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Eight Heuristic Planning Techniques 
Applied to Three Increasingly Diffi cult 
Wildlife Planning Problems
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As both spatial and temporal characteristics of desired future conditions are becoming 
important measures of forest plan success, forest plans and forest planning goals are 
becoming complex. Heuristic techniques are becoming popular for developing alternative 
forest plans that include spatial constraints. Eight types of heuristic planning techniques 
were applied to three increasingly diffi cult forest planning problems where the objective 
function sought to maximize the amount of land in certain types of wildlife habitat. The 
goal of this research was to understand the relative challenges and opportunities each 
technique presents when more complex diffi cult goals are desired. The eight heuristic 
techniques were random search, simulated annealing, great deluge, threshold accepting, 
tabu search with 1-opt moves, tabu search with 1-opt and 2-opt moves, genetic algorithm, 
and a hybrid tabu search / genetic algorithm search process. While our results should not 
be viewed as universal truths, we determined that for the problems we examined, there 
were three classes of techniques: very good (simulated annealing, threshold accepting, 
great deluge, tabu search with 1-opt and 2-opt moves, and tabu search / genetic algorithm), 
adequate (tabu search with 1-opt moves, genetic algorithm), and less than adequate 
(random search). The relative advantages in terms of solution time and complexity of 
programming code are discussed and should provide planners and researchers a guide 
to help match the appropriate technique to their planning problem. The hypothetical 
landscape model used to evaluate the techniques can also be used by others to further 
compare their techniques to the ones described here.
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1 Introduction

The spatial arrangement of wildlife habitat and 
forest management activities is important for a 
number of reasons, such as to comply with regu-
latory restrictions and organizational goals and 
policies, and to maintain or improve aesthetic 
conditions. Forest regulations, for instance, are 
placing increasingly restrictive limits on the size 
and spatial relationships of harvest units (Daust 
and Nelson 1993). As a result of a need to 
manage forest land within regulatory frameworks, 
forest management planning now often attempts 
to achieve multiple resource goals and often uses 
spatial constraints on the selection of manage-
ment activities (O’Hara et al. 1989).

Forest planning models that optimize the spatial 
arrangement of forest resources to meet a set of 
management goals vary from the more traditional 
optimizations techniques, such as linear or mixed 
integer programming (e.g., Hof et al. 1994), to 
non-traditional heuristic programming techniques 
(e.g., Murray and Church 1995). Forest planning 
problems that incorporate spatial goals, such as 
clearcut adjacency restrictions, are combinatorial 
problems by nature. Thus as the problem size 
increases, the solution space also increases, yet at 
a disproportionately greater rate (Lockwood and 
Moore 1993). Mixed integer programming and 
integer programming techniques have been used 
to produce management plans with adjacency 
concerns, but these techniques have substantive 
limitations (directly related to problem size) when 
applied to large combinatorial problems (Lock-
wood and Moore 1993).

The use of heuristic techniques for forest man-
agement planning is becoming more prevalent. 
Many types of complex, non-linear goals (e.g., 
spatial and temporal distribution of elk habitat, 
as described in Bettinger et. al. 1997), which 
have traditionally been considered too complex to 
solve with traditional optimization techniques, are 
now being considered. In recent years, heuristic 
programming techniques have been applied to 
traditional forest harvest scheduling problems 
(Hoganson and Rose 1984) as well as to forest 
transportation problems (Pulkki 1984, Nelson and 
Brodie 1990, Weintraub et al. 1994, Murray and 
Church 1995, Weintraub et al. 1995), wildlife 

conservation and management (Arthaud and Rose 
1996, Haight and Travis 1997, Bettinger et al. 
1997), aquatic system management (Bettinger 
et al. 1998), and the achievement of biological 
diversity goals (Kangas and Pukkala 1996). Com-
parisons of a few of these techniques have been 
made in Nelson and Brodie (1990), Murray and 
Church (1995), Csuti et al. (1997), Pressey et al. 
(1997), and Boston and Bettinger (1999). The 
comparisons have generally been made on a lim-
ited number of techniques, and were applied to a 
small range of problem complexities.

This research examines the use of eight heu-
ristic techniques applied to three increasingly 
diffi cult wildlife planning problems. The eight 
techniques include random search, simulated 
annealing, great deluge, threshold accepting, tabu 
search with 1-opt moves, tabu search with 1-opt 
and 2-opt moves, a genetic algorithm, and a 
hybrid tabu search / genetic algorithm search 
process. The wildlife planning goals increase 
in complexity from non-spatial seral-stage goals 
(acquire the most acres in certain forest age 
classes), to minimum patch size goals (acquire 
the most acres in patches of a certain type of 
forest larger than a minimum size), and then 
to complimentary, adjacent patch goals (acquire 
the most acres in patches of a certain type of 
forest larger than a certain minimum size, that 
are next to another type of forest that is larger 
than a certain minimum size). The purpose of 
this research is to illustrate the opportunities and 
challenges to using heuristic techniques for forest 
planning efforts where wildlife habitat goals are 
one of the main objectives, and to discuss the rela-
tive trade-offs among a broad range of techniques 
in terms of the quality of solutions and the effort 
required to obtain a solution.

2 Methods

In most planning processes, consideration is given 
to the decision variables which can be modifi ed 
and the rules for assigning activities to variables, 
the rules for selecting new plan confi gurations, 
and the length of time the activity selection (i.e., 
search process) is allowed to proceed (i.e., how 
long the computer program is run). Quantitative 
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relationships, or rules, to constrain or guide the 
assignment of activities can be categorized in 
many ways; one such categorization is whether 
the relationships require spatial information. The 
use of spatial information can make goal achieve-
ment a very complex procedure in forest planning 
applications. Of the three wildlife species habi-
tat goals we describe below, two require spatial 
information in their computations. The other, a 
non-spatial goal, consists of simply assembling a 
number of acres in certain age classes, or strata. 
Spatial goals can include a wide variety of con-
fi gurations. We will examine two types of spatial 
goals: those which require minimum patch sizes, 
and those which require adjacent habitat types of 
minimum sizes. We will fi rst describe the three 
quantitative relationships, or wildlife goals, that 
we hope to maximize over time, and call them 
problems A, B, and C. We will then describe 
the eight heuristic techniques we use to develop 
forest plans which achieve these goals. Finally, 
we describe the hypothetical landscape, which is 
available for others to use as a standard problem 
set when pursuing further analytical efforts along 
these lines.

2.1 Wildlife Habitat Goals

Three types of wildlife habitat goals are exam-
ined, each utilize increasingly complex criteria in 
their measurement. The fi rst, problem A, utilizes 
non-spatial goals, where no spatial components 
are needed to evaluate the goals, and the objective 
is to achieve the most acres of land over time 
meeting the conditions we note below. These 
have often been considered strata-based goals. 
The second, problem B, is called the minimum 
patch size goal, where the objective is to develop 
the most land area over time in patches of a 
certain size and condition. The third, problem C, 
is called the complementary patch goal, where 
the objective is to develop the most land area over 
time in patches of a certain size and condition 
that are next to other patches of a certain size and 
condition. Wildlife biologists associated with a 
project aimed at developing habitat relationships 
for vertebrates in the USA Pacifi c Northwest 
(Johnson and O’Neil 1999) were asked to provide 
examples for these three goals. These examples 

should be viewed as preliminary quantitative rela-
tionships, subject to change based on further 
assimilation of data and further evaluation of 
research by wildlife professionals.

In all three problems we will assume that the 
decision variables related to management units 
are binary (0,1), where an activity assigned to 
a management unit is assigned to the entire 
management unit, and not some portion of the 
management unit. In addition, the activities we 
consider are two: clearcut harvest or no harvest. 
A minimum harvest volume is required each time 
period, and a minimum harvest age is required 
before a management unit can be harvested. The 
time horizon is 50 years, we evaluate wildlife 
habitat goals every 5 years, thus there are 10 
5-year time periods. Further, we assumed that the 
harvesting activities take place in the middle of a 
time period, and that the evaluation of habitat is a 
post-harvest evaluation for that time period.

