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There exists an algorithm for construction interpolating quadratic splines which
preserves the monotony of the data. The taper curves formed with this algo-
rithm, QO-splines, have many good qualities when a sufficient number of
measured diameters of a tree is available. In fact, they may even be superior to
certain shape preserving taper curves, MR-splines. This algorithm can be modi-
fied to preserve also the shape of the data. In the present paper the quality of
taper curves constructed by a new shape preserving form of the algorithm is
examined. For this purpose taper curves are formed for different sets of meas-
urements and their properties are compared with the ones of QO-splines and
MR-splines. The results indicate that these new shape preserving taper curves
are in general better than QO-splines and MR-splines even if the differences
may be small in many cases. The superiority is the clearer the less measurements
are available.

On olemassa algoritmi, jolla voidaan muodostaa interpoloivia neli6llisié splini-
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funktioita siten, ettd mittausaineiston monotonisuus sdilyy. Talld algoritmilla
muodostetuilla runkokiyrilld, QO-splineilld, on monia hyvid ominaisuuksia,
kun puusta on saatavilla useita mitattuja lipimittoja. Itse asiassa ne saattavat
jopa olla parempia kuin tietyt muodon sdilyttivat runkokdyrét, MR-splinit.
Algoritmi voidaan muuntaa muotoon, jossa myds mittausaineiston muoto sdi-
lyy. Tissid tyossd tutkitaan algoritmin uudella muodon siilyttdvilld versiolla
saatuja runkokayrid. Nitd kdyrid muodostetaan erilaisten mittausten perusteella
ja kiiyrien ominaisuuksia verrataan QO- ja MR-splinien vastaaviin ominaisuuk-
siin. Osoittautuu, ettd nimi uudet muodon séilyttdvit runkokéyrit ovat yleensd
parempia kuin QO- ja MR-splinit joskin erot saattavat usein olla pienid. Parem-
muus on siti selvempii mitd vihemman mittauksia on kéytettdvissd.
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1 Introduction

A good taper curve should give a mathematical
model of a tree stem which is able to produce the
essential properties of the stem. In addition of
the volume and the lumber assortment also the
shape of the stem is in many cases important.
Lahtinen (1988) has considered a situation where
a set of diameters has been measured from rela-
tive heights of a tree. He has shown that a relia-
ble taper curve can be formed by using quadratic
splines so that it reproduces the measurements
and preserves the monotony of the stem as pre-
sented by the broken line connecting the meas-
ured points used in the construction. Such a ta-
per curve is said to preserve the monotony.

The definition and basic properties of spline
functions are to be found for instance in the book
of De Boor (1978). The interpolating quadratic
spline we are interested in consists of polynomi-
al pieces of degree at most two. The pieces are
joined at points called breakpoints so that the
resulting function is continuously differentiable.
Every interpolating point is a breakpoint. The
interpolating quadratic spline is theoretically able
to preserve locally both the monotony and the
convexity of the data as explained by Lahtinen
(1988). The latter property means that the spline
is on every interval convex or concave in the
same way as the broken line connecting the meas-
ured points. Such a monotony preserving spline
is said to preserve the shape.

The essential feature of the construction of a
monoiony or shape preserving spline is to choose
the first derivatives of the spline at interpolating
points as parameters and to add some additional
breakpoints between interpolating points. These
breakpoints are also used as parameters. A con-
struction of such a shape preserving spline has
been presented for instance by McAllister and
Roulier (1981) as a Fortran-program.

In principle a shape preserving spline should
be superior to a monotony preserving one. How-

2 Materials
2.1 Monotony preserving taper curves
A taper curve can be constructed in several ways

by using spline functions as explained among
others by Sloboda (1976), Lahtinen and Laasa-
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ever, Lahtinen and Laurila (1990) demonstrated
that the QO-spline, the monotony preserving ta-
per curve formed by the QO-algorithm of Lahti-
nen (1988), may be even better than the MR-
spline, the shape preserving taper curve formed
by the algorithm of McAllister and Roulier. The
main reason for the phenomen seems to be that
the structure of the QO-algorithm is theoretical-
ly more advanced as explained by Lahtinen and
Laurila (1990).

The QO-algorithm is in principle able to pro-
duce also shape preserving splines. In the inves-
tigation of Lahtinen (1988) it appeared, howev-
er, that shape preserving taper curves thus ob-
tained did not give satisfactory volume estimates.
The main obstacle seemed to be the parametrisa-
tion used in the first phase of the algorithm.
Lahtinen (1990) has developed a new parametri-
sation for the QO-algorithm. This makes the pres-
ervation of the shape more natural and efficient.
A detailed analysis of some interesting features
is to be found in Lahtinen (1992).

Our intention is now to investigate whether
the QS-algorithm, the new shape preserving form
of the QO-algorithm, can produce a more relia-
ble taper curve than the method of McAllister
and Roulier or than the QO-algorithm. The theo-
retical differences of the methods are in favour
of an affirmative result. For the investigation we
formed taper curves with the shape preserving
QS-algorithm using different sets of measured
diameters from relative heights. The parameters
of the quadratic splines are determined with the
aim to obtain good volume estimates by the ta-
per curve. The properties of the obtained QS-
splines are examined by comparing them with
the monotony preserving QO-splines and with
the shape preserving MR-splines. The investiga-
tion is concluded with an analysis of some es-
sential features of the QS-spline.

and methods

senaho (1979), Lappi (1986), Lahtinen (1988),
Lahtinen and Laurila (1990). We will call such
taper curves tfaper splines. The method of Lahti-
nen (1988), called the QO-algorithm, uses quad-
ratic splines. The aim of the method is to con-
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struct a taper curve which reproduces the meas-
ured diameters by interpolation and is in addi-
tion able to carry information about the shape of
the stem.

The essential idea of the QO-algorithm is the
use of a set of parameters in the presentation of
the quadratic spline. The parameters determine
directly or indirectly the first derivatives of the
spline at interpolating points and the places of
possibly needed additional breakpoints between
interpolating points. The algorithm is local in the
sense that an alteration of a parameter value
changes the spline only at a certain neighbour-
hood of the point to which the parameter is at-
tached. The implementation of the QO-algorithm
used in Lahtinen (1988) is intended to preserve
the monotony.

