
265

A Method for Generating Stand
Structures Using Gibbs Marked Point 
Process
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Stand growth modelling based on single tree responses to their surroundings requires 
a description of the spatial structure of a stand. While such detailed information is 
rarely available from fi eld measurements, a method to create it from more general stand 
variables is needed.

A marked Gibbs point potential theory combined with Markov chain Monte Carlo 
(MCMC) random process was used to create a spatial confi guration for any given number 
of trees. The trees are considered as charges rejecting each other and building ‘potential 
energy’. As an analogue of the potential energy in physical systems, the potential of a 
stand is defi ned in terms of size-dependent tree-to-tree interactions that can be thought of 
as related to resource depletion and competition. The idea that bigger trees induce larger 
potentials brings 3-dimensional effects into the system. Any feasible spatial structure is a 
state of the system, and the related potential can be calculated. The probability that a certain 
state occurs is assumed to be a decreasing function of its potential. Because more regular 
structures have lower potentials, by adjusting the steepness of the probability distribution the 
spatial structure can be allowed to have a lot of randomness (naturally regenerated stands) 
or forced to be very regular (planted stands). The MCMC algorithm is a numerical method 
of fi nding stand confi gurations that correspond to the expected level of the potential, given 
the size distribution of trees and the shape of the probability density function.

The method also allows us to take into account spatial variation in the terrain. Some 
spots can be defi ned to have lower basic potential than others (ditch, planting furrow, 
etc.) in order to create areas of higher than average stocking density. A preliminary 
test of the method was conducted on two measured stands. The results suggest that 
the method could provide an effi cient and fl exible means of mimicking variable stand 
structures.

Keywords stand simulation, spatial distribution, Gibbs point process, Markov chain Monte 
Carlo
Authors´addresses University of Helsinki, Department of Forest Ecology, P.O. Box 27, 
FIN-00014 Helsingin yliopisto, Finland
E-mail tero.kokkila@helsinki.fi ; annikki.makela@helsinki.fi ; eero.nikinmaa@helsinki.fi 
Received 16 November 2000  Accepted 21 March 2002

Silva Fennica 36(1) research articles



266

Silva Fennica 36(1) research articles

1 Introduction

The rapid development of computer software 
recently has increased the number of growth 
models that treat the stand as a spatially explicit 
structure, with individual trees interacting with 
each other through their local environment 
(Pretzch 1992, Courbaud 1995, Pacala et al. 1993, 
Williams 1996). In order to initialise and test 
the projections of such models, adequate descrip-
tions of the spatial distribution of trees in a stand 
are needed (Pukkala 1988b). In most cases, the 
spatial information required by the models is 
not available, or is hard to come by using empiri-
cal measurements. Instead, mathematical estima-
tion procedures have to be employed that can be 
tied with measurements through some aggregate 
characteristics of the set of trees considered.

The most common method to create a two-
dimensional point pattern for tree locations is 
provided by the Poisson process (e.g. Valentine 
et al. 1999). Some inhomogeneity can be reached 
by dividing the area considered into subareas 
and drawing a random number from the Pois-
son distribution for each subarea to represent 
the number of trees located in this area. The 
distribution can be adjusted according to mean 
density and the number of subareas used. Even 
some clustering effects can be created by adding 
another parameter into the algorithm (Penridge 
1986).

Two problems arise in applications of the Pois-
son algorithm to tree stands. Firstly, the points 
are independent of each other, discarding any 
possible effects of crowding. Secondly, no marks 
are attached to the points, whereby the effects 
of tree interactions cannot be taken into account. 
However, in reality both locations and trees have 
additional characteristics, such as tree size or 
local soil moisture, which have mutual correla-
tions that affect the spatial structure (Penttinen 
et al. 1992). In order to include the interactions 
between tree size and location, Valentine et al. 
(1999) modifi ed the Poisson algorithm to account 
for the fact that large trees would normally 
occupy a larger area than smaller trees. They 
generated a Poisson point pattern, but instead 
of randomly locating trees from a given size 

distribution to these points, they ordered the trees 
according to size and placed the larger trees to 
the points where neighbours were furthest.