2.1.1 Problem A: Non-spatial Goals

Non-spatial goals do not require spatial informa-
tion in the computation of their achievement, and 
generally are based on achieving the amount of 
some resource in a planning area. For example, 
goals could be developed with the criteria that 
some amount of habitat, such as old-seral habitat, 
will be achieved. Four examples of non-spatial 
goals related to the type of habitat required in the 
USA Pacifi c Northwest include:
Sharp-shinned hawk (Accipiter striatus) prefers 25–50 

year-old even-aged conifer stands.
Cooper’s hawk (A. cooperii) prefers 30–70 year-old 

even-aged conifer stands.
Northern goshawk (A. gentilis) prefers 150+ year-old 

conifer stands.
Red tree vole (Phenacomys longicaudus) prefers old-

growth forests that are ≥195 years old.

Our evaluation of these goals is simply based 
on the age of the forests in each management 
unit. The planning problem for maximizing the 
amount of land in these age classes can be defi ned 
as this,
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Where:
j = a time period
t = total number of time periods
i = a management unit
n = total number of management units
k = a wildlife species
m = total number of wildlife species
Ai = area of management unit i
Hi,j,k = a binary variable indicating whether (1) or not 

(0) management unit i is considered habitat for 
species k during time period j

As we will note later, the landscape is composed 
mainly of conifer stands, and we assume regener-
ated stands will come back as conifer stands. In 
the riparian area, we assume the tree composition 
is mainly hardwood, thus riparian areas, while 
contributing to the landscape size, will always 
have a Hi,j,k of 0. The potential objective func-
tion values amount to (10.0 * k). For example, 
assume we have 4 wildlife species, and that the 
entire landscape is considered habitat for these 
species in every time period. The resulting objec-
tive function value is then ((10 * Σ Ai * 4) / 
(Σ Ai)), or 40. The results we will soon show 
are less than this theoretical maximum, however, 
since not all of the landscape can be considered 
habitat for any (or all) species in every time 
period. Finally, none of the heuristic techniques 
described shortly consider infeasible solutions 
as current solutions to the problem (and thus 
requiring penalty functions to drive them back 
to feasibility).

Three constraints are also imposed. First, we 
assume that only one regeneration harvest is 
allowed per management unit during the planning 
horizon.

X ii j
j

t

, ≤ ∀
=
∑ 1

1

 (2)

Where: Xi,j = a binary variable indicating whether (1) 
or not (0) a management unit is harvested in time 
period j.

There is no direct link between Xi,j values and 
Hi,j,k values, since Xi,j is a characterization of 
harvest activity, and Hi,j,k is a characterization of 
whether or not a management unit is considered 
wildlife habitat for species k. It just so happens 
that in this example neither values can equal 1 at 
the same time, but we shall see that this is not 
necessarily true for wildlife species that consider 
clearcuts part of their habitat.

Second, the minimum harvest age is 40 years.

If AGE Xi j i j, ,,< =40 0  (3)

If AGE Xi j i j, ,, { , }≥ ∈40 0 1  (4)

Where: AGEi, j = the stand age of management unit i 
during time period j.

Thus when stands are 40 years old or greater, Xi,j 
will take on a value of either 0 or 1 (from the set 
{0,1}), yet can only have a value of 1 once over 
the entire 50-year planning horizon.

Third, the total volume produced from timber 
harvests must also exceed a minimum volume 
goal:

A X V j ji i j i j
i

n

, ,( ) ≥ ∀
=
∑ minimum volume goal

1

 (5)

Where: Vi,j = the timber volume per unit area in 
management unit i during time period j.

The minimum volume goal for the evaluation of 
the heuristic techniques was set at 3000 units per 
time period, which was based on stand age.

2.1.2 Problem B: Minimum Patch Size Goal

Some forest planning goals utilize spatial char-
acteristics of the landscape in the determination 
of their value to particular wildlife species. One 
example would be a goal which requires forest 
patches to be of a minimum size, and composed 
of a certain type or age of forest, before this 
area can contribute positively toward the achieve-
ment of habitat. For example, the following is a 
generalization of habitat requirements for three 
forest birds:
Varied thrush (Lxoreus naevius), winter wren (Trog-

lodytes troglodytes), and Hammond’s fl ycatcher 
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(Empidonax hammondii) need intact stands of 
mature or old-growth forests greater than 20 hec-
tares in size.

We will assume in our subsequent analyses that 
mature or old-growth forests are stands which 
are greater than 80 years of age, although this 
is debatable and certainly a different age could 
be assumed (or possibly some other site-specifi c 
factor). Our problem formulation simply seeks 
to maximize the amount of land in these types 
of patch conditions.

The problem formulation is similar to that of 
the non-spatial goal problem formulation, except 
that the evaluation of habitat is different. Here, 
a recursive function, using what Murray (1999) 
describes as an area restriction method, is used to 
evaluate the size of patches that consist of forests 
that are ≥ 80 years old. So, management units 
that are ≥ 80 years of age do not necessarily have 
an Hi,j,k equal 1.0, since they must also comprise, 
or be a part of, a patch that is at least 20 ha in 
size.

If minimum patch size

Else

A B A B
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Where:
Bi,j = a binary variable indicating whether (1) or not 
(0) management unit i is greater than or equal to the 
minimum desired age (80 years) during period j
Ni = the set of units adjacent to management unit i
Si = the subset of adjacent units to the neighbors of 
management unit i and all units adjacent to neighbors 
of neighbors, and so on
z = a single management unit from the set Si

2.1.3 Problem C: Complementary, Adjacent 
Patch Goal

This third and fi nal planning goal seeks to achieve 
a landscape with the most area in complementary, 
adjacent patches. These goals indicate that one 
type of habitat (such as a patch of older forest of 
a certain size, for nesting and roosting) should 
be placed adjacent to another (such as a patch 
of young forest of a certain size, for foraging), 

to be of most benefi t to a particular species.
For example:
Great gray owl (Strix nebulosa) prefers early seral stage 

forests (clearcuts) for foraging, yet they should be 
adjacent to mature or old-growth stands.

In this case we will assume that “old forest 
stands” are those with an average age greater than 
80 years, and that “early seral stage forests” are 
those with an age of 10 years or less. In addition, 
to count towards the complementary habitat goals 
we assume that the size of the old forest stand 
must be 20 ha or greater, and that the size of the 
adjacent early seral forest is 10 ha or greater.

This problem formulation is also similar to 
that of the non-spatial goal problem formulation, 
except that once again the evaluation of habitat 
is different. Here, two recursive functions, using 
what Murray (1999) describes as an area restric-
tion method, are used to evaluate the size of 
patches that consist of forests that are ≥ 80 years 
old, and forest that are ≤ 10 years old. These 
require similar formulations to those described 
in equation 6. Then a process using what Murray 
(1999) describes as a unit restriction method, is 
used to determine whether any of the older forest 
management units that are part of patches ≥ 20 
ha are touching early seral units that are part 
of early seral patches ≥ 10 ha. So, management 
units that are ≥ 80 years of age, or ≤ 10 years of 
age do not necessarily have an Hi,j,k equal 1.0. 
given the rules for evaluating the complementary 
patch goal.
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Where:
Oi,t = a binary variable indicating whether (1) or not 
(0) management unit i belongs to a set of manage-
ment units that describe a patch where all of the 
management unit are ≥ 80 years of age and the total 
patch size is ≥ 20 ha
Yz,t = a binary variable indicating whether (1) or not 



566

Silva Fennica 36(2) research articles

(0) management unit z belongs to a set of manage-
ment units that describe a patch where all of the 
management unit are ≤ 10 years of age and the total 
patch size is ≥ 10 ha
Ni = the set of units adjacent to management unit i
z = a single management unit from the set Ni

To increase the complexity of this problem, the 
size of the openings created in each time period 
are limited to 48.56 ha (120 acres), to resemble 
a forest green-up policy. The green-up constraint 
also uses an area restriction model technique to 
determine how large the clearcuts are in any one 
time period.