The QO-algorithm has essentially two phases.
In the first one the parameters are determined by
a preparatory method which at this early stage
already takes some care on the wanted monoto-
ny or shape and the coefficients of the quadratic
spline are evaluated. The form of the first phase
presented in Lahtinen (1988) preserves monoto-
ny in normal cases. The analysis of the behav-
iour in exceptional cases is presented in Lahti-
nen (1992). In the second phase the preservation
of the monotony or shape is examined. In the
case of non-preservation the parameters causing
the violation are altered according to the theory
for a proper result. Because the method is local
there is no alteration in the part of the spline
already examined and accepted .

The essential aspects of the first phase of the
QO-algorithm are in the original form as fol-
lows: Given initial data D = (x;,y; ) where the
number y; represents a measurement at point x; it
is defined auxiliary quantities

5 =Y j=1..n-1

Xiy1 — Xi
l; =\/(-\'m =X )+ (yin=yi)?, i=1..,n-1
MzﬁM’_‘ i=2,..., n-1

iy +1;

After this the first derivative m;of the quadratic
spline at the point x; is determined by means of
parameter ;= 0,

my =8, +o,(8 +U,),

o, if88.>0.
' 0, otherwise

m, = 6n—| +an(6n—l +l~1n—l )
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On an interval [x;, x;,,], where m; + m; ., # 26, an
additional breakpoint & is needed. It is deter-
mined by using a parameter b; €[0, 1]. In
practice there is an additional breakpoint on al-
most every interval. For details see Lahtinen
(1988).

The parameters ¢;, i = 1,...nand b;, i = 1,...,
n— 1 have to be determined within certain limits
so that the resulting quadratic spline preserves
monotony or shape as it was intended. These
conditions do not determine the parameters
uniquely. There is still some freedom which can
be used to get the spline to fulfil additional re-
quirements. In cases where the parameters ¢;
and b, are defined by some iterative method the
values o; = 1, b;= 0.5 are reasonable initial val-
ues.

By using this parametrisation in a taper spline
it is possible to get good volume and diameter
estimates as shown in Lahtinen (1988). The de-
rivative parametrisation has, however, some
weaknesses.

At the end points the parametrisation of the
derivatives does not always work properly. If in
the data y, = y, # ys, the procedure gives m, # 0,
m, # 0, which does not give monotony on the
interval [x,, x,]. Similarly in the case y, , #y,1 =
y, the procedure gives derivatives so that m,_, #
0, m, # 0 with the same consequences on the
interval [x,_;, x,].

This means that the first phase does not al-
ways preserve the monotony at end points. The
defect is not very serious in the taper curve
applications where it is very unusual to have the
above kind of data. For instance in our test
material of 1864 spruce stems there were only
three trees with the above mentioned behaviour
in the butt and none with this behaviour at the
top.

Also at the inner points the derivative para-
metrization in the first phase may not always
preserve the shape as explained in Lahtinen
(1992). 31 *

A characteristic feature of this parametrisation
is that the conditions for the preservation of the

shape are quite complicated. This makes it diffi-
cult to construct an effective first phase which
would take care of the preservation of the shape
of a taper spline. In fact, the QO-algorithm in
Lahtinen (1988) was implemented only for the
preservation of monotony even though in many
cases it also preserves the shape.
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2.2 Shape preserving taper curves

The monotony preserving implementation of the
QO-algorithm gives reliable taper splines when
a sufficient number of diameter measurements is
available at relative heights. Lahtinen and Lauri-
la (1990) have shown that it may even surpass
the use of the shape preserving quadratic spline
of McAllister and Roulier (1981) as a taper spline.

In principle, however, a shape preserving ta-
per curve should be superior to a monotony pre-
serving one. The QO-algorithm can be imple-
mented also to preserve the shape and it is theo-
retically more advanced than the algorithm of
McAllister and Roulier. Therefore it seems worth-
while to investigate whether a more reliable shape
preserving taper spline could be obtained in this
way.

The preservation of shape is tied to the param-
etrisation of the QO-algorithm. As we remarked,
the parametrisation is done in order to preserve
monotony. In fact, it appeared during the inves-
tigation of Lahtinen (1988) that using the QO-
algorithm it was in practice not always possible
to have taper splines having both good volume
estimates and the preservation of shape. The qual-
ity of volume estimates was then considered to
be more important.

A more advanced parametrisation of the first
phase of the QO-algorithm was presented in
Lahtinen (1990). In it the derivative m; at the
interpolating point x; was chosen by using a pa-
rameter «; and the slopes &, &;as follows:

m = a16|
6, +a;(6_,-08;), if §;:6,,>0,

m; = ) =2,..., n—1
0, otherwise

mn = ananfl

At an inner point x; the parameter g; is selected
from a subinterval of [0,1] as explained in Lahti-
nen (1990). The value a; = 0.5 can usually be
used in the absence of additional information.
Lahtinen (1992) has shown that this leads in
certain cases asymptotically to the same result as
the choice ; = 1 in the older parametrisation.
This asymptotic similarity especially takes place
at the inner points of a taper spline.

At the end points of the interval the new para-
metrisation uses the initial information more com-
pletely than the old one. This means that the
magnitudes of the parameters a,, a, are governed
by the rules
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0_<_a|<l if6|(62—61)>0,
(11=1 if61(62—51)=0,
a, >1 if 6,(6,-6,)<0,

and similarly
0<a,<1 if6,,(6,.—6,,)>0,

lf 6n—1 (611—2 = 671—1 ) = 0;
lf 6n—l (571—2 - 671—1 ) < O’

a; =1

a; >1

The treatment of the additional breakpoints is
the same as in the older form of the QO-algo-
rithm by Lahtinen (1988).

This parametrisation behaves better than the
previous one. For instance in the situation where
y1 =Yy, # y;we have now m, = m, = 0 as it should
be. Similarly the parametrisation is able to pre-
serve the shape at inner points also in the cases
where the earlier parametrisation did not. An
important advantage of the new parametrisation
is that it is much simpler to determine the param-
eter values which give a shape preserving spline.
In many cases these values are independent of
the data. This makes the preservation of the shape
easier for a taper spline.

