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Updated measurement data as prior information
in forest inventory
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Old inventory data have been widely used as prior information in forest inventory
using the method of sampling with partial replacement (SPR). In this method
knowledge about forest growth has not been utilized. However, the accuracy of the
inventory results can be improved if this knowledge is utilized. The usability of the
inventory results can be improved if the prior information is updated by treewise
growth models. In this paper a statistical basis is presented for a method in which
such information can be used. The applicability of the method is also discussed. An
example is given to demonstrate the method.

Vanhaa inventointitietoa on yleisesti hyodynnetty ennakkoinformaationa metsiva-
rojen inventoinnissa kiyttien otantaa osittaisella palutuksella. Tissi menetelmissi
ei tietoa metsien kasvusta kéyteta hyviksi. Kuitenkin inventointitulosten tarkkuutta
voitaisiin parantaa, mikali myds timé informaatio kiytettiisiin hyviksi. Tulosten
kayttokelpoisuutta taas voitaisiin parantaa kiyttimalla péivityksessd puukohtaisia
malleja. Tassa tyossa esitetetin tilastolliset perusteet menetelmiille, Jjonka avulla
tallaista prioritietoa voidaan kayttaé hyvaksi. Myés menetelmin kayttokelpoisuutta
kasitellaan. Lopuksi esitetdéin esimerkki menetelmin toiminnasta.
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1 Introduction

There are at least two good reasons for using
prior information in forest inventory. We can
either improve the accuracy of the results and
keep the costs the same as before, or, reduce
the costs and keep the accuracy of the results
the same as before. In forest inventory many
kinds of prior information can be used:
satellite imagery or aerial photographs,
models estimated from data of previous
samples, statistics or data measured in
previous inventories.

The most commonly used method for
using data from previous inventories in forest
inventory is the method of sampling with
partial replacement (SPR, Ware and Cunia
1962, see also Jessen 1942). For estimating
the current population mean two independent
estimates are combined to form a single
linear unbiased estimator. The weight placed
on the two estimates is dependent on the
correlation between the timber volumes of
the remeasured plots on first and second
occasions and also on the population
variances on these two occasions.

In the SPR method knowledge about the
forest growth is not utilized. When
information on forest growth is utilized the
estimation is more efficient (Dixon and
Howitt 1979).

In the approach of Dixon and Howitt
(1979) the Kalman filter was used (see
Kalman 1960). The sampling error was
handled using the model based inference
theory and updated data from previous
inventories were used as prior information.
The growth model used in their study is
crude: it simply gives the proportional change
of the state vector over time. It may be
assumed that the efficiency and usability of
the method can be improved, when more
detailed models are incorporated.

Often forest inventory and forest
management are treated as separate
problems. The data measured should be used
as efficiently as possible. Thus, the same data
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should be applicable for both objectives. In
the approach of Dixon and Howitt (1979)
information about all control actions
(harvests, cultural treatments etc.) is used in
the forest inventory. However, the use of
these inventory results in forest management
systems is limited, because only means and
sums are known. For most management
systems more detailed information is needed.
The required information can be obtained
when treewise growth models are used for
updating the data.

In Finland the MELA-system is used both
for forest management and for updating the
inventory data (Siitonen 1983). The
inventory data are updated by treewise
growth models, and the control actions are
taken into account using the values obtained
from statistics as restrictions in a linear
optimization model.

In Finland, updated data have so far only
been used until new data were measured,
because methods for using both updated and
measured data have not been available.
Nowadays such methods are more and more
important. The information used in decision
making must be as recent as possible. Thus,
new measurements are needed more often
than before. Due to this the number of sample
plots measured in one area at a time will
decrease if the costs are not allowed to
increase. Consequently, the accuracy of the
results will also decrease if only the latest
measurements are used.

In this paper a method for using old
inventory data as prior information in forest
inventory is presented. Using this method,
data updated by treewise growth models can
be used as prior information. The method by
which the precision of the results can be
estimated, when both the measured and
updated data are used, is also presented.
Finally, the usefulness of biased prior
information is discussed.
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2 The methods based on superpopulation models

In the approach of Dixon and Howitt the
growth model can be written as

X,. ) =AX+Bu+e, (1

The error terms, e,, are normally distributed
with mean zero and covariance matrixQ.
Vector x is the vector of the state variables,
vector u is the vector of control actions,
matrix A is the state transition matrix and
matrix B gives the impact of control actions.
The model of the sampling system can be
written as

Yi=CXx,+v, )

Matrix C is needed if the observed variables
(vector y) are not the same as the state
variables (vector x). The error terms, v, are
also normally distributed with mean zero and
covariance matrix ©. The error term
describes the sampling error (see e.g. Cassel
etal. 1977).