A X A X j

i j

i i j z z j
z Ni Si

, ,

,

+
∈ ∪

≤

∀

∑ maximum clearcut size  (8)

Where:
Ni = the set of units adjacent to management unit i
Si = the subset of treated adjacent units to the neigh-
bors of management unit i and all units adjacent to 
neighbors of neighbors, and so on
z = a single management unit from the set Si

Thus clearcuts that, in aggregate, are larger than 
48.56 ha, result in an infeasible solution.

2.2 Heuristic Planning Techniques

Eight types of heuristic techniques were used 
to solve the three wildlife planning problems. 
The techniques include random search, simulated 
annealing, the great deluge algorithm, threshold 
accepting, tabu search with 1-opt moves, tabu 
search with 1-opt and 2-opt moves, a genetic 
algorithm, and a hybrid tabu search / genetic algo-
rithm search process. We next briefl y describe 
these algorithms and provide a fl ow chart for each 
detailing how they were used to solve the wildlife 
planning problems. In addition, problem A was 
solved using an integer programming technique, 
thus providing an optimal solution to compare 
against the heuristic techniques. Problems B and 
C were not solved with an integer programming 
technique, due to the complexity of the wildlife 
goals in these problems.

2.2.1 Random Search

Random search serves as a baseline method of 
scheduling; to be considered viable, an opti-
mization technique should perform better than 
random searching for solutions (Valsta 1993). 
Monte Carlo integer programming techniques 
have long been studied for use in forest manage-
ment (e.g., Nelson and Brodie 1990). There are 
a wide variety of Monte Carlo methods, some 
variants of which we discuss shortly, but when 
we illustrate “random search” (RS) results in this 
research, we indicate that we are examining a 
very simple Monte Carlo technique that incorpo-
rates no information about the problem to help 
guide the search process, and simply randomly 
assigns harvest timing choices to management 
units. The process (Fig. 1) works like this: ran-
domly assign a harvest timing (including the 
possibility of a no-harvest prescription) to all 
management units; evaluate the wildlife goals; if 
the resulting objective function is feasible, and 
better than the best solution that has been located 
to this point, save the solution as the best solu-
tion. We developed 100 random search solutions, 
each representing the best solution from an inde-
pendent process that evaluated 2 million random 
solutions. Thus 2 million independent, and ran-

Randomly develop
an initial solution

Evaluate wildlife goals

Stop and report
the best solution

found during search

  Have we 
reached the 
  stopping
  criteria?

Yes

No

Fig. 1. A fl ow chart of the random search process.



567

Bettinger, Graetz, Boston, Sessions and Chung Eight Heuristic Planning Techniques Applied to Three Increasingly Diffi cult Wildlife …

domly defi ned solutions are generated for each 
100 attempts to solve the problem. This process 
is different from the following seven other proc-
esses, where generally only a small change is 
made to a solution from one iteration to the next. 
There may be other ways to enhance a Monte 
Carlo search process, but we have chosen to use a 
generic process here, random chance, to compare 
the other techniques against.

2.2.2 Simulated Annealing

Simulated annealing (SA) is a search technique 
that began to be used in a widespread manner 
in the early 1980s (Dowsland 1993). The ideas 
that form the basis for SA were fi rst published 
by Metropolis et al. (1953) in an algorithm to 
simulate the cooling of materials in a heat bath – 
a process known as annealing. The approach is a 
Monte Carlo method that uses a local search in 
which a subset of solutions is explored by moving 
from one solution to a neighboring solution. To 
avoid converging and becoming stuck in a local 
maximum (or minimum) the procedure provides 
for an occasional acceptance of an inferior solu-
tion to allow it to move away from a local maxi-
mum. SA has been used in a wide variety of 
disciplines to solve optimization problems. In 
forestry, SA has been investigated by a number 
of researchers to solve spatial harvest scheduling 
problems involving adjacency constraints, includ-
ing Lockwood and Moore (1992), Murray and 
Church (1995), and Öhman and Eriksson (1998). 
The SA process is illustrated in Fig. 2.

In our implementation of SA, we used the fol-
lowing parameters, which were based on several 
trial and error runs of the search process on the 
hypothetical landscape:

Problem A
Beginning temperature: 0.05
Ending temperature: 0.00001
Repetitions between temperatures: 400
Temperature reduction factor: 0.999

Problem B
Beginning temperature: 0.05
Ending temperature: 0.0001
Repetitions between temperatures: 400
Temperature reduction factor: 0.99

Problem C
Beginning temperature: 0.15
Ending temperature: 0.0001
Repetitions between temperatures: 200
Temperature reduction factor: 0.999

The beginning and ending temperatures were 
selected to provide an appropriate range of prob-
abilities of acceptance of solutions during the 

Set initial temperature;
randomly develop
an initial solution

Randomly choose unit
and period of harvest to

change in current solution

Stop and report
the best solution

found during search

          Is 
    proposed  
solution better 
  then current 
     solution?

  Have we 
reached the 
  stopping
  criteria?

YesNo

Yes

     Time
  to change
temperature
         ?

Yes

No

No

iterations = iterations + 1;
total iterations = total 

iterations + 1

New temperature = old
temperature x temperature

reduction factor 

Calculate acceptance
value

Current solution = 
proposed solution

  Accept 
 solution?

NoYes

Fig. 2. A fl ow chart of the simulated annealing search 
process.
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search process. The temperature reduction proc-
ess was employed after the number of repetitions 
were made at each temperature level. Feasibil-
ity with respect to the constraints was evaluated 
as each new solution was proposed; infeasible 
proposed solutions were not allowed, and did not 
count toward the number of repetitions between 
temperatures.

2.2.3 Great Deluge Algorithm

The great deluge algorithm (GDA) is a recently 
developed variant on simulated annealing. It is 
similar to SA in that only a single change is 
considered to a “current” solution, the resulting 
temporary solution is evaluated, and a decision 
is made whether or not to convert the temporary 
solution to the current solution. The GDA was 
introduced by Dueck (1993) and proved superior 
to similar Monte-Carlo based algorithms in solv-
ing a 442-city and 532-city Travelling Salesman 
Problem. The form of the GDA as presented 
by Dueck (1993) consisted of using a single 
parameter in the determination of whether or not 
to convert the temporary solution to the current 
solution (and perhaps change to an inferior solu-
tion). The use of one parameter rather than two, as 
in a simulated annealing algorithm, is believed to 
de-sensitize the algorithm thus leading to equally 
good results even when parameter estimation and 
formulation is poor.

The GDA derives it name from the conceptual 
framework on which the algorithm works. Con-
sider a problem where the objective is to fi nd 
the highest elevation in a fi ctitious landscape 
by simply walking around the landscape and 
measuring the elevation. Logically you would 
want to continuously measure higher and higher 
ground rather than lower and lower ground (or 
the entire landscape). The GDA algorithm would 
start at some unknown location in the landscape, 
and subsequently it would begin to “rain without 
end”, fl ooding the landscape and making it easier 
to locate the higher elevations. As the water rises, 
the GDA algorithm “walks” around the landscape 
trying to “keep its feet dry” (by only walking on 
higher and higher ground). However, if we were 
to further humanize this process, the algorithm 
will tolerate walking in water up to its ankles 

(accepting a small subset of lower quality solu-
tions) and so is allowed to walk in some inun-
dated areas with the hope that there is higher 
dry land nearby. Since the rain never ends, the 
water continues to rise and the amount of dry 
land and acceptable ankle-deep water diminishes 
until what is left is only (hopefully) the highest 
point in the landscape. The rain intensity in this 
process is typically constant but a process can be 
devised to make it rain more in the earlier stages 
of the search process, to rather quickly get to 
higher ground, and to reduce the computational 
time requirements.

Randomly develop
an initial solution

Randomly choose unit
and period of harvest to

change in current solution

Stop and report
the best solution

found during search

         Are
any constraints
    violated?  

  Have we 
reached the 
  stopping
  criteria?

Yes

No

Yes

            Is
      objective
value better than
       the best
        value?

Yes

No

Yes

            Is
     objective
value better than
       current
        value?