We will investigate the new implementation
of the QO-algorithm as presented in Lahtinen
(1990). In order to distinguish the two forms of
the QO-algorithm we will call the algorithm QS-
algorithm when the new parametrisation is used
and reserve the name QO-algorithm to refer to
the original parametrisation. Our aim is twofold,
to examine the ability of the QS-algorithm to
form taper curves and to estimate the quality of
thus obtained shape preserving taper splines.

There is also in this new parametrisation some
freedom in the parameters of a shape preserving
quadratic spline. A standard method of the con-
struction is to fix the remaining freedom of the
parameters so that the taper spline has certain
prescribed properties. Because of the difficulties
mentioned earlier the crucial property is in the
case of a taper spline the quality of the volume
estimates. Therefore we will determine the pa-
rameters so that the resulting shape preserving
taper spline reproduces as well as possible given
proper volume estimates. The resulting taper
spline will be called the QS-spline.

At the end points we have to choose the deriv-
ative parameters from three different intervals as
explained earlier. In the case of a taper spline it
is reasonable to expect that the case where a, > 1
and @, > 1 would be dominant. Therefore we
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concentrated on determining the parameters for
this case. In the case where @, < 1 we fixed the
parameter value at the butt to be @, = 0.99 and
similarly in the case where a, < 1 we used a fixed
value of a, = 0.99 at the top.

2.3 The evaluation of the quality

The original version of the QO-algorithm could
not always give taper splines with proper vol-
ume estimates and at the same time preserve the
shape. Therefore we decided that the most con-
sideration was whether the parameters of the
shape preserving spline constructed by the QS-
algorithm could be determined so that the corre-
sponding taper spline, QS-spline, produced proper
volume estimates. As proper volume estimates
we considered in this investigation the ones giv-
en by the QO-spline QO15 presented in Lahti-
nen (1988) which passes through fourteen meas-
ured diameters.

After the binding of parameters on the basis of
volume estimates the taper spline is completely
determined and its quality can be estimated. This
can take place on the basis of the volume, diam-
eter values and the form produced by the taper
spline in a representative sample tree material.
In practice it is done by comparing the properties
of the taper spline with the ones of another taper
curve.

In this investigation we compared the new
shape preserving QS-spline both to the monoto-
ny preserving QO-spline and to the shape pre-
serving MR-spline. Because the relation of QO-
spline and MR-spline has been investigated in
Lahtinen and Laurila (1990) we will only present
here numerical comparisons with the MR-spline
in the cases which cannot be derived from the
earlier investigation.

Another important thing is the amount and
placement of measurements used in the con-
struction of a taper curve. It is of course advan-
tagenous to have a reliable taper curve which
can be formed with only few initial measure-
ments. On the other hand it is obvious that the
less information used in its construction the coars-
er the taper curve. We wanted to have some idea
how much initial information is needed for a
reliable QS-spline.

This was investigated by first constructing a
basic QS-spline passing through several meas-
ured diameters and examining after that how
much the quality of a QS-spline is weakened
when the number of initial measurements is grad-
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ually reduced.

As sample tree material where the determina-
tion of parameters and the comparisons were
made we used the same 1864 spruce stems as
Lahtinen (1988). A detailed description of the
material is to be found in Laasasenaho (1982).
We will only mention the essentials here. For
each tree the tree height was recorded and diam-
eters were measured at 14 relative heights from
the ground namely 1, 2.5, 5, 7.5, 10, 15, 20, 30,
40, 50, 60, 70, 80 and 90 %. The diameter at the
top was always taken to be 0.4 cm.

In order to estimate the properties of the QS-
spline we evaluated in the sample tree material
the mean relative volume differences and mean
maximal absolute values of diameter differences
as well as their standard deviations by diameter
classes. These differences were calculated in re-
lation to the comparison taper curve for the whole
stem and for seven consecutive parts into which
the stem was divided. The limits of these parts
were at relative heights of 1, 5, 10, 20, 40, 60, 80
and 100 %. We also evaluated errors of taper
curves at the heights where the measured diame-
ters were not used in the construction and tabu-
lated the mean errors and standard deviations by
diameter classes.

One important criterion is the form of the ta-
per curve. This is needed for instance in dividing
a stem into assortments of lumber. It is not easy
to find any analytical way to measure the form.
Therefore we chose representatives of the most
typical forms among the sample trees. The graph
of the tested taper curve and the one of the
comparison taper curve were drawn for these
trees.

For the evaluation of the effect of the initial
information we used several different sets of
measurements as interpolating points. The trend
of the conclusions can be presented by the re-
sults at three different point sets used already in
Lahtinen (1988) with the notation introduced
there. In this mentioned investigation it appeared
that the placement of measurements in these three
sets is quite reasonable for a good taper spline.
The results in De Boor (1978) show that even
better choices are possible, however this does
not apply to our situation where the measure-
ments have already been done.

The first set of measurements consists of all
the 14 diameters available together with the fixed
top diameter. This is called simply set /5. The
best shape preserving taper spline constructed
by the QS-algorithm and interpolating at set 15
is denoted by QS15 and called the QS-spline.
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The second set consists of 7 measured diameters
for the heights 1, 5, 10, 20, 40, 60, 80 % and the
top diameter. The best shape preserving taper
spline constructed by the QS-algorithm and in-
terpolating at this set 8A is denoted by QS8A
and also called the QS-spline. The third set con-
sists of three measured diameters for the heights
2.5, 10, 50 % and the top diameter. The best
shape preserving taper spline constructed by the
QS-algorithm and interpolating at this set 4B is
denoted by QS4B and again called the QS-spline.

The comparison taper splines used the same
sets of measurements as the interpolating points.
We used the monotony preserving QO-splines
of Lahtinen (1988), namely the taper splines
QO15, QO8A and QO4B for their good proper-
ties. For reference we also used the shape pre-
serving MR-splines of McAllister and Roulier
presented in Lahtinen and Laurila (1990). These
were MR15 and MR8A. We constructed for com-
parison also a MR-spline for the point set 4B and
denoted it as MR4B.