The Kalman estimator of the state vector
can be calculated by the following procedure.
The Kalman filter has a prediction step and an
update step that follow each other in
sequence.

The predicted conditional mean given all the
data through time t is

X,o1=AX,+Bu, 3)

and the conditional covariance P of this
estimator is

P =AP,A" +Q (4)

when P, is ©.

A sample is then taken to obtain y, ; ;. The
predicted value will almost always not be the
same as the observed value, so a residual
vector can be defined as

Ne+1=Yee1 —CXi1ie (5)

The prior information, x, , ,, and ghe sgmple
information, 1 . ;, are then combined in the
update cycle to yield
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Xivtiee1= JFRTIS o G| (6)
where
Kl*I=(PI:I111+C91+IC)_IC/®7I (7)

The conditional covariance of this estimator
is

PHIr1+l=(Pt:|Iu+C91;||C)7I (8)

In this paper the approach is, in principle, the
same as that of Dixon and Howitt (1979);
only the state transition matrix is more
complex. The state transition matrix is
assumed to consist of many models. The
system consists of treewise growth models
and plotwise cutting, mortality and ingrowth
models. The plotwise models are probability
models. These components could not be
estimated in a treewise manner, but they were
transformed into treewise form with the aid
of other models.

The simplest possible model of the
sampling system was used in this study. The
model used can be written as

yi=nte; 9

where y; is the value observed from sample
plot i, u is the unknown population parameter
and e; is the error term. The error terms are
assumed to be normally distributed with
mean zero and covariance matrix X. In this
study, y; is the timber volume (per hectare) of
the plot and p is the mean timber volume in
the area considered.

In this study the mixed estimator of Theil
(1971) was used instead of the Kalman
estimator in calculating the inventory results.
The Kalman estimator and the mixed
estimator are, however, equivalent if certain
assumptions hold true (see e.g. Dixon and
Howitt 1979). The mixed estimator was
selected because the growth models were
used to update the initial treewise data, and
not the state vector as in the Kalman filter
approach. In each step the volumes of the
plots were calculated from the updated data
for the mixed estimator, but they were not
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Fig. 1. Formulation of the problem.

used in updating. The formulation of the
problem is shown in Fig. 1. The Kalman
filler approach was, however, used in
calculating the updating errors.

The estimator of the unknown population
parameter, [, can be calculated by the GLS-
method. The model can be written as

Y=Dp+E (10)

where Y is the 1 (n+m) vector of observed
values, D is the 1 (n+m) design vector that
consists of ones and E is the 1 (n+m) vector
of error terms. Thus, n new plots are
measured and m are updated. When the
covariance matrix of the error terms, X, is
known, the GLS estimator of is

u=D=Z'D)'DE 'Y (11)

When the number of sample plots is large, it
may be difficult to invert the covariance
matrix . Often it may, however, be assumed
that the sample plots are independent of each
other if the distance between the plots is
great. This means that the covariance matrix
is block-diagonal, which is easier to invert
than full matrix.

Occasionally, it may be further assumed
that the covariance matrix is diagonal, i.e.,
the sample plots are independent of each
other. If it is assumed that the covariance

184

Results

e

matrix of the sample data is 0 and that of the
prior information is k times 02, where k is a
constant relating the variances, and if the
prior information is assumed independent of
sample data, the model can be written as
(Terésvirta 1981, Theil 1971)

Y, Dp Ep
-]

where Y, is the vector of new plots and Y, is
the vector of updated plots, and the
covariance matrix X as

= I 0
Z=0’ [o kl:, (13)
and the mixed estimator of as

w=(D,D,+D,D/k)"(D,Y,+D,Y /k)=

m+n

(i Y+ i=2n+|yl )
i=1 k (14)

m

n+-k—

which is simply a weighted mean of the
measured and updated data, where the weight
is the inverse of the error variance involved.
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3 Estimation of the MSE of the updated data

If formula (14) is going to be used, the error
variances of sample data and updated data
must first be estimated. The error variance of
sample data, 0%, can be estimated by fitting
model (9) to the sample. Estimating the error
variance of the updated data is not as simple,
because it contains both sampling error and
error caused by updating.

The error caused by updating in one five-
year updating period was estimated by
simulations. The state of the sample plots in
the beginning of the period was estimated
using increment measurements. The state of
these plots was then updated by the models.
The error variance was estimated by
comparing the true state and the updated state
in each of the plots at the end of the period.