Although incorporating some effects of com-
petition, this modifi cation does not dispense with 
the problem of independent point pattern. That 
could only be taken into account in a so-called 
marked point process (e.g. Snyder 1975, Pent-
tinen et al. 1992), assigning trees and locations 
additional characteristics that may interact with 
each other, modifying the distribution of tree loca-
tions also. The theory of marked point processes 
has been applied to tree stands and to describe 
statistical features in them (Mateu et al. 1998). 
Methods for generating stand structures using 
such algorithms have recently been reviewed by 
Stoyan and Penttinen (2000).

Gibbs pair potential fi eld theory (e.g. Thomp-
son1972, Ripley 1988, Bar-Yam 1997) provides 
an attractive analogue for a method for placing 
trees in a stand. The theory fi nds a spatial distribu-
tion for objects that are assumed to interact pair-
wise, the interaction between each pair of objects 
acting like a repulsive force that pushes the objects 
away from each other. According to Gibbs’ theory, 
the probability of a particular confi guration of 
objects is the greater, the lower the total poten-
tial in the system. However, the expected con-
fi guration is not the absolute potential minimum 
(which in the case of identical trees on a uniform 
site would be a regular grid) but a state where 
low potential balances with random movement of 
objects. In the analogue of the theory to trees in a 
stand, the “repulsive force” is defi ned as competi-
tion between the trees, and the “random move-
ment” is analogue with the randomness found in 
the regeneration process. Local site variation can 
be included as additional sinks and sources of the 
“potential fi eld”. When the probability distribu-
tion of the possible states is simulated, confi gura-
tions giving rise to the expectation value of the 
potential can be found. These represent a balance 
between the minimum potential and the hypoth-
esized degree of randomness.

However, although this method would appear 
promising in principle, attempts to apply the 
Gibbs potential fi eld analogue to the generation of 
stand structures so far have provided inconclusive 
results. Ogata and Tanemura (1985) parameter-
ised a piecewise continuous potential function 
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from measurements, but the application of this 
function failed to reproduce the measured stand 
characteristics (Goulard et al. 1996). On the other 
hand, Stoyan and Penttinen (2000) showed that 
a fairly regular stand structure could be simu-
lated using pair potentials defi ned on the basis 
of mutual distance only. These experiences sug-
gest that the critical features of the method for 
realistic simulations, are the defi nitions of the 
pair potential and the background potential fi eld, 
as well as the relative weights of the two. The pair 
potential is responsible for the repulsive effects of 
competition between trees, while the background 
potential fi eld can create the opposite effect of 
clustering.

In this paper, we apply the Gibbs marked point 
process to generate the spatial structure of a stand 
of saplings, given their diameter distribution. Spe-
cial attention is paid to the defi nition of the pair 
potential and the background potential functions, 
using ideas of tree-to-tree competition and eco-
logical fi eld theory. The properties of the method 
are reviewed, with special attention to the possi-
bilities of estimating the parameters of the method 
consistently for specifi ed stand types. A prelimi-
nary comparison with measured stand structures 
is presented, with the objective of assessing the 
applicability of the method as an initialising algo-
rithm for stand growth models.

2 Material and Methods

2.1 Gibbs Marked Point Process

2.1.1 Principle of the Method

On a marked Gibbs point potential fi eld there are 
a number of points on a given area. The points 
are marked, i.e. their values differ from each 
others. These values determine the potential fi eld 
they create around themselves. While points keep 
pushing (at least some of the potentials must be 
repulsive, otherwise the problem would be trivial) 
each other away, they can never leave the area, so 
they try to arrange themselves, so as to minimise 
the overall potential. On the other hand, there is 
always a random factor in the process causing 
transitions sometimes to take place upwards in 

the potential.
Calculating the total potential of any pattern 

is simple, but since there are an infi nite number 
of possible patterns, it is not possible to fi nd the 
one with the expected potential in closed form. 
Instead, we defi ne the possible patterns as states 
in a Markov chain and apply the Metropolis-
Hastings simulation (e.g. Ripley 1981, Penttinen 
1983, Bar-Yam 1997, Dam et al. 1999) on it. All 
patterns are arranged according to their potential. 
By moving one point at a time to a new location 
and following the change in total potential at 
every step, we can study the behaviour of the 
system and the probabilities of its states.