3 Results

3.1 Taper curves through several measured
diamenters

The first task in the investigation was to examine
whether the QS-algorithm could, unlike the QO-
algorithm, produce shape preserving taper splines
with proper volume estimates. This was tested
with a shape preserving taper spline using all the
measured diameters available. Using the QS-
algorithm we constructed a shape preserving
quadratic spline interpolating at set 15. The pa-
rameters of the quadratic spline were deter-
mined by interactive iteration so that the seven
mean partial volumes in the sample tree material
given by this taper spline differed from the cor-
responding values given by the monotony pre-
serving QO-spline QO15 as little as possible.
The obtained parameter values of the resulting
QS-spline QS15 are in Table 1. There x; is the
relative height where the diameter has been meas-
ured, a; is the parameter of the first derivative of
the taper spline at x; and b; is the parameter of the
possible additional breakpoint on the interval
1x;, X;11[. The distribution of end point derivative
parameters is given in Table 2. As was expected
almost all the trees belong to the group where

Table 1. Parameter values of taper spline QS15.

the derivative parameter at the butt, ¢, > 1. On
the other end, on the top only two-thirds of trees
have the expected behaviour, that is have a, > 1.
Some of the comparisons of the taper splines
QS15 and QO15 are presented in Tables 3—4.

The determination of parameters succeeded so
well that the shape preserving taper spline QS15
gives in the whole sample tree material the same
mean total and partial volumes as the monotony
preserving taper spline QO15. As Lahtinen and
Laurila (1990) remarked, the taper splines con-
structed with the QO-algorithm were not always
able to preserve the shape while giving good
volume estimates. This shows clearly that the
new QS-algorithm works in shape preserving
taper splines better than the QO-algorithm. Also
other indicators show that the taper splines QS15
and QO1S5 differ very little. The standard devia-
tions of the relative volume differences are small,
0.07 on the whole stem, and the total volume
difference is less than 0.2 % for almost every
sample tree, that is for 99.25 % of trees. The
mean maximal absolute value of diameter differ-
ences is also small, being at the butt less than 0.3
cm and above it less than 0.1 cm.

The volume comparisons of QS15 and QO15

i 1 2 3 4 5 6 7

X; 1 25 5 75 10 15 20
a; 28 024 05 045 052 032 033
b, 0737 05 05 05 03 02 05

30 40 50 60 70 80 90 100
054 05 05 05 05 05 05 1.1
05 05 05 05 05 05 05

Note: a; and a5 are at certain cases chosen differently, see Table 2.
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Table 2. The relative (%) frequency of different choices
of derivative parameters at the butt and top.

Taper Butt Top
spline ap;>1 aj=1 a1=099 a,>1 a,=1 a,=0.99

QSIS 954 02 44 65.1 6.8 28.1
QS8A 995 0.0 05 785 29 186
QS4B 975 0.1 24 95,5 0.0 45

by diameter classes show some mean total vol-
ume differences that would be expected from the
standard deviations. They have a certain tenden-
cy. For small trees QS15 seems to give smaller
volumes and for large trees larger volumes than
QO15. These differences are however small, less
than 0.05 % in absolute value. For small trees
the smaller volumes of QS15 are due to the
behaviour at the butt. The smaller butt volumes
may be nearer the real values as explained in
Lahtinen and Laurila (1990). In diameter classes
9-23 cm both taper splines give the same mean
total volume.

The standard deviations of the total volume
differences vary in diameter classes between 0.02
and 0.14 without any clear tendency. When the
partial volumes are examined by diameter class-
es it is noticed that the taper splines QS15 and
QO15 differ in the interval [40,60] only for small-
est trees and in the interval [60,80] not at all.
This is not surprising because the parameters of
the QO15 presented in Lahtinen (1988) give the
impression that QO15 also preserves the shape
on these intervals. As an approximative rule we
can namely say that in the older form of the
algorithm the shape is usually preserved around
an inner point x; where the parameter ; = 1. The
more this parameter differs from the value 1 the
more probable it is that the shape is not pre-
served in the neighbourhood of x;.

The graphical investigation confirms that the
taper splines QS15 and QO15 are very similar.
They differ usually only at the places where the
latter curve is not a shape preserving one. Even
in these places the differences are fairly small as
has been confirmed by the mean maximal diam-
eter differences, too. So the graphs of QS15 and
QO15 in the figures seem to coincide most of the
time.

The results seem to imply that in practice QS15
is at least as good as QO15, and for small trees it
may even be slightly better. By Lahtinen and
Laurila (1990) this indicates that QS15 is at least

Silva Fennica 27(1)

as good as MR15. QS15 seems to be superior to
MR15 at the butt; on other parts of the stem the
differences are very small.

The good quality of the QS-spline QS15 shows
that the QS-algorithm is as a shape preserving
algorithm clearly better than the QO-algorithm.

3.2 Taper curves through seven measured
diameters

After the investigation of the ability of the QS-
algorithm to form proper shape preserving taper
curves we turned our attention to the depend-
ence of the obtained shape preserving taper curve,
QS-spline, from the initial information. For this
purpose we formed QS-splines with several meas-
ured diameters, but essentially less than in the
previous case. From the many taper splines we
tested we only present one here. We believe that
this is sufficient to convey the general features
of this case.

In alternative presented we used only half of
the measurements. The chosen set 8A has seven
measured diameters and the fixed top diameter.
Compared to set 15 every second measurement
was left out. The QS-algorithm was used to con-
struct a shape preserving quadratic spline inter-
polating in set 8A. Now the criterion for the
determination of the parameters of the spline
was that in the sample tree material the seven
mean partial volumes given by this taper spline
should differ as little as possible from the corre-
sponding values of the taper spline QS15. The
parameter values of the resulting QS-spline QS8A
are presented in Table 5 where the notation is the
same as in Table 1. The distribution of deriva-
tive parameters at the end points is given in
Table 2. At both end points the number of trees
with the expected parameter behaviour has in-
creased but is at the top still only 78.5 %. Some
of the properties of taper spline QS8A are pre-
sented in Tables 3, 4 and 6.

