex spatial problems. Finally,
a more integrated use of the different search
techniques may be benefi cial, since each was
used for a considerable amount of time before
switching to another. Integrating techniques more
frequently (as in the TS2 technique) could lead to
better solutions to these complex problems.

As for the GA technique, one of the challenges
is in keeping the solutions, after crossover, in the
feasible region of the solution space. A GA in
its “standard form” may not be a highly effi cient
model for sequencing and scheduling problems,
especially if spatial constraints are included. The
generation of a multitude of infeasible offspring
will certainly reduce the usefulness of a GA
technique, thus developing computer logic to pre-
vent this from occurring may be appropriate.
This problem, however, is not unique to GA tech-

niques, as RS, SA, GDA, and TA techniques can
also spend a lot of time evaluating solutions that
are spatially infeasible, since the management
unit and harvest timing are randomly chosen.

The size of the population chosen for a GA
technique may also affect the effi ciency in which
good solutions are generated. A large population
allows one to have a wide variety of genes, but
slows down the processing time of a GA tech-
nique. Appropriate population sizes are generally
chosen after several trial and error runs of the
algorithm. Again, the appropriate choice of the
parameters of a search process is not unique to
GA techniques, as all of the others (except RS)
require some user interaction to fi nd an appropri-
ate set of parameters to enable them to fi nd good
solutions in an effi cient manner.

5 Conclusions

As forest management evolves in an increasingly
complex regulatory environment, we will likely
see more use of spatial restrictions and non-
linear goals in forest plans. As a result, many real
world problems are becoming too complex to be
solved with classical optimization techniques. In
the future, computer software and hardware may
progress to the point where classical techniques
are once again useful for solving large combinato-
rial problems, yet in the meantime more reliance
may be placed on simulation and optimization
with heuristics. The ultimate goal of using heuris-
tic techniques is to produce high quality solutions
in short amounts of time to problems with non-
linearities or combinatorial relationships. This
research has hopefully provided more insight into
the performance differences of a variety of heuris-
tic techniques on increasingly complex planning
problems. Readers should not view the results
as universal truths, however, and we encourage
others to formulate these problems with their most
promising techniques and compare the resulting
solutions to the solutions presented here.

In the future, the need for a standard set of data
and criteria for evaluation of these techniques
seems appropriate. We have provided a database
and three problems here for others to use as a
start. In addition, the need for evaluating the cri-

583

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

teria for stopping a search process is noteworthy
due to the length of time some of the processes
required to arrive at a solution. A discussion of
the appropriateness of heuristic techniques is also
needed, since their advantages, while clear to
some, are unclear to others more enthused with
classical optimization techniques. The main con-
cern here is whether the level of effort involved
with using heuristics is worthwhile, since some
believe that the value associated with implement-
ing a relaxed LP solution may not be much dif-
ferent than the value of implementing a spatially
feasible solution generated by a heuristic tech-
nique. An evaluation of the time and cost of both
alternatives may therefore enhance this debate.

Literature Cited

Arthaud, G.J. & Rose, D. 1996. A methodology for
estimating production possibility frontiers for wild-
life habitat and timber value at the landscape
level. Canadian Journal of Forest Research 26:
2191–2200.

Bettinger, P., Boston, K. & Sessions, J. 1999. Intensify-
ing a heuristic forest harvest scheduling search
procedure with 2-opt decision choices. Canadian
Journal of Forest Research 29: 1784–1792.

— , Sessions, J. & Boston, K. 1997. Using tabu search
to schedule timber harvests subject to spatial wild-
life goals for big game. Ecological Modelling 94:
111–123.

— , Sessions, J. & Johnson, K.N. 1998. Ensuring the
compatibility of aquatic habitat and commodity
production goals in eastern Oregon with a tabu
search procedure. Forest Science 44(1): 96–112.

Boston, K. & Bettinger, P. 1999. An analysis of Monte
Carlo integer programming, simulated annealing,
and tabu search heuristics for solving spatial har-
vest scheduling problems. Forest Science 45(2):
292–301.

— & Bettinger, P. 2002. Combining tabu search and
genetic algorithm heuristic techniques to solve
spatial harvest scheduling problems. Forest Sci-
ence 48(1): 35–46.

Csuti, B., Polasky, S., Williams, P.H. & others. 1997. A
comparison of reserve selection algorithms using
data on terrestrial vertebrates in Oregon. Biological
Conservation 80: 83–97.

Daust, D.K. & Nelson, J.D. 1993. Spatial reduction
factors for strata-based harvest schedules. Forest
Science 39(1): 152–165.

Davis, L. 1987. Genetic algorithms and simulated
annealing. Pitman, London. 216 p.

Dowsland, K.A. 1993. Simulated annealing. In:
Reeves, C.R. (ed.). Modern heuristic techniques
for combinatorial problems. p. 20–69. John Wiley
& Sons, Inc., New York.

Dueck, G. 1993. New optimization heuristics: The great
deluge algorithm and the record-to-record travel.
Journal of Computational Physics 104: 86–92.

— & Scheuer, T. 1990. Threshold accepting: A gen-
eral purpose optimization algorithm appearing
superior to simulated annealing. Journal of Com-
putational Physics 90: 161–175.

Falcao, A.O. & Borges, J.G. 2001. Designing an evo-
lution program for solving integer forest man-
agement scheduling models: An application in
Portugal. Forest Science 47: 158–168.