If the data is updated for more than one
five-year period, the error will increase
exponentially as the number of updating
periods increase. The error variance after t
updating  periods can be calculated
recursively by Kalman filter method using
formula (4) of conditional covariances, if the
updating errors are not correlated over
subsequent periods.

Thus, t is the number of updating periods,
Q is the updating error in one period, P, is the

coefficient k

sampling error (0%), A is the proportional
change of state vector in one period and P,
is the total error variance of updated data after
t updating periods. Coefficient A is estimated
from the updated data. Coefficient k can then
be written as a function of conditional
variances for the two updating periods

_P (15)
k(r—PO

If the wupdating errors are, however,
correlated over subsequent updating periods,
the formula wused for calculating the
conditional covariances can be written as

P\ =A’P+Q,4+2Acov(E,, ,E) (16)

instead of (4). If sampling error, P,, is large
when compared with the updating error Q, or
the number of updating periods is small, the
effect of correlation is small even when the
correlation is large; the greater the updating
error the greater effect the correlation has. In
Fig. 2 coefficient k is shown as a function of
the number of updating periods with four
different assumptions of correlation.

30‘

0 1 2 3 4 5
number of updating periods

—~—corr=00 ~—+corr=03

6 7 8 9 10 1

—*—corr=06 S corr=0.9

Fig. 2. Coefficient k as a function of the number of updating periods with three different
assumptions of correlation. Here P, is 94.1%, Q is 49.97 and A is 1.089.
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4 The precision of the mixed estimator

The precision of the estimate of p can be cal-
culated from the formula of the variance of
the GLS-estimator when estimator (1 1) is
used. The variance can be written as

var(w)=(DZ"'D)™! (17)

When the mixed estimator (14) is used the va-
riance is

var(u) =0’ (D',D,+D,D k)" =c*(n+ kl)"’ (18)

The precision of the mixed estimator as a
function of k compared with the accuracy of
the basic estimator (in which no prior infor-
mation has been used) is shown in Fig. 3. The
variance of the mixed estimator is always less
than that of the basic estimator. The reducti-
on in variance diminishes as the value of k
increases.

If the prior information is not unbiased, as
is often the case, the true but unknown model
of prior information is not (12) but

X,=D,u+g+E, (19)

standard error

where g is the unknown bias (Terisvirta
1980). If the prior information is biased the
mixed estimator of  is also biased. The bias
is (Toutenburg 1982)

(20)

b(w=k~"(DpDp+k~'D,D,) 'D/g= — 28
k(n+ kﬂ)

If the prior information is biased, the accura-
cy and the precision of the estimators must be
studied with the aid of the MSE instead of the
variance. Toutenburg (1982) has shown that
the MSE of the mixed estimator is smaller
than that of the basic estimator if (21) holds
true.

(21)

o g (kI+D, (D\,)D,)"'D,) ' D/ ;g<1 &) —L <
o (k+ nﬂ)

The value of coefficient k has an impact on
the usefulness of the biased prior informati-

0,5

L L 1

6 8 10 12

coefficient k

— basic

—+— mixed

Fig. 3. Standard error of the mixed estimator as a function of coefficient k compared
with the standard error of the basic estimator. The number of plots measured/

updated is 2150 and o is 94.1.
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bias allowed

coefficient k

—— stand dev 94 —— stand dev 75 —*— stand dev 50

Fig. 4. The amount of bias that can be tolerated in prior information as a function of k
with three different assumptions of error variance ¢°. The number of plots

measured/updated is 2150.

on: the smaller the value of k, the smaller the

bias that can be tolerated in the prior informa-

tion. Furthermore, the greater the error vari-
2 . i

ance 0, the greater the bias which can be to-

lerated. This tolerated amount of bias as a

function of k is shown in Fig. 4, with three
different assumptions of error variance. Ho-
wever, if the mixed estimator must be unbi-
ased, the prior information must also be unbi-
ased.

S An example

In the example, data from 7th Finnish Nati-
onal Forest Inventory (measured in 1977-
1978) were updated for two five-year periods
to match with data of 8th NFI (measured in
1986-1987). Both the updated data and data
from 8th NFI were then used in a mixed esti-
mator in order to obtain the best linear unbi-
ased estimator of the mean volume.