Save best solution

No

Save solution as current
solution, increase lower
threshold by rain level

No

Fig. 3. A fl ow chart of the great deluge search process.
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The formulation of the GDA used here is pri-
marily a stochastic process. The algorithm starts 
by generating a feasible random solution then 
calculating the objective function to obtain an 
initial objective function value (Fig. 3). Through a 
trial and error process (for each goal), a “subtrac-
tion” value is determined and used to subtract 
from the objective function value, the result of 
which is used as the initial “water level” (which 
represents the lower threshold value above which 
only solutions of this value are acceptable – i.e., 
getting the ankles wet). A programming loop 
is started that undergoes several steps until the 
stopping criteria is met. First, a random manage-
ment unit is selected for a “move”. A move rep-
resents changing the solution with a 1-opt move. 
The harvest volume, harvest age, and habitat 
constraints are then evaluated. If the constraints 
are violated, the move is rejected and another 
random management unit is selected for a move. 
If the constraints are not violated the new solu-
tion’s objective function value is calculated. If 
the new solution is better than the current “best” 
solution, it becomes the best solution. If the new 
solution is better than the current solution, the 
rain level is increased, by an amount equivalent 
to a “rain” event, closing the gap between the 
lowest acceptable solution value and the current 
solution value. If the move’s objective function 
value is lower than the lower threshold, the move 
is rejected. This process continues until the lower 
threshold level is equal to the best solution value. 
At this point, the search process is allowed to 
continue for a set number of additional iterations 
before stopping. The number of iterations and 
the level by which the water rises (increasing 
the lower threshold) were made through trial and 
error for each of the three planning problems.

In our implementation of GDA, we used the 
following parameters, which were based on sev-
eral trial and error runs of the search process on 
the hypothetical landscape:

Problem A
Subtraction value: 1.00
Rain event: 0.00009
Additional iterations: 70 000

Problem B
Subtraction value: 0.05

Rain event: 0.00005
Additional iterations: 40 000

Problem C
Subtraction value: 0.08
Rain event: 0.000035
Additional iterations: 20 000

2.2.4 Threshold Accepting

Threshold accepting (TA) is similar to both simu-
lated annealing and the great deluge process, and 
was introduced by Dueck and Scheuer (1990). 
TA, as implemented here, also examines a single 
change to a current solution, yet uses a process 
which has a different set of acceptance rules than 
SA. TA accepts every new (proposed) solution 
which is not much worse than the previous cur-
rent solution (within a pre-set limit of the value 
of the current solution), whereas in SA there is 
only a small probability that a worse proposed 
solution would replace the current solution.

In the TA process, the initial threshold level T 
is set by the user, then a random initial solution 
is generated (Figure 4). A management unit and a 
proposed new harvest timing for that unit are then 
randomly selected. The difference (∆E) between 
the resulting proposed solution (if the harvest 
timing were actually changed) and the current 
solution is computed by subtracting the current 
solution’s objective function value from the pro-
posed solution’s objective function value. If ∆E 
is greater than –T, and the proposed solution 
is feasible with respect to the constraints, the 
proposed solution becomes the current solution. 
If ∆E is not greater than –T, and it has not been 
a “long time” (defi ned by the user as the number 
of iterations of the process using this T) since 
the quality of the best solution has changed, the 
process continues. If it has been a “long time” 
since the quality of the best solution has changed, 
the threshold is made smaller (T = T – ∆T). We 
used three stopping criteria: (1) the number of iter-
ations since the best solution has been improved 
(number of “non-improving iterations”) exceeds a 
maximum level C; (2) the total number of search 
process iterations (number of “total iterations”) 
exceeds a maximum level S; or (3) T reaches a 
level denoted as the stopping point. If any of these 
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are true, the search process ends and the best 
solution is reported. Feasibility with respect to the 
constraints was evaluated as each new solution 
was proposed; infeasible proposed solutions were 
not allowed, and did not count toward the number 
of iterations within threshold levels.

In our implementation of TA, we used the fol-
lowing parameters, which were based on several 
trial and error runs of the search process on the 
hypothetical landscape:

Problems A, B, and C
T: 0.05
Change in T (∆T): 0.001
Stopping point for T: 0.002
Maximum number of “total iterations” (S): 2 000 000
Maximum number of “non-improving iterations”

(C): 200 000
Number of iterations with no change in solution value 

before changing T: 20 000

Fig. 4. A fl ow chart of the threshold accepting search process.
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2.2.5 Tabu Search with 1-opt Moves

Tabu search originated as a method for solving 
real-world combinatorial problems in scheduling, 
and has been successfully applied to a number 
of important problems outside of forestry and 
wildlife management, such as telecommunica-
tions, transportation, shop sequencing, machine 
scheduling, and layout and circuit design prob-
lems (Glover 1990, Glover and Laguna 1993). 
Within forestry it has been applied, e.g., to prob-
lems formulated for scheduling timber harvests 
subject to adjacency (green-up) requirements 
(Murray and Church 1995), for meeting spatial 
goals for elk (Bettinger et al. 1997) and aquatic 
habitat (Bettinger et al. 1998). Our implementa-
tion here is similar to SA in that only a single 
change is considered to a “current” solution, the 
status of the proposed change and the resulting 
temporary solution are evaluated, and a decision 
is made whether or not to convert the temporary 
solution to the current solution. The neighbor-
hood, in effect, is a full neighborhood of 1-opt 
moves, calculated by temporarily changing the 
timing of harvest (including considering a change 
to “no-harvest”) of a single management unit. 
The neighborhood values can be considered to 
be the potential objective function values if the 
1-opt move is made. Infeasible potential moves 
are assigned a potential objective function value 
so inferior that they are never selected as potential 
moves. The move selected from the neighborhood 
is the move with the best potential objective func-
tion value. The tabu state (z) is then considered, 
along with, perhaps aspiration criteria.

Tabu search, in general, is a hill-climbing pro-
cedure consisting of two key characteristics: (1) 
the search is constrained by considering certain 
choices as forbidden (i.e., tabu), and (2) when 
encountering a forbidden choice, the search can 
be freed by a memory function (aspiration crite-
rion) that allows “strategic forgetting” that certain 
choices are forbidden (Glover 1989). The process 
we implemented is illustrated in Fig. 5. Feasibil-
ity is maintained at all times, thus strategic oscil-
lation is not used here. Based on trial runs of the 
algorithm, where z values ranged from 50 to 400 
moves, z values were set at 200 moves. The total 
number of iterations of the tabu search process for 
each of the 100 independent runs was limited to 

5000, which was based on an examination of the 
number of iterations required to reach a steady 
state (see Bettinger et al. 1997), and the amount 
of time required for each independent run.

2.2.6 Tabu Search with 1-opt and 2-opt 
Moves

While λ-opt (1-opt, 2-opt, 3-opt, etc.) moves have 
been evaluated with heuristic search processes in 
the broader literature (e.g., Glover 1996, Hanafi  
and Freville 1998), 2-opt (and greater) moves 
have been little used in forestry, but have shown 
good results when applied to a forestry problem 
which contained an even-fl ow goal and adjacency 
constraints (Bettinger et al. 1999). 2-opt moves 
involve simultaneously changing an attribute of 
one management unit with that of another. These 
moves have been shown to reduce the magnitude 
of the impact on the objective function value, as 
compared to 1-opt moves, and allow a heuristic 
technique to refi ne the solution to a manage-
ment problem. And, it is not necessarily true 
that two 1-opt moves, made in sequence, would 
produce the same solution as a single 2-opt move. 
Therefore, the use of 2-opt moves may allow 
refi nements in the exploration of the solution 
space, and allow an exploration of more of the 
solution space than the 1-opt moves allow.

The tabu search process we implemented (TS2) 
is similar to the one described above, with a 1-opt 
(changing the harvest timing of a single unit) 
neighborhood being available to select moves 
from during every iteration of the process, yet a 
2-opt (swapping the harvest timing of two units) 
neighborhood is also available every other itera-
tion of the search process (Fig. 6). Again, feasi-
bility is maintained at all times, and strategic 
oscillation is not used here. The best move from 
the current solution is temporarily selected after 
examining the available neighborhood(s). The 
tabu criteria is similar to that described above, 
with the unit / harvest timing combination being 
tabu for 1-opt moves, yet the unit / unit combina-
tion being tabu for 2-opt moves. If a 1-opt move 
is selected and permanently changes the solution, 
it is given a tabu state value of z, and the tabu 
state values of all other tabu moves (related to 
both 1-opt and 2-opt moves) are decreased by 
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one until they equal 0 once again, and are then 
not tabu.