Glover, F. 1989. Tabu search – Part I. ORSA Journal
of Computing 1(3): 190–206.

— 1990. Tabu search – Part II. ORSA Journal of
Computing 2(1): 4–32.

— 1996. Finding a best traveling salesman 4-opt move
in the same time as a best 2-opt move. Journal of
Heuristics 2: 169–179.

— & Laguna, M. 1993. Tabu search. In: Reeves, C.R.
(ed.). Modern heuristic techniques for combinato-
rial problems. p. 70–150. John Wiley & Sons, Inc.,
New York.

Golden, B.L.& Alt, F.B. 1979. Interval estimation of
a global optimum for large combinatorial prob-
lems. Naval Research Logistics Quarterly 26(1):
69–77.

Haight, R.G. & Travis, L.E. 1997. Wildlife con-
servation planning using stochastic optimization
and importance sampling. Forest Science 43(1):
129–139.

Hanafi , S. & Freville, A. 1998. An effi cient tabu
search approach for the 0–1 multidimensional
knapsack problem. European Journal of Opera-
tional Research 106: 659–675.

Hof, J., Bevers, M., Joyce, L. & Kent, B. 1994. An
integer programming approach for spatially and
temporally optimizing wildlife populations. Forest
Science 40(1): 177–191.

Hoganson, H.M.& Rose, D. 1984. A simulation
approach for optimal timber management schedul-
ing. Forest Science 30(1): 220–238.

584

Silva Fennica 36(2) research articles

Holland, J.H. 1975. Adaptation in natural and artifi -
cial systems. Univ. of Michigan Press, Ann Arbor,
MI.

Hooker, J.N. 1995. Testing heuristics: We have it all
wrong. Journal of Heuristics 1: 33–42.

Johnson, D.H. & O’Neil, T.A. 1999. Wildlife habitats
and species associations in Oregon and Wash-
ington: Building a common understanding for
management. Washington Department of Fish and
Wildlife, Olympia, WA.

Kangas, J. & Pukkala, T. 1996. Operationalization
of biological diversity as a decision objective in
tactical forest planning. Canadian Journal of Forest
Research 26: 103–111.

Lockwood, C. & Moore, T. 1993. Harvest scheduling
with spatial constraints: a simulated annealing
approach. Canadian Journal of Forest Research 23:
468–478.

Los, M. & Lardinois, C. 1982. Combinatorial pro-
gramming, statistical optimization and the optimal
transportation network problem. Transportation
Research 16B: 89–124.

Lu, F. & Eriksson, L.O. 2000. Formulation of harvest
units with genetic algorithms. Forest Ecology and
Management 130: 57–67.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller,
A. & Teller, E. 1953. Equation of state calculations
by fast computing machines. Journal of Chemical
Physics 21: 1087–101.

Mullen, D.S. & Butler, R.M. 2000. The design of
a genetic algorithm based spatially constrained
timber harvest scheduling model. In: Proceedings
of the Seventh Symposium on Systems Analysis
in Forest Resources. USDA Forest Service, North
Central Experiment Station, St. Paul, MN. General
Technical Report NC-205. p. 57–65.

Murray, A.T. 1999. Spatial restrictions in harvest sched-
uling. Forest Science 45(1): 45–52.

— & Church, R.L. 1995. Heuristic solution approaches
to operational forest planning problems. OR
Spektrum [Operations Research] 17: 193–203.

Nelson, J. & Brodie, J.D. 1990. Comparison of a
random search algorithm and mixed integer pro-
gramming for solving area-based forest plans.
Canadian Journal of Forest Research 20:
934–942.

O’Hara, A.J., Faaland, B.A. & Bare, B.B. 1989. Spa-
tially constrained timber harvest scheduling. Cana-
dian Journal of Forest Research 19: 715–724.

Öhman, K. & Eriksson, L.O. 1998. The core area
concept in forming contiguous areas for long-
term forest planning. Canadian Journal of Forest
Research 28: 1032–1039.

Palisade Corporation. 1997. BestFit User’s Guide. Pali-
sade Corporation, Newfi eld, NY.

Pressey, R.L., Possingham, H.P. & Day, J.R. 1997.
Effectiveness of alternative heuristic algorithms
for identifying indicative minimum requirements
for conservation reserves. Biological Conservation
80: 207–219.

Pulkki, R. 1984. A spatial database – heuristic pro-
gramming system for aiding decision-making in
long-distance transport of wood. Acta Forestalia
Fennica 188. 89 p.

Rojiani, K.B. 1996. Programming in C with numerical
methods for engineers. Prentice-Hall, Inc., Upper
Saddle River, NJ.

Srinivas, M. & Patnaik, L.M. 1994. Genetic algorithms:
A survey. Computer 1994 (June): 17–26.

Valsta, L. 1993. Stand management optimization based
on growth simulators. The Finnish Forest Research
Institute – Research Papers 453.

Weintraub, A., Jones, G., Magendzo, A., Meacham,
M. & Kirby, M. 1994. A heuristic system to solve
mixed integer forest planning models. Operations
Research 42(6): 1010–1024.

— , Jones, G., Meacham, M., Magendzo, A., Magen-
dzo, A. & Malchuk, D. 1995. Heuristic procedures
for solving mixed-integer harvest scheduling –
transportation planning models. Canadian Journal
of Forest Research 25: 1618–1626.

Total of 44 references