The results show that taper spline QS8A does
not differ much from taper spline QS15. From
the seven mean partial volumes we evaluated
only the top volumes vere different. More exact-
ly, on the interval [80, 100] the taper spline
QS8A gives 1.16 % smaller mean volume than
QS15. This does not have much practical signif-
icance except that it causes a —0.08 % difference
to the mean total volumes. The standard devia-
tions show that although the mean partial vol-
umes coincide there are differences on single
trees even if they are not large. For instance, the
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1

-1.16

-1.33

6.27

3.28

3.04

0.32

0.04 0.14
0.58

0.48

0.00

0.01

5.01

-1.42
0.00 0.00 0.03

0.23

0.58

0.51

0.16 0.18

40-60  60-80 80-100

0.00
0.23
0.21
0.02
0.32

20-40 4060 60-80 80-100

5.19 037

20-40
0.06 -0.03 -0.04 -0.08
0.23
0.07
0.50 0.39
0.27

0.13 -0.03 -0.03 -0.04

0.05
-2.60

0.49 -0.37
046 054 0.19

2.94
10-20
0.23
0.08
0.42
0.11

Mean volume differences
10-20

0.04 0.06 0.02

5-10
0.24
0.03
0.45
0.06
0.54

5-10

Averages of maximal absolute values

0.00 0.00 0.00 0.00

st-5
st-5
0.29
0.75
0.56
1.34
0.50
2.26

0.00 0.00 0.00 000 0.00 0.00 0.00 0.00

0.61 -0.42
1.76 -0.46

st-100
st-100
0.31
0.85
0.57
1.46
0.73
2.26

-0.19 -0.04

-0.08
QS8A-QO8A  -0.06 -0.32 -0.03

Table 4. Averages of maximal absolute values of diameter differences (cm) and their standard deviations.

Table 3. Mean relative (%) total and partial volume differences and their standard deviations.
st = stump; percentages are always calculated with regard to the corresponding volumes given by the latter taper curve.

QS15-QO015
QS8A-QS15
QS4B-QS15
QS4B-QO4B
QS4B-MR4B
QS15-QO15
QS8A-QS15
QS8A-QOSA
QS4B-QS15
QS4B-QO4B
QS4B-MR4B

Compared
taper splines
Compared
taper splines

stump

st
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Table 5. Parameter values of taper spline QS8A.

i 1 2 3 4

5 6 7 8

X; 1 5 10 20
a 3.31 0.28 0.24

40 60 80 100

0.99999 0.45 0.38 0.21 1.62
b, 0.7 0.5 0.64  0.09

0.5 0.55 0.01

Note: a; and ag are at certain cases chosen differently, see Table 2.

total volumes produced by QS8A and QS15 dif-
fer less than 1 % in two-thirds of the sample
trees.

The volume comparisons of QS8A and QS15
by diameter classes confirm that there are small
differences in the mean volumes of diameter
classes. Unlike the comparison of QS15 and
QO15 there is no apparent tendency here. The
greatest relative differences take place in the
smallest trees with 1 cm breast height diameters.

The similarity of taper splines QS8A and QS15
can also be seen from the mean maximal abso-
lute diameter difference. It is at the butt less than
0.8 cm, between the butt and the top less than 0.3
cm and on the top slightly over 0.3 cm. These are
quite small numbers. However, the comparison
reveals that the greatest absolute difference from
the butt upwards is on the top. This means that
the otherwise good ability of QS8A to simulate
QS15 has not quite succeeded on the top.

Because all the measurements were not used
in the construction of the taper spline QS8A we
can evaluate the diameter errors of QS8A in the
remaining measurement points. The mean val-
ues and standard deviations are in Table 6. The
greatest mean error, —0.1 cm is at the 90 %
height. While not being large it however, togeth-
er with the mean maximal diameter difference,
reveals that this taper spline runs into some diffi-
culties at the top. At other points of the stem the
mean absolute value of the error is less than 0.05
cm which is practically negligible. The standard
deviations imply that most diameter errors are
near the mean errors. The results of these con-
siderations show that the quality of the taper
spline QS8A is very good.

When the QS-spline is compared with the MR-
spline as presented in Lahtinen and Laurila (1990)
it can be noticed that the taper spline MR8A
gives too large volumes and diameters at the butt
and slightly too small volumes and diameters on
the interval [20, 40]. On both areas QS8A be-
haves very correctly. MR8A is better only at the
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top. On other parts of the stem the differences
are very small. On the whole this indicates that
QS8A should be preferred to MR8A.

The differences between QS- and QO-splines
are still small in the case of seven measured
diameters as seen from Tables 3, 4, 6 and the
results of Lahtinen (1988). Some discrepancies
begin, however, to appear indicating that for a
taper spline the preservation of shape may be for
this number of initial measurements better than
the preservation of monotony. Especially the QS-
spline QS8A seems to have a slightly better be-
haviour at the butt than the QO-spline QO8A.

The graphical investigation gives support for
the above mentioned features. The graphs of
QS8A and QS15 seem to coincide in most fig-
ures. Differences take usually place for trees
with irregularities which can not be seen from
the smaller set of measurements. The differenc-
es of the taper splines QS8A and QO8A seem in
general to take place only at the parts of the stem
where the QO-spline does not preserve the shape.

In conclusion we can say that the differences
between the treated taper splines interpolating in
the set 8A are in general small. However, the
shape preserving taper spline QS8A can be con-
sidered to be better than the other shape pere-
serving taper spline MR8A and to be at least as
good as the monotony preserving taper spline
QOS8A. For many purposes QS8A is about as
good as the taper spline QS15 using twice as
many measured diameters.

3.3 Taper curve through three measured
diameters

The smallest amount of initial information we
used in the tests was three measured diameters
and the height. The point set 4B offers a suitable
case for presenting the properties of a shape
preserving QS-spline with few initial measure-
ments. The characteristic feature of the set 4B is
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Relative (%) height
10 15 20 30 40 50 60 70 80 90

235 7.5

me(d)
st.d.

Table 6. The mean diameter errors (cm) with regard to the measured diameters, and their standard deviations.