The data used were from southern Finland
from six forestry board districts. Only one se-
venth of the measured sample plots were used
in the example: the plots from which only tal-
ly trees were measured were not used in this
study. The values estimated from all sample
plots were assumed to be the true values. Ho-
wever, these values also contain sampling er-
ror. Table 1 contains the mean volumes by di-
strict in 7th and 8th National Forest Invento-
ry, estimated from all sample plots and from
the plots used in this example.
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There are great differences between the
true and the estimated values, which are cau-
sed by sampling error. A great difference also
exists between the true values of 7th and 8th
NFI. It is therefore questionable, if the met-
hods based on the correlation coefficient bet-
ween the two inventories are of much help in
this situation.

The updating was done with very simple
models in order to demonstrate the method.
The MELA-system, which is usually used for
updating purposes, was not used due to prac-
tical problems. The models used in this study
were estimated from the data measured du-
ring 8th NFI. Details of the models used can
be found in Kangas (1991).

The sampling error was estimated by fit-
ting model (9) to the sample plots. The esti-
mated value of the error variance was 94.17.
The updating error, Q, was estimated by si-
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Table 1. The mean volumes in six forestry board districts in 7th and 8th National Forest Inventory, estimated from
all sample plots and from sample plots used in the example.

Table 3. The true mean volume from 8th National Forest Inventory, volumes estimated from sample plots and from

updated sample plots of 7th NFI and the mixed estimator when k = 2.02.

District

7thinv true

Sample 8th inv true Sample
mha m’/ha

1 112 119.6 139 140.2

2 113 114.0 128 129.8

3 100 95.3 114 102.1

4 126 121.8 150 154.6

5 115 114.1 127 134.5

8 113 117.2 121 118.1
Mean 113 112.8 128 128.2

District True Sample Updated Mixed
1 139 140.2 142.8 140.5
2 128 129.8 132.9 131.4
3 114 102.1 120.5 108.9
4 150 154.6 148.0 152.6
5 127 134.5 133.2 134.9
8 121 118.1 136.2 125.1
Mean 128 128.2 134.4 130.8

mulations and the estimated value of this er-
ror variance was 49.9”. The conditional error
variance of the updated data on the occasion
of 8th NFI — after two updating periods — can
be calculated using equation (4) two times as

1.089% (1.089% X 94.12 + 49.9%) + 49.97 — 133.82,

when coefficient A was 1.089. Thus
coefficient k was

133.8%94.1> = 2.02

from equation (15). Table 2 shows the upda-
ted mean volumes and the true volumes, cal-
culated from the sample plots, by districts at
the end of the period.

From Table 2 it can be seen that the upda-
ted total mean is unbiased, but there are great
differences within districts. This is due to the
fact that the models used for updating did not
take the regional differences into account.

Table 2. Updated and true volume by districts calculated
from the sample plots.

District True value Updated
1 140.2 142.9
2 129.8 129.7
3 102.1 105.5
4 154.6 148.1
5 134.5 131.4
8 118.1 120.2

Mean 128.2 128.0
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The performance of the models does not, ho-
wever, affect to the method presented.

In the empirical examples it is assumed
that the sample plots are independent of each
other. This means that the sample is assumed
to be taken by simple random sampling. In
fact the sample was taken by systematic
cluster sampling. Therefore, there is positive
spatial autocorrelation between the sample
plots. Simple random sampling is assumed in
order to simplify the approach, but the spatial
autocorrelation can, however, be taken into
account with correlation functions (see e.g.
Matérn 1960).

It is also assumed that the mean square er-
ror of the updated data is independent of the
sample plot, that no measurement errors oc-
cur and that the variables, such as height and
age of the trees, are known without error.

Table 3 contains the true mean volumes,
the estimate obtained from sample plots, the
estimate obtained from the updated data of
7th NFI and the mixed estimator. The upda-
ted volumes deviate more from the true valu-
es than the sample volumes, which is quite
natural. In three districts the updated value is,
however, nearer to the true value than the
sample value. The mixed estimator is the best
of these estimators, in the sense that the devi-
ations from true values are small in all di-
stricts: the probability of great differences is
smaller when prior information is used.

If the mixed estimator is sensitive to the
value of coefficient k, it is not useful in prac-
tise. Coefficient k used in the calculations
will not be precisely optimal for more than
one variable at a time. Nevertheless, the sa-
me coefficient must be used for all variables
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Table 4. True value and mixed estimator with four different assumptions of coefficient k.