After a large number of random steps, the 
potentials of the generated Markov chain approxi-
mate the probability distribution of the potential. 
This allows us to estimate the mean potential, 
and further, to select any confi guration giving 
rise to a potential close enough to the mean. In 
the following, the assumptions concerning the 
potential fi eld, and the steps of the procedure are 
explained in more detail.

2.1.2 Description of the Potential Field

Let N be the number of trees in the stand and 
A the stand area (A �  R2). For convenience, we 
defi ne A as a rectangle. Every tree has a location 
in A, which is denoted by a vector x (x �  A). Let 
X = X(x1 x2 … xN) be a vector (X �  AN) including 
all horizontal locations of the trees of the stand. 
X is a spatial structure of the stand.

In order to defi ne the Gibbs potential fi eld for 
the trees in the stand, we need to defi ne a pair 
potential, �ij, between any two trees i and j. We 
hypothesize that the pair potential quantifi es the 
effect of competition between trees on the spatial 
structure. It is therefore close to the concept of the 
competition index, often used in growth model-
ling. A crucial difference is, however, that the 
potential is defi ned for a pair of trees, not for each 
individual, and therefore has to be symmetrical, 
i.e., �ij = �ji. This is not true of most competition 
indices which depend on the relative sizes of the 
competing trees.

Competition is defi ned as interaction between 
trees due to the utilisation of shared resources 
(Ford and Sorrensen 1992, Vanclay 1994). The 
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resources are drawn from a zone of infl uence 
around the tree, which is the larger, the bigger the 
tree. The “repulsive force” between any two trees 
should therefore increase (or remain constant) 
with the size of the trees. On the other hand, 
because the intensity of utilisation of resources 
decreases with the distance from the tree, the pair 
potential should decrease (or remain constant) 
with increasing mutual distance.

There are several possible formulations satis-
fying the three requirements above. For exam-
ple, Penttinen et al. (1992) and Goulard et al. 
(1996) defi ned piecewise continuous / differenti-
able functions of mutual distance that decreased 
with increasing distance and were zero for dis-
tances larger than a given limit, while the func-
tions were independent of tree size. We suggest 
the following formulation, which satisfi es the 
requirements set above:

fij
i j

i j
qc

d d

x x
= ◊

◊

-
 (1)

where di is the breast height diameter of tree i 
and c is an empirical constant which may depend 
on the species of i and j and soil fertility. In 
the denominator we have the distance between 
trees raised to the power q. In the above form the 
competition potential goes to infi nity when the 
tree-to-tree distance approaches zero and vanishes 
gradually as the distance increases. The potential 
is also highly dependent on the tree sizes; the 
potential becomes very big only in the case of 
two large trees. Like in reality, one may fi nd a 
small seedling or a suppressed tree close to a big 
one, but two big trunks very close to each other 
are highly unlikely.

Assuming that the area of competition around a 
tree can be defi ned as a circle with radius propor-
tional to di, and that the intensity of competition 
is proportional to the overlap of the competition 
areas of neighbouring trees (Fig. 1), it turns out 
that Eqn (1) with q = 1 approximates this overlap 
area, the approximation being the more accurate, 
the more similar the tree sizes. The value q = 
1 is used in this article. Goulard et al. (1996) 
also used the overlap area as the basis of the pair 
potential function. However, if the assumptions 
do not hold, values up to 2 might be justifi ed. It 
is also interesting that the above formulation is 

similar to the well-known law of gravitation.
Now we can calculate the total competition 

potential within the stand, U�, by summing up 
all the tree pairs.

U X ij
i j

f f( ) =
<
Â  (2)

To avoid tricky boundary effects we determine 
the stand area to be periodic. This means con-
necting the left and right boundaries as well as 
the upper and lower (Fig. 2.) Mathematically our 
stand surface is similar to a torus.