Aspiration criteria are still utilized if we fi nd 
that the move chosen is tabu, as are the other oper-
ations in the 1-opt tabu search process described 
above. Based on trial runs of this algorithm, 
where z values ranged from 50 to 500 moves, z 
values were set at 400 moves. The total number 
of iterations of the tabu search process for each 
of the 100 independent runs was limited to 
2000, which was based on an examination of the 
number of iterations required to reach a steady 
state (see Bettinger et al. 1997), and the amount 
of time required for each independent run.

2.2.7 Genetic Algorithm

Genetic Algorithms (GA) were developed ini-
tially by Holland (1975) and his associates in 
the 1970s. GAs are optimization heuristics that 
are used to search for good solutions to com-
plex problems (Mullen and Butler 2000). Diverse 
areas such as music generation, genetic synthesis, 
strategic planning, and machine learning have 
profi ted from these methods (Srinivas and Patnaik 
1994). In forestry, GAs have been applied, e.g., 
to forest operational planning and harvest sched-
uling problems by Falcao and Borges (2001), 
Lu and Eriksson (2000), and Mullen and Butler 
(2000).
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Fig. 5. A fl ow chart of the 1-opt tabu search process.
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GAs are based on the mechanics of natural 
selection and genetics (Holland 1975). A GA 
technique starts with a set of feasible solutions 
(a population) with each solution corresponding 
to a chromosome. Solutions are selected from 
the population either randomly or according to 
their fi tness (objective function value), and are 
combined to form new solutions (offspring). This 
process is repeated until a stop criterion (for 
example number of generations, improvement 
of the best solution, or homogeneity of solu-
tions) is satisfi ed. Crossover and mutation are two 
basic aspects of GAs. A crossover routine denotes 
the place where two parents are split, then 
re-combined to form offspring, allowing benefi -
cial genes on two different parents to be com-

bined in their offspring and hopefully to produce 
better solutions. Mutation, generally applied in a 
random manner, provides background variation, 
and occasionally introduces benefi cial material 
into chromosomes (Davis 1987).

In our implementation of a GA technique, we 
start with a randomly generated set (a popula-
tion) of feasible solutions (chromosomes, Fig. 
7). Population size was chosen after several ini-
tial trials, and was based on computing time 
and quality of the fi nal solution generated from 
the technique. A chromosome (a single solution) 
consists of 74 genes representing units and each 
gene is encoded as a harvest period from 0 to 10 
(0 means not harvesting the unit).

Each chromosome in the initial population is 

Fig. 6. A fl ow chart of the 1-opt and 2-opt tabu search process.
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evaluated by computing the objective function 
value, thus each solution must be feasible with 
respect to the constraints. One parent chromo-
some is then selected based on fi tness (the better 
the fi tness value [objective function value], the 
higher the chance of it being chosen), while the 
other parent is chosen randomly. They are then 
‘mated’ by choosing a crossover point at random, 
then the crossover occurs, and two offspring chro-
mosomes (two new solutions) result. For exam-
ple, if we have two solutions X and Y, each having 
5 harvest units,

X = (9,4,0,0,2)
Y = (6,2,7,4,0)

and if the crossover point is noted as being just 
before the management unit 3 values, the pieces 
prior to the crossover would be

X1 (9,4) X2 (0,0,2)
Y1 (6,2) Y2 (7,4,0)

and the resulting offspring would become:

Fig. 7. A fl ow chart of the genetic algorithm search process.
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X1Y2 (9,4,7,4,0)
X2Y1 (6,2,0,0,2)

A random mutation may then be applied to these 
offspring. If a random number on the range 
between 0 and 1 is less than the mutation prob-
ability (set to 0.01 in this implementation), the 
current harvest period of a randomly chosen gene 
(a harvest unit) will randomly change. After the 
harvest volume and wildlife goals are evaluated 
for the offspring, the best one of the feasible 
offspring (assuming it is feasible with respect 
to the volume and wildlife goals) and parents will 
be kept as new chromosomes in the next genera-
tion. If neither offspring are feasible with respect 
to the constraints, only the better parent is kept 
for the next generation. The process ends when 
100 generations have passed without improving 
upon the very best solution located during the 
search process.

In our implementation of GA, we used the fol-
lowing parameters, which were based on several 
trial and error runs of the search process on the 
hypothetical landscape:

Problem A
Population size: 5000
Mutation rate: 0.01

Problem B
Population size: 1000
Mutation rate: 0.01

Problem C
Population size: 2000
Mutation rate: 0.01

2.2.8 Hybrid Genetic Algorithm / Tabu Search

The hybrid genetic algorithm / tabu search 
(GA/TS) heuristic technique utilizes techniques 
we have previously described: a 1-opt tabu search 
process, a 2-opt tabu search process, and a genetic 
algorithm crossover process (Boston and Bet-
tinger 2002). In addition, the GA/TS technique 
uses a diversifi cation routine in an attempt to 
move the search process to other regions of the 
solution space. In the tabu search processes of 
this technique a change is made to a current 

solution by either altering the harvest timing of 
a single, or of two, management units. In the 
genetic algorithm process, the two best solutions 
(saved in memory) are mated to form two new 
solutions.

The GA/TS technique begins with a random 
starting solution (Fig. 8). In this random start 
process, management units and their harvest 
timing are randomly selected until 10% of the 
harvest volume goal has been met in each time 

Fig. 8. A fl ow chart of the hybrid tabu search / genetic 
algorithm process.
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period. The GA/TS technique then uses 1000 
iterations of a 1-opt tabu search process, and 
subsequently 200 iterations of a 2-opt tabu 
search process. The two best solutions (one from 
the 1-opt process, the other from the 2-opt 
process) are saved in memory throughout the 
scheduling process. The diversifi cation routine 
is then employed, where the management units 
which have been evaluated the least (so far) are 
scheduled for harvest. The diversifi cation routine 
unschedules all management units from harvest, 
then schedules (by randomly selecting a harvest 
timing) the least-evaluated units until 10% of the 
volume goal has been met. This process essen-
tially re-starts the heuristic by forcing into the 
solution those management units which were 
least used in the tabu search processes.

The 1-opt and 2-opt processes are then repeated 
before the genetic crossover routine is used. The 
two best feasible solutions (again, one from the 
1-opt process, the other from the 2-opt process) 
found to this point in the search process become 
the parents for the mating. A random crossover 
point was determined, and the two chromosomes 
were split, and then re-combined to form two 
new solutions. The resulting child with the high-
est objective function value becomes the starting 
solution for another loop through the tabu search 
and diversifi cation processes. For Problem C, if 
feasibility with regard to clearcut size limitation is 
not maintained, one (or more) of the units affect-
ing infeasibility is randomly unscheduled from 
harvest until feasibility is once again achieved.

After 6 sets of 1-opt and 2-opt tabu search 
processes, 3 diversifi cation routines, and 3 genetic 
crossover routines, the search process stops and 
reports the best solution that it located. Based on 
trial runs of the algorithm, the tabu state, z, for 
the 1-opt process was set to 100 iterations, while 
z for the 2-opt process was set to 20 iterations.

2.2.9 Comparing Heuristic Techniques

The solutions generated by the eight heuristic 
techniques are compared in several ways: the 
best solutions from 100 independent runs of each 
heuristic are compared; the minimum, maximum, 
mean, and standard deviation from each of the 
three planning problems are compared; the global 

optimum solution for each of the three problems 
is either generated or estimated, and the percent-
age of solutions within 1% of this value is pre-
sented; and while differences in computers may 
provide the least serious impediment to competi-
tive testing (Hooker 1995), the time necessary to 
generate a single solution on a single computer 
(a Pentium III 550 MHz computer) is presented. 
More diffi cult to measure are the differences in 
coding skill, fi ne-tuning of algorithms, and testing 
of parameters (Hooker 1995), all areas which we 
fail to address here, but leave for further explora-
tion. In addition, Hooker (1995) suggests that the 
amount of processing time per iteration, and its 
effect on total computation time, is important. 
This too, we leave for future exploration.