Taper

spline

05
05
12
13

0

-0.08 -0
-0.36 -0

0.01

0.00

-0.01
-0.01

-0.12
-0.29 -0.51

0.00
0.01
0.00 -0.05

-0.01
—-0.05

QS8A  me(d)
QO8A me(d)
MRSA me(d)
QS4B me(d)
QO4B  me(d)
MR4B  me(d)

0.84 0.33
0.86 0.33
0.92 0.33
052 0.39
052 0.39
0.60 0.41

2.38
2.71
2.24

st.d
st.d
st.d
st.d.
st.d
st.d

25500
NOENO X
lolepFele =

mean diameter error (cm) at a relative height

st.d. = corresponding standard deviation

me(d)

that the lowest interpolating point has been raised
to the 2.5 % height in order to obtain better
behaviour at the butt. This means that the taper
curve on the interval [stump, 2.5] must be formed
by extrapolation which does not in general give
as stable behaviour as interpolation.

The shape preserving QS-spline was again con-
structed with the QS-algorithm. The parameters
of the taper spline were determined as before by
interactive iteration so that the seven mean par-
tial volumes differed as little as possible from
the corresponding volumes given by the taper
spline QS15. The parameter values of the result-
ing QS-spline QS4B are in Table 7 where the
notation is the same as in Table 1. The distribu-
tion of derivative parameters at end points is
presented in Table 2. Now almost all the trees
are in the expected groups. Some of the proper-
ties of QS4B are given in Tables 3, 4, 6, 8 and 9.

The determination of parameters succeeded
quite well apart from at the top even if the partial

Table 7. Parameter values of taper spline QS4B.

i 1 2 3 4
X 2.5 10 50 100
a; 4.16 0.0001 0.52 1.36
b, 0.5 0.418 0.45

Note: aj and a4 are at certain cases chosen differently, see Table 2.

volume differences could not be pushed to zero
with the same accuracy as in the case of several
measured diameters. The remaining differences
produced a —0.19 % mean total volume differ-
ence between taper splines QS4B and QS15 in
the sample tree material. On the sensitive extra-
polation area on the butt the difference was only
—0.04 %. This indicates that the extrapolation
has been succesful which is in accordance with

Table 8. Mean relative (%) total and partial volume differences of QS4B

and QSIS by diameter classes.

Diameter Interval

(cm) st-100 st-5 5-10  10-20 2040 4060 60-80 80-100
1 -0.07 -0.76 -0.65 046 -0.92 -242 799 28.88
3 146 -126 036 052 057 0.62 1234 30.72
5 0.11 220 -020 -044 -030 0.02 582 2623
7 0.13 -1.00 0.38 0.38 -0.07 0.18 3.70 17.30
9 024 026 027 039 030 -0.13 183 16.19
11 -0.05 -0.02 0.09 -020 -0.15 -0.13 1.87 18.64
13 029 0.13 004 053 093 0.18 052 1096
15 026 -0.10 0.18 -0.04 -025 000 023 407
17 -0.37 0.09 042 -034 0.18 0.07 -1.31 087
19 -0.13 041 -0.14 023 -0.15 -0.10 -0.07 5.36
21 -0.55 0.10 026 -0.51 -034 004 -167 -3.10
23 043 027 022 -038 0.10 0.08 -2.16 -0.79
25 -0.50 034 040 039 -0.54 004 -1.58 -051
27 -0.56 028 -0.07 -023 -0.25 -025 -223 -061
29 -0.48 008 038 051 -001 -0.19 431 -5.29
31 -0.55 0.04 046 -021 -038 -039 -1.79 1.03
33 -0.70 0.14 084 041 -1.09 -0.20 -1.78 -3.66
35 0.11 0.06 0.15 122 174 -0.10 -530 -8.32
37 -045 0.18 -0.17 0.16 047 001 416 -954
39 -120 0.13 029 -124 -1.72 042 -154 418
41 -2.02 070 3.14 -198 -343 -1.70 544 191
43 0.84 029 190 -0.08 188 047 207 -753
45 -1.37 001 075 -1.03 -195 -1.14 432 -7.12
47 0.03 -1.24 -021 137 -1.75 -0.82 5.78 21.50
53 0.18 -0.81 -331 392 288 -120 -6.82 -17.77
61 038 030 1.62 092 235 -0.89 -2.61 -15.22

mean -0.19 -0.04 0.13 -0.03 -0.03 -0.04 0.01 627

st= slump
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Table 9. Standard deviations of relative (%) total and partial volume differ-
ences of QS4B and QS15 by diameter classes.

Diameter

Interval

(cm) st-100 st-5 5-10  10-20 2040 4060 60-80  80-100

491 171 670 934 837 169 1039 91.24
531 588 512 485 8.06 489 2549 4504

323 3.03 458 487 691 290 1720 37.75

1
3
5 359 498 437 427 655 3.01 1888 48.07
7
9

237 206 322 431 543 206 13.06 3594

11 257 226 334 333 490 209 14.88 41.61
13 277 246 346 4.09 572 201 1336 37.30
15 2.89 223 296 449 548 192 1154 31.56
17 243 219 326 269 4.62 242 1025 2547
19 263 329 314 425 521 194 1097 28.34
21 221 214 332 338 433 188 9.80 23.02
23 207 201 255 294 454 186 941 2995
25 214 1.69 263 285 430 187 9.1 2252
27 217 1.80 223 319 455 192 10.82 26.50
29 1.63 207 268 259 366 166 7.52 1535
31 213 198 276 3.01 473 190 10.10 31.34
33 219 259 306 3.08 421 217 939 19.00
35 1.96 228 274 3838 363 187 8.11 2247
37 1.57 3.61 257 314 294 138 7.32 1627
39 1.55 332 274 273 304 159 8.12 1597
41 230 1.56 202 3.04 552 133 1030 39.96
43 1.65 193 078 341 063 203 1562 19.04
45 225 214 1.14 245 462 217 731 13.94
47 487 317 237 422 711 179 6.11 43.63
53 268 688 845 387 041 194 895 3245
61 0.00 0.00 0.00 0.00 000 0.00 000 0.00

mean 262 267 327 372 514 218 1271 3331

st = stump

the earlier results of Lahtinen (1988). On almost
the whole stem, that is on the parts of the interval
[10, 80], the mean volume difference is less than
—0.05 %.