District True k=175 k=2.02 k=233 k=257
1 139 140.5 140.5 140.4 140.4
2 128 131.5 131.4 131.2 131.1
3 114 109.6 108.9 108.3 107.9
4 150 152.4 152.6 152.8 152.9
5 127 135.0 134.9 134.9 134.9
8 121 125.8 125.1 124.4 124.4
Mean 128 131.0 130.8 130.6 130.4

Table 5. The number of sample plots updated/measured and the standard error of the basic estimator and the mixed

estimator with three different assumptions of coefficient k.

District Plots Basic k=2.02 k=233 k=257

1 224/229 6.2 5.1 5.2 32

2 315/298 5.4 4.4 4.5 4.]

3 411/360 5.0 4.0 4.1 4.8

4 309/269 5.7 4.6 4.7 3.8

5 496/420 4.6 3.6 3.7 4.2

8 392/347 5.0 4.0 4.1 I .79
Mean 2147/1923 2.15 1.72 1.76 :

of interest, otherwise there may be inconsis-
tencies in the estimated state vector. Sensiti-
vity calculations made with four dlffqrent as-
sumptions of coefficient k are shown in Table
4. .

The last two values of coefficient k‘ come
from the assumption that the correlation of
the updating errors over the two updating pe-
riods is 0.5 and 0.9. If the correlation is 0._5
and the updating variance on each period is
assumed to be constant over time, the_ condi-
tional error variance of prior information, P,
can be calculated as
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133.82 + 2(0.5 X 49.9%) = 142.8?
and the coefficient k as

142.8%/94.12 = 2.33

Sensitivity of the mixed estimators is greatest
in the districts where the deviation between
the sample estimate and the updated estimate
is greatest (districts 3 and 8). _Yet the changes
are quite small in these districts also. When
the relative change in coefficient k is about 15
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per cent, the change in the mean volume in all
districts is less than one per cent. Thus, the
mixed estimator is quite robust.

Table 5 shows the standard error of the ba-
sic estimator and the standard error of the mi-
xed estimator with three different assumpti-
ons of correlation between the updating er-
rors in the two periods. The reduction in the
standard error, when the mixed estimator is
used, is almost 20 per cent when compared
with the basic estimator for the total mean.
Thus, the accuracy of the inventory results
can be greatly improved even with simple up-
dating models.

The sensitivity of the estimator of the stan-
dard error is, however, greater than that of
the mixed estimator. The relative change in
the estimate of the standard error of the total
mean is 2.3 per cent when the relative change
in coefficient k is 15 per cent. Therefore, co-
efficient k must be carefully estimated so as

not to make too optimistic assumptions about
the standard error.

The updating did not seem to cause bias to
the data (see Table 2), but the possibility of
bias must be taken into account. The largest
bias that gives the MSE of the mixed estima-
tor smaller than that of the basic estimator can
be calculated from equation (21) as

1923
1923

J (2.02+M)><94,12
g<

In this example a bias as great as 3.6 m’/ha
can be allowed. The usefulness of biased pri-
or information also depends on the amount of
bias in the mixed estimator that is judged to-
lerable. If, for example, a 1 m*/ha bias in the
estimator of mean volume is tolerable, the bi-
as in the prior information may be 2.8 m*/ha.

6 Discussion

In this study the data updated by treewise
growth models are used as prior information
in forest inventory. Many simplifying as-
sumptions, which may affect the results, ha-
ve been made about the covariance structure
of the sampling and updating errors. The me-
asurement errors and the errors of models
used for predicting, for instance, volume or
height of trees have not been taken into ac-
count. Considering this, the results obtained
may seem too optimistic.

In a real situation models used for updating
will probably be much more accurate than the
models used here (e.g. MELA-system) and
also the updating period will often be shorter.
These factors can make the benefit, which is
obtained using prior information, even big-
ger.

If the method is to be applicable in real si-
tuations, other forms of prior information
must also be compatible. This is apparent
when model based inference is used. For
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example, the information obtained from sa-
tellite imagery can be used by giving areal
weights to the plots, in addition to the
weights obtained from error variances (see al-
so Mandallaz 1991). The information obtai-
ned from satellite imagery or statistics could
also be used in a model form, as stochastic re-
strictions, like the updated data in equation
(14).

The method presented is not yet applicable
in practice. The model describing the samp-
ling system must be improved so that the ef-
fects of systematic cluster sampling can be ta-
ken into account. The measurement and mo-
del errors must also be considered. The esti-
mation of the updating error and coefficient k
need further study, as does the sensitivity of
variables other than volume to coefficient k.
The calculations made so far have, however,
shown that the presented method is promising
way to use updated prior information in forest
inventory.
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