When using heuristic techniques, one cannot 
be certain that the global optimum solution to 
a planning problem will be found, nor that the 
resulting solutions are even close to the global 
optimum. To evaluate the quality of the solutions 
that are produced by heuristic techniques, one can 
solve the global optimum solution to a problem 
using a traditional mathematical technique, and 
subsequently the comparisons can be made. For 
example, an integer programming formulation 
was developed for the non-spatial goals (Prob-
lem A), and the optimal solution produced was 
9.8105. This is diffi cult to do for more complex 
goals, however, thus integer programming for-
mulations were not developed for the minimum 
patch size or complementary patch problems, 
since these are in fact very complex problems. 
A relaxed linear programming problem, (where 
some of the spatial constraints are ignored) could 
also be formulated and assumed as an upper-
bound on the potential solutions derived from 
heuristic techniques, although we did not develop 
relaxed linear programming formulations for the 
three wildlife planning problems. Finally, it may 
be possible to develop an estimate of the global 
optimum solution using extreme value theory, 
which is described in Bettinger et al. (1998), 
Los and Lardinois (1982), and Golden and Alt 
(1979). We developed estimates of the global 
optimum solutions for the three wildlife planning 
problems, and compared them against the solu-
tions generated by the heuristic techniques.
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2.3 Hypothetical Landscape

The landscape we apply the three increasing dif-
fi cult wildlife planning goals to is 2500 acres 
in size, and consists of 74 management units. 
A GIS database of the hypothetical landscape, 
along with a list of management unit acres, initial 
age (age during period 1, if not harvested during 
period 1), and potential volumes is available 
on the internet (http://cof.orst.edu/cof/fr/people/
bettingp/wlc/index.htm). Adjacent units are those 
units that share an edge, rather than both an 
edge or a corner (point). This is a hypothetical 
landscape, and can be used as a standard model 
for others to use in their efforts to solve these 
problems. Users of this data should note that one 
management unit consists of hardwood stands 
and represents riparian areas, thus while it con-
tributes to the total number of acres on the land-
scape, it does not count toward wildlife goal 
achievement.

3 Results

To compare the results, we produced 100 solu-
tions with each of the eight heuristic techniques 
for each of the three wildlife planning problems. 
These 100 resulting solutions can be considered 
an independent sample from a population of solu-
tions, since the starting point for each of the 
search processes was a randomly developed solu-
tion. We employ several methods to evaluate 
the quality of the resulting solutions, including 
a comparison of the statistics (mean, median, 
mode) of the solution values, a discussion of the 

quality of the entire set of 100 solutions, and 
a discussion of the estimated global optimum 
solutions from the sample solutions of each tech-
nique.

Of the eight heuristic techniques, six found 
very good solutions to Problem A, the non-spatial 
wildlife goals (Table 1). The values represented 
in Table 1 represent the best solution of the 100 
sample solutions generated by the eight tech-
niques. Only the RS and TS1 techniques located 
considerably lower-quality solutions. Problem B, 
with the minimum patch size goals, was more 
diffi cult for the GA technique to solve, and RS 
and TS1 also produced lower results than the 
other 5 techniques. In Problem C, with the com-
plementary, adjacent patch goals, four techniques 
produced the best solutions: SA, GDA, TA, TS2. 
The TS1, GA, GA/TS techniques also produced 
very good solutions to Problem C.

Now that we have illustrated how the “best” 
solution from each technique compares to the best 
from the other techniques, one may ask how the 
quality of the entire set of 100 solutions compare, 
to give us an understanding of the variation in 
solution quality among techniques. In Problem 
A (Table 2) several notable results can be seen. 
First, SA, GDA, and TS2 produced the highest 
minimum solution values, so their worst solutions 
were better than the best solution for TS1, yet TA 
had a much lower minimum solution value than 
SA, GDA, and TS2. However, the average solution 
values for SA, GDA, TA, and TS2 were all very 
similar. Of the 100 sample solutions produced by 
each technique, those produced by SA had the 
lowest variation, and those produced by TS1 had 
the highest variation in solution quality.

In Problem B, while 5 of the techniques pro-

Table 1. Quality of the best solutions generated by the eight heuristic techniques.

Heuristic technique Problem A Problem B Problem C

Random Search (RS) 8.4607 1.3548 1.7254
Simulated Annealing (SA) 9.8079 2.0475 3.0323
Great Deluge (GDA) 9.8084 2.0475 3.0559
Threshold Accepting (TA) 9.8085 2.0475 3.0591
Tabu Search 1-opt (TS1) 9.7434 2.0045 3.0158
Tabu Search 1-opt and 2-opt (TS2) 9.8093 2.0475 3.0522
Genetic Algorithm (GA) 9.7941 1.9912 2.9823
Genetic Algorithm / Tabu Search (GA/TS) 9.7996 2.0475 3.0148
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duced what seems to be the global optimum 
solution (2.0475), the minimum solution value 
produced by TS2 and GA/TS was higher than 
that produced by the other techniques (Table 3). 
These two techniques also had the lowest vari-
ation in solution values. The mean values for 
SA, TA, TS2, and GA/TS were also very good 
compared to the other techniques. In Problem C, 
TS2 produced one of the best overall solutions, 
yet its lowest valued solution was much lower 
than that produced by SA, GDA, or TA (Table 
4). The story for TS1 is similar; it produce a 
fairly good maximum, but its minimum solution 
value was quite low. This indicates that while 
the potential to produce good solutions using 
TS1 or TS2 is good, there is a chance, if only 
a few solutions are generated, that the resulting 
solutions are not very good. The mean values, 
however, for SA, GDA, TA, TS2, and GA/TS 
were all very similar. The techniques which pro-
duced solutions with the most variation in solu-
tion quality were TS1, TS2, and GA, although 
TS1 and GA solution values were generally lower 
than TS2 solution values.

Since the global optimum solution for Problem 
A was solved using integer programming tech-
niques, we can directly compare it to the heuris-
tic results. The best solutions from SA, GDA, 
TA, and TS2 were all within 0.02% of the 
global optimum solution. The best solution from 
TS1 (within 0.69% of the global optimum), GA 
(within 0.17%), GA/TS (within 0.12%), were 
also very good. The best RS solution was within 
13.76% of the global optimum.

Estimates of the global optimum solution for 

Problems B and C were generated using tech-
niques described in Bettinger et al. (1998), which 
views the set of solutions from each technique as 
an independent sample, continuously distributed, 
from a population of solution values. A three-
parameter Weibull curve is fi t to the sample solu-
tions, and the location parameter of the resulting 
Weibull curve is used as the estimate of the 
global optimum. To verify the goodness of fi t of 
these curves, the distribution of sample solutions 
was rotation about the location parameter, and 
re-fi t using BestFit software (Palisade Corpora-
tion 1997), which fi ts a two-parameter Weibull 
curve (assumes the location parameter has the 
value 0), and also tests the goodness of fi t using 
Chi-square and Anderson-Darling statistics.

The estimates of the global optimum solutions 
are presented in Table 5, and show limited useful-
ness of this approach to gauge the quality of 

Table 2. Statistics regarding the sample of 100 solutions 
generated by the eight heuristic techniques for 
Problem A, the non-spatial wildlife goals.

Heuristic Maximum Minimum Mean Standard
technique    deviation

RS 8.4607 8.3168 8.4010 0.0396
SA 9.8079 9.7775 9.7933 0.0055
GDA 9.8084 9.7493 9.7838 0.0106
TA 9.8085 9.6479 9.7750 0.0354
TS1 9.7434 9.2481 9.5222 0.1092
TS2 9.8093 9.7651 9.7928 0.0106
GA 9.7941 9.6481 9.7456 0.0275
GA/TS 9.7996 9.7060 9.7579 0.0174

Table 3. Statistics regarding the sample of 100 solu-
tions generated by the eight heuristic techniques 
for Problem B, the minimum patch size wildlife 
goals.