In general the QS-spline QS4B tends to give
smaller volumes than QS15. As can be seen
from Tables 8 and 9, this behaviour is seen in
almost all diameter classes, only the largest trees
form an exception. Volume differences evaluat-
ed by diameter classes together with standard
deviations seem also to imply that there are larg-
er relative differences in the volumes of very
small trees and very large trees than elsewhere.

The weakest part of the taper spline QS4B is
the top where there are the greatest relative vol-
ume differences with large standard deviations.
Also other QS-splines have had difficulties at
the top but not as much as in this case. This can
partly be explained by the small number of ini-
tial measurements. The top derivative of the
spline has to be determined so that we have both
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the preservation of the shape and decent volume
estimates on the parts of the long interval
[50, 100]. This approach seems not to be able to
cope with the behaviour near the top.

One indicator of the difference between QS-
splines QS4B and QS15 is the mean maximal
absolute diameter difference. It is on the extra-
polation area, on the butt, 1.34 cm and on the
rest of the stem less than 0.6 cm. This together
with a tolerable standard deviation indicates that
these taper splines do not differ much on regular
trees. It can also be seen that the extrapolation
produces large differences for some trees, but
this is not a common phenomenon.

The mean diameter errors at the points where
the measured diameters are not used in interpo-
lation are fairly small; at the butt 0.43 ¢cm and
above it less than 0.1 cm. The standard devia-
tions are small except on the extrapolation area
at the butt.

The graphical investigation agrees with the
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Fig. 1. Taper curves QS4B (connected line) and QS15 (dotted line) for an
irregular tree (o stands for an interpolating point of QS4B and X stands for an

interpolating point of QS15).
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Fig. 2. Taper curves QS4B (connected line) and QS15 (dotted line) for a regular
tree (o stands for an interpolating point of QS4B and X stands for an

interpolating point of QS15).
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numerical results. The differences of the taper
splines QS4B and QS15 are largest in a tree
which has some unusual values of its measured
diameters. This is the case both when these meas-
urements are excluded from set 4B and when
they are included in set 4B. One example can be
seen in Fig. 1. There may also be small differ-
ences in trees with a regular set of measure-
ments. A typical case is presented in Fig. 2.
These two figures demonstrate also that the QS-
spline QS4B as a rule gives a natural form to the
tree.

The comparisons with other taper splines in-
terpolating at the set 4B are plainly in favour of
the QS-spline. This can most clearly be seen
from the mean diameter errors presented with
their standard deviations in Table 6. The taper
spline QS4B is distinctly superior to the other
shape preserving taper spline, MR-spline MR4B.

The differences are especially apparent on the
butt and on the interval [20, 40]. The MR-spline
MR4B was not treated in Lahtinen and Laurila
(1990) and therefore it is included in Tables 3, 4
and 6.

The monotony preserving QO-spline is better
than the MR-spline but the comparisons present-
ed in Tables 3, 4 and 6 imply that the QS-spline
QS4B is superior to the QO-spline QO4B, too.
In fact, from the results of Lahtinen (1988) it can
be seen that QS4B is approximately as accurate
as the QO-spline QOS5C which is based on four
measured diameters, which is one more than is
used for QS4B.

As a whole the QS-spline QS4B can be con-
sidered as a satisfactory taper curve. In fact, it
seems to be surprisingly good in relation to the
small amount of initial information.

4 Discussion

4.1 The basis of the investigation

In principle a shape preserving spline function
has better qualifications for a taper curve than a
spline function preserving only the monotony.
The investigation of Lahtinen and Laurila (1990)
indicated that this theoretical advantage is not
necessarily realisable in practice. In the compar-
ison the monotony preserving QO-spline by
Lahtinen (1988) seemed to be slightly superior
to the shape preserving MR-spline of McAllister
and Roulier (1981).

Some explanation for this phenomenon can
be deduced from Lahtinen (1990) where it is
shown that the demand for preservation of the
monotony or the shape does not uniquely deter-
mine the spline. There is still freedom in the
choice of the coefficients of the spline. This
means that it is also important to have a satisfac-
tory way for the determination of the spline co-
efficients within the general demand for preser-
vation of the monotony or shape. The QO-algo-
rithm appears to be in this sense more advanced
than the shape preserving algorithm of McAl-
lister and Roulier even if the QO-algorithm pre-
serves only the monotony.

In fact, the QO-algorithm is also abie to pro-
duce a shape preserving spline. In the investiga-
tion of Lahtinen (1988) it appeared, however,
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that the taper curve, QO-spline, produced by the
QO-algorithm was not always able to have both
good volume estimates and the preservation of
the shape. In this situation the quality of vol-
umes estimates was considered to be more im-
portant.

An analysis of the situation revealed that the
parametrisation of the QO-algorithm was such
that the preservation of the shape was in theory
possible but in practice difficult. Lahtinen (1990)
succeeded in developing a new implementation
of the QO-algorithm called the QS-algorithm. In
this the preservation of the shape could be done
in a more efficient and natural way.

The aim of the present investigation was to
examine the ability of the QS-algorithm to pro-
duce shape preserving taper curves and to esti-
mate the quality of thus obtained taper splines.
The starting point was the determination of the
parameters of the shape preserving quadratic
spline so that the resulting taper curve could give
as accurate volume estimates as possible. In this
investigation it was assumed that this could be
achieved if the volumes were essentially the same
as the ones given by the QO-spline QO15 through
fourteen measured diameters.

After the determination of the taper spline by
volume estimates the quality of the obtained QS-
spline was estimated using the volume and di-
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ameter estimates and the form of the taper spline.
For this purpose the QS-spline was compared to
the earlier QO- and MR-splines.

One factor in the quality is the number of intial
measurements needed for a sufficiently good ac-
curacy in the taper curve. It is to be expected that
a shape preserving taper spline would need less
measurements than other taper splines. This was
investigated by gradually reducing the number
of measured diameters used in the construction
of the QS-spline and comparing the result both
with the QS-splines using more measurements
and with QO- and MR-splines using the same
measurements. It must, however, keep in mind
that our method is based on the use of several
measurements. When only very little informa-
tion is available, then more statistical arguments
must be used.