Heuristic Maximum Minimum Mean Standard
technique    deviation

RS 1.3548 1.2387 1.2941 0.0359
SA 2.0475 1.9485 2.0330 0.0156
GDA 2.0475 2.0057 2.0277 0.0114
TA 2.0475 2.0033 2.0342 0.0112
TS1 2.0045 1.6123 1.9226 0.0666
TS2 2.0475 2.0263 2.0397 0.0088
GA 1.9912 1.8110 1.9309 0.0356
GA/TS 2.0475 2.0181 2.0410 0.0087

Table 4. Statistics regarding the sample of 100 solu-
tions generated by the eight heuristic techniques 
for Problem C, the complementary, adjacent patch 
wildlife goals.

Heuristic Maximum Minimum Mean Standard
technique    deviation

RS 1.7254 1.6047 1.6680 0.0415
SA 3.0323 2.9228 2.9897 0.0217
GDA 3.0559 3.0008 3.0282 0.0130
TA 3.0591 2.9769 3.0403 0.0148
TS1 3.0158 2.2683 2.7212 0.1666
TS2 3.0522 2.5932 2.9817 0.0791
GA 2.9823 2.5317 2.8553 0.0648
GA/TS 3.0148 2.8087 2.9555 0.0370
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solutions generated by heuristic techniques. For 
example, in Problem B only one technique (GA) 
produced a distribution of results which when 
fi t with a Weibull curve, was not rejected by the 
test statistics, yet we know this estimated global 
optimum (1.9958) to be well below other actual 
values produced by other heuristic techniques. 
In Problem C we see similar results from the 
estimated global optimum values for SA and 
GA/TS heuristic techniques. The estimated global 
optimum values from TA and TS1 are both plau-
sible, but TS1 had more variation in its results 
than TA, and TA results were clustered more 
closely around its estimated global optimum. For 
Problem A, we found three estimated global opti-
mum values (from SA, GDA, and TS2) which 
were very close to the integer programming 
solution, providing some reassurance that using 
extreme value theory to estimate the global opti-
mum may have some value, yet researchers and 
planners should take caution when using this 
process, as noted by the results above and by 
Boston and Bettinger (1999).

We compared the eight heuristic techniques 
one fi nal way using the information we have 
compiled regarding the optimum solutions for 
each of the three problems. We fi rst make some 
assumptions regarding the best possible solution 
values from the three planning problems. The 
optimum solution for Problem A (9.8105) was 
derived from the integer programming results, 
for Problem B (2.0475) was concluded based on 
the consistency which several of the techniques 
located these solutions and found no better, and 

for Problem C (3.0593) was derived from the 
estimate of the global optimum using the TA tech-
nique. We then ask how many, of the 100 sample 
solutions generated by each heuristic technique, 
were within 1% of these values. As Table 6 shows, 
there are some techniques which are well suited 
to certain problems, while other techniques, using 
our implementation of the techniques, may need 
some refi nements to be able to consistently pro-
duce higher quality solutions.

Solution times for each of the eight heuristic 
techniques is presented in Table 7. These solution 
times should be viewed from a broad perspective, 
since the heuristic programs were developed, in 
some cases, independently of the others, and 
standard logic or protocols were not employed. 
What is clear is that solution times increase as 
problem complexity increases, and that solution 

Table 5. Estimated global optimum from the eight heu-
ristic techniques.

Heuristic  Problem A Problem B Problem C
technique

RS 8.4612 1.4609 1.7585
SA 9.8109 a 2.0480 3.0361 a

GDA 9.8115 a 2.0477 3.0633
TA 9.8086 2.0490 3.0593 a

TS1 9.8011 a 2.0051 3.0657 a

TS2 9.8110 a 2.0490 3.0522
GA 9.7959 a 1.9958 a 2.9869
GA/TS 9.8051 2.0501 3.0184 a

a Results were not rejected by Chi-square, Kolmogorov-Smirnov, 
nor Anderson-Darling test statistics using BestFit software (Palisade 
Corporation 1997).

Table 6. Percentage of sample solutions that are within 
1% of the global optimum or assumed “best” 
values for each of the three planning problems.

Heuristic  Problem A Problem B Problem C
technique

RS 0 0 0
SA 100 69 2
GDA 100 68 67
TA 89 77 81
TS1 3 0 0
TS2 100 82 22
GA 87 0 0
GA/TS 97 80 0

Table 7. Average time to develop a single solution 
for each of the three planning problems (min-
utes), using a Pentium III 550 MHz processor, 
and all algorithms coded in the C programming 
language.

Heuristic  Problem A Problem B Problem C
technique

RS 5.0 5.2 13.0
SA 0.8 0.3 8.0
GDA 0.3 1.5 9.0
TA 5.0 12.5 22.0
TS1 4.5 11.5 27.0
TS2 1.5 12.0 30.0
GA 4.3 4.0 45.0
GA/TS 12.0 50.0 72.0
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time increases as the complexity of heuristic proc-
ess increases. We found that the opinion of each 
researcher varied regarding the degree of com-
plexity required to develop each technique. The 
level of familiarity each of us has with the intrica-
cies of the eight search techniques probably infl u-
ences these opinions.

4 Discussion

If an organization makes a decision to utilize a 
heuristic programming technique to develop a 
land management activity schedule, the level of 
sophistication of the resulting technique will vary 
depending on the type of system desired and the 
time allowed to develop the system. For example, 
heuristic programming techniques can be closely 
integrated with geographic information systems 
(GIS) or simply linked to GIS via the transfer of 
certain databases (inventory, adjacency, etc.) as 
was illustrated with each of the eight techniques 
in this research. In addition, the programming lan-
guage employed is important, as some languages 
may provide effi ciencies in programming logic, 
may provide faster computations for similar tasks, 
may be easier to use (for the people involved in 
scheduling efforts), and may result in a product 
with better end-user acceptability.

The time to develop a solution is a function 
of the programming skill employed, which deter-
mines the effi ciency at which the search pro-
ceeds. Although none of the researchers were 
professional programmers, all had considerable 
programming experience, yet each may use dif-
ferent programming logic, and each may have 
preferences for certain processes, such as check-
ing solution values, which may affect how fast 
a solution is ultimately generated. Thus the effi -
ciency of generating solution values for the eight 
techniques should be viewed in a general sense. 
What is important is that the time to generate 
an adequate number of solutions should be short 
enough so that an analyst has time to develop 
alternative formulations and thus to test the 
robustness of the model and the planning prob-
lem. Others exploring the use of heuristics should 
keep in mind that each method does require a 

certain amount (defi ned by the comfort of the 
programmer) of skill and creativity to make a 
complex heuristic perform both well, and fast.

When considering development time for a heu-
ristic scheduling process, analysts should con-
sider the time to develop the scheduling code, 
to verify the logic, to develop the databases, and 
to develop graphic capabilities. Code develop-
ment generally consists of input and output func-
tions, logic to measure or evaluate management 
goals, logic to schedule activities, and criteria to 
determine when to stop the process. Verifi cation 
of this code is time-consuming, and may consist 
of tracing the location of errors with “print state-
ments” located at strategic points in the computer 
code, manually simulating the scheduling process 
to determine what the process should be doing, 
checking loops and the conditions that satisfy 
entering or leaving a loop, and isolating sec-
tions of code, checking them separately (Rojiani 
1996). Manual verifi cation of solutions on maps 
is a simple, yet invaluable technique that should 
be employed. In fact, some spatial scheduling 
problems may only be noticed once the maps 
have been developed. A standard program was 
used here to check the quality of the solutions 
to each problem; it was developed independently 
of the eight heuristic techniques. A separate goal 
evaluation technique is often employed within a 
scheduling problem to periodically examine the 
solution values and to verify feasibility. If one 
were using techniques such as strategic oscilla-
tion, which allows some deviation from feasibility 
during the search process, a periodic independent 
check of feasible solutions may be appropriate.

Database development is often one of the most 
under-appreciated tasks in planning efforts, and 
often scheduling problems can be traced to inad-
equate examination of the quality of the data-
bases. Graphics capabilities are available for most 
programming software packages; a decision one 
must make regarding viewing the graphics is 
whether one needs to view the solution within a 
programming language structure, or within GIS. 
This, of course, assumes that the two are not 
integrated, and is moot if they are, in fact, inte-
grated.

There are a variety of trade-offs associated with 
the eight techniques employed in this research 
(Table 8). Some of these techniques examine only 
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a single change to a solution with each iteration 
of an algorithm, while others examine multiple 
changes to a solution with each iteration. Many 
of the techniques use random changes to a 
solution to move about the solution space, in 
fact tabu search, which generally uses determin-
istic changes, can be formulated to use random 
changes as well. The level of change allowed in 
the value sequential solutions that are generated 
can vary considerably, especially with Monte 
Carlo techniques that allow multiple changes to 
sequentially generated solutions. Thus the level 
of change may vary widely between iterations 
of the search process. TA and GDA generally 
have a “fl oor” below which no worse solutions 
are allowed, and SA can be viewed as having 
a fl oor as well, yet there is a chance that more 
inferior solutions are allowed in a comparable SA 
technique. Finally, speed is an important factor 
to those who desire to develop a high volume 
of good solutions in a reasonable amount of 
time. While speed is also related to the type 
of programming language employed, the time 
required to move through a single iteration of 
these techniques also varies based on the com-
plexity of the scheduling process. Certainly GA 
and TS2 techniques can be developed which are 
fast, but comparable SA, TA, and GDA tech-
niques will be faster. What is not clear is how 
the size of a planning problem may infl uence 
solution times. As problems get quite large, the 
ability to use parallel processing techniques may 
greatly increase the effi ciency of those tech-
niques which are most suited (TS and GA), since 
many different potential solutions (in the case of 
TS, fi lling out the neighborhood; in the case of 

GA, developing a population) must be generated 
before a decision is made.

In addition, the fl exibility and complexity of the 
techniques may prevent or facilitate alternative 
formulations of the planning problems and inter-
pretation of results. For example, these tech-
niques do not require the generation of a detached 
coeffi cient matrix common to linear program-
ming problems – the goals and constraints are 
embedded in the computer programming code 
that allows the heuristics to solve the planning 
problems. Whether the programming code is 
developed in such a way to allow alternative 
specifi cations of the problem is problematic, and 
not necessarily limited to the use of a subset of 
the eight heuristics. We have, through our experi-
ence, seen both extremes. The development of 
a fl exible heuristic would require an investment 
in an interface that would allow a variety of 
variables related to the problem formulation to 
be modifi ed by the user prior to solving the 
problem.

While we have provided some insight into the 
relative differences of eight heuristic techniques, 
it is possible that each of the eight techniques 
described here can be modifi ed to produce better 
solutions than we have illustrated. Our intent 
was to develop the standard techniques, with 
some investigation into effi ciencies such as using 
an appropriate tabu tenure in the tabu search 
techniques, or the appropriate cooling schedule 
for the SA technique. However, others may fi nd 
that there are processes that can enhance these 
search techniques, such as strategic oscillation or 
a variety of λ-opt moves or a different integration 
of multiple search techniques. The issue of allow-

Table 8. Trade-offs associated with the eight heuristic techniques employed in this research.

Heuristic No. of changes Random or deter- Level of acceptable Speed per
technique per iteration ministic changes change per iteration iteration

RS multiple random unlimited fast
SA one random limited fast
GDA one random limited fast
TA one random limited fast
TS1 one deterministic unlimited moderate
TS2 one/two deterministic unlimited slow
GA multiple random unlimited slow
GA/TS variesa both unlimited slow

a The number of changes per iteration depends on the type of search process used at each iteration: 1-opt tabu search, 
2-opt tabu search, diversifi cation, or genetic crossover.
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ing infeasible solutions to become valid local 
optima (thus using some sort of penalty function 
to temper the infeasibilities) in the search for the 
global optimum is an area of debate among those 
creating and using heuristic search algorithms. 
While some may argue that not allowing the 
search process to examine infeasible solutions 
restrictive, we welcome others to develop search 
algorithms that allow these infeasibilities, and 
subsequently to compare those results with the 
work we have performed here.

A good example of a technique that may benefi t 
from further developmental work is the GA/TS 
technique. The GA/TS technique does provide 
consistently good solutions to the non-spatial 
problem as well as the minimum patch size prob-
lem, and given these results, should be appropri-
ate for problems with clearcut size limitations 
that utilize adjacency constraints. However, the 
technique needs more developmental work if it 
is to be applied to complex planning problems 
that have goals similar to the complementary 
patch problem (Problem C). Future developmen-
tal work on this hybrid heuristic may explore 
several areas, such as the use of longer tabu 
tenures for the two tabu search portions of the 
technique, or different tenures for each of the 
two techniques. In addition, an expanded use of 
the genetic crossover routine may allow a wider 
search into the solution space, as might the use of 
mutation processes. An exploration into diverse 
selection criteria may also prove to result in better 
solutions for complex spatial problems. Finally, 
a more integrated use of the different search 
techniques may be benefi cial, since each was 
used for a considerable amount of time before 
switching to another. Integrating techniques more 
frequently (as in the TS2 technique) could lead to 
better solutions to these complex problems.

As for the GA technique, one of the challenges 
is in keeping the solutions, after crossover, in the 
feasible region of the solution space. A GA in 
its “standard form” may not be a highly effi cient 
model for sequencing and scheduling problems, 
especially if spatial constraints are included. The 
generation of a multitude of infeasible offspring 
will certainly reduce the usefulness of a GA 
technique, thus developing computer logic to pre-
vent this from occurring may be appropriate. 
This problem, however, is not unique to GA tech-

niques, as RS, SA, GDA, and TA techniques can 
also spend a lot of time evaluating solutions that 
are spatially infeasible, since the management 
unit and harvest timing are randomly chosen.

The size of the population chosen for a GA 
technique may also affect the effi ciency in which 
good solutions are generated. A large population 
allows one to have a wide variety of genes, but 
slows down the processing time of a GA tech-
nique. Appropriate population sizes are generally 
chosen after several trial and error runs of the 
algorithm. Again, the appropriate choice of the 
parameters of a search process is not unique to 
GA techniques, as all of the others (except RS) 
require some user interaction to fi nd an appropri-
ate set of parameters to enable them to fi nd good 
solutions in an effi cient manner.

5 Conclusions

As forest management evolves in an increasingly 
complex regulatory environment, we will likely 
see more use of spatial restrictions and non-
linear goals in forest plans. As a result, many real 
world problems are becoming too complex to be 
solved with classical optimization techniques. In 
the future, computer software and hardware may 
progress to the point where classical techniques 
are once again useful for solving large combinato-
rial problems, yet in the meantime more reliance 
may be placed on simulation and optimization 
with heuristics. The ultimate goal of using heuris-
tic techniques is to produce high quality solutions 
in short amounts of time to problems with non-
linearities or combinatorial relationships. This 
research has hopefully provided more insight into 
the performance differences of a variety of heuris-
tic techniques on increasingly complex planning 
problems. Readers should not view the results 
as universal truths, however, and we encourage 
others to formulate these problems with their most 
promising techniques and compare the resulting 
solutions to the solutions presented here.

In the future, the need for a standard set of data 
and criteria for evaluation of these techniques 
seems appropriate. We have provided a database 
and three problems here for others to use as a 
start. In addition, the need for evaluating the cri-
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teria for stopping a search process is noteworthy 
due to the length of time some of the processes 
required to arrive at a solution. A discussion of 
the appropriateness of heuristic techniques is also 
needed, since their advantages, while clear to 
some, are unclear to others more enthused with 
classical optimization techniques. The main con-
cern here is whether the level of effort involved 
with using heuristics is worthwhile, since some 
believe that the value associated with implement-
ing a relaxed LP solution may not be much dif-
ferent than the value of implementing a spatially 
feasible solution generated by a heuristic tech-
nique. An evaluation of the time and cost of both 
alternatives may therefore enhance this debate.
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