4.2 The quality of the QS-spline

Our aim was to develop a better shape preserv-
ing taper curve than the MR-spline. In this we
have succeeded, the QS-spline seemed in our
tests to be superior to MR-spline, although in
many ways they behaved similarly. This is due
to the common property of shape preserving.
Even if the differences were in many cases small
they were almost always in favour of the QS-
spline. The only notable exception was that at
the top part of the stem, that is from the relative
height 80 % upwards, the MR-spline was some-
times better.

The essential question was whether the shape
preserving taper spline constructed with the QS-
algorithm was of the same quality as the QO-
spline. The comparisons of taper splines in the
investigation give an affirmative answer to this
question. The significance of the observed dif-
ferences depends of course on the nature of the
other taper curve and on the number of the initial
measurements.

The QS-spline is able to give similar volume
estimates as the monotony preserving QO-spline
while still preserving the shape. This is a very
positive result. Generally speaking, the QS-spline
tends in almost all aspects to be superior to the
QO-spline even if the differences are in many
cases small. The situation is to be expected be-
cause both taper splines are based to the same
mathematical theory behind the different imple-
mentations of the QO-algorithm. This means that
in some cases the QO-spline preserves in addi-
tion of the monotony also the shape.
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Concerning the significance of the initial meas-
urements we can say that the greater the amount
of the initial information the smaller the differ-
ences in taper curves both preserving the monot-
ony should be. Because both the QS-and QO-
splines are fairly accurate, differences between
them cannot be large when a large set of initial
measurements is available.

When several measured diameters are availa-
ble the shape preserving QS-spline is superior to
the shape preserving MR-spline on the butt and
at least as good elsewhere. With the same initial
information the QS-spline is able to produce as
reliable total and partial volume estimates as the
monotony preserving QO-spline. The measura-
ble diameter errors were quite small for the QO-
spline, however, in the QS-spline they are even
smaller.

When only a small amount of the initial infor-
mation is available then the differences are more
clear. The QS-spline tends to be superior to the
QO-spline both with regard to volume and diam-
eter estimates and with the form of the taper
curve. Especially noteworthy is that the QS-spline
does not have the same problems with dealing
with small trees that is observed with the QO-
spline. The MR-spline seems to be inferior to
both these splines.

As a whole the results indicate that the shape
preserving QS-spline can be considered a better
taper curve than the monotony preserving QO-
spline. It can also be considered to be better than
the other shape preserving taper spline, MR-
spline. The differences are the larger the smaller
the number of measured diameters in the con-
struction.

4.3 Some features of the QS-spline

The results confirm that the QS-spline is a very
reliable taper curve when suitable intitial infor-
mation is available. However, quality indicators
together with the interactive iteration used for
the determination of the parameters reveal that
the QS-spline has also some properties that must
be treated with care.

It was known beforehand that as a quadratic
spline it has difficulties in adapting itself to the
fast tapering of the butt. The QS-spline is, how-
ever, no worse than the other tested taper splines
based on quadratic splines, namely the QO-spline
and MR-spline. A new feature was that the QS-
spline has difficulties also at the other end of the
stem, at the top. The standard deviations of dif-
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ferent indicators are large and relative diameter
errors greater than in other parts of the stem. The
mean absolute diameter errors at the top are on
the other hand only about 0.1 cm. As the practi-
cal significance of the top is small this weakness
seems to be tolerable.

The shape preserving MR-spline investigated
by Lahtinen and Laurila (1990) had difficulties
in giving accurate volume or diameter estimates
between the relative heights of 20 % and 40 %.
Although the QS-spline tends to be superior to
the MR-spline it seems to have the same kind of
difficulties.

For instance in the case of seven measured
initial diameters it was very tedious to determine
the parameters so that the volume estimates for
the interval [20, 40] were within the prescribed
tolerances. In fact the parameter values had to be
pushed into extereme acceptable positions leav-
ing no room for further alterations. Also other
sets of initial measurements produced similar
situations. It seems to be an intrinsic property of
a shape preserving taper spline that it tends to
give in the lower part of the stem smaller vol-
umes and diameters than other taper splines in-
cluding the cubic spline of Lahtinen and Laasa-
senaho (1979).

Concerning the similarity of the shape pre-
serving QS-spline and the monotony preserving
QO-spline it has also to be remembered that the
measurements are not always in accordance to
the standard form of the tree. A normal tree is
convex near the stump, has one point of inflec-
tion and above this it is concave. If the form of a
set of measurements is defined to be the form of
a linear spline function interpolating at this set
we can investigate the form of the measure-
ments. It appears that the set of measurements of
a tree has as a rule several points of inflection.
This phenomenon gives some reason to consider
the significance of the preservation of the shape
when a large set of measurements is available.

The situation is totally different when only a
few diameters have been measured from a tree.
Then the preservation of shape tends to give the
taper curve the natural form of a tree which

would otherwise be very difficult to obtain. This
natural form definitely makes the errors of the
taper curve smaller both in volume and diameter
estimates.

This shape preserving property can be utilised
in a situation where the level of accuracy of the
estimates is determined before the measurements
are made. Then the shape preserving taper spline
is easier and more economical to use because it
needs less initial information than other taper
splines for a given accuracy. This makes the QS-
spline superior to the QO-spline which in its turn
is superior to a common interpolating taper spline.
This is the more apparent the smaller number of
initial measurements is in question.

The remaining freedom in the choice of pa-
rameters in a shape preserving taper spline works
on two ways. When some additional information
is available then it is an advantage because it can
be used to adapt the taper spline to the informa-
tion which increases the accuracy. On the other
hand, if no additional information is availabe
then we still have to decide how to determine the
parameters in the taper spline. This results in a
level of uncertainty which has to be resolved
somehow. In our investigations we have deter-
mined the parameters by volume estimates in a
representative sample tree material. Because the
diameters have been measured at relative heights
we have been able to utilize in the determination
the assumption that the form of the stem is inde-
pendent of the size of the tree.

In conclusion we can state that the theoretical
properties of a shape preserving quadratic spline
raise expectations of the quality of taper splines.
The shape preserving QS-spline fulfils these ex-
pectations quite satisfactorily.
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