The method of calculating competition poten-
tials can be used not just to describe tree-to-tree 
competition, but we can also take into account 
various kinds of irregularity in the growth site. 
For example a moist creek can reduce potential 
locally so there will be more trees than average. 

Fig. 1. Competition between a pair of trees depends 
on the size and distance of the trees. As the dis-
tance decreases, the competition (dashed zone) 
enlarges.

Fig. 2. Periodical boundaries.
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Vice versa, we can use increased competition 
potential on some rough (e.g. rocky) plots. The 
magnitude of the site effect on a tree is usually 
related to the size of the tree.

Let s = si(xi) be the site effect on tree i in 
location xi.

U X s xs i i
i

( ) ( )= Â  (3)

The shape of s may depend on the species of 
tree i. In the examples of this article, though, the 
function s is assumed to be similar for all species 
so, si can simply be written as s.

Combining (2) and (3) we get the total poten-
tial

U X d d x x s xk i j i j
i j

i
i

N

( ) ( , , ) ( )= - +
< =
Â Âf

1
 (4)

Using Gibbs’ theory we can calculate the total 
competition potential for every structure.

2.1.3 Probability Distribution of Structures

According to Gibbs’ theory, the probability, f(X), 
of each structure, X, can be calculated from the 
formula (Thompson 1972)

f X
Z

e U X( ) ( )= ◊ -1 b  (5)

where Z is a scaling factor and � is a parameter 
determining the degree of randomness. In order 
for f(X) to be a probability distribution all terms 
must sum up to unity. Thus we can determine 
Z as

Z e dXU X

X A N

= -

Œ
Ú b ( )

 (6)

The expectation value of U(X), i.e. the expected 
potential of the spatial structures with the proba-
bility density function given by Eqn (5), is defi ned 
as (Ripley 1988)

U
Z

U X e dXmean
U X

X A N

= -

Œ
Ú

1
( ) ( )b

 (7)

Since the probability of structure X is totally 
determined by the related potential, any structure 

X with this potential is equally likely. Any con-
fi guration X giving rise to the mean potential, 
Umean, can therefore be considered a feasible 
solution. Because of the enormous number of 
terms to be calculated, the integral of Eqn (7) 
cannot be determined analytically. To fi nd con-
fi gurations with potentials close enough to Umean, 
we employ the so-called Metropolis-Hastings 
simulation (Dam et al. 1999).

2.1.4 Steady State of the Markov Chain

By simulating the chain of states for long enough 
we generate an estimate of the probability dis-
tribution of potentials. From this simulated dis-
tribution we can determine an estimate of the 
mean potential. Any confi guration with a poten-
tial suffi ciently close to the estimated mean can 
be accepted. In order to fi nd a feasible confi gura-
tion, the following steps were taken:
1) The change of potential is monitored at every 

step, i.e., at each movement of a tree from one 
place to another. When changes up and down 
the potential balance over a chosen number of 
steps, we assume there is no more systematic drift 
and the simulated states represent the probability 
distribution of the potential.

2) The algorithm is run for a large number of steps 
and the potential minimum, average, and maxi-
mum are updated at each step and stored.

3) A confi guration is defi ned to be feasible if its 
potential is in the range of [estimated mean poten-
tial ± 0.02 * (maximum – minimum)]. The next 
time the potential falls within the accepted range) 
the algorithm is stopped and the confi guration 
reached is selected.

2.2 Material

Preliminary test material was collected from two 
plots of saplings in Hyytiälä (61°48’, 24°19’), 
southern Finland. Both plots (outlined inside a 
larger stand area) were 20 m × 20 m in size, Scots 
pine (Pinus sylvestris) dominated, but included 
also trees of various other species (Table 1).

In all seedlings at least 10% of the average 
height, tree height, height of crown base, diameter 
at crown base, and breast height diameter (when 
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existent) were recorded. In addition, the location 
of the seedlings was measured in terms of angular 
coordinates from a reference point.

2.3 Comparison of Measured and Simulated 
Stand Confi gurations

For comparisons of the measured and simulated 
spatial patterns, we calculated several measures 
of grouping and spatial correlation. The Hopkins 
grouping index (e.g. Pukkala 1988b), g, measures 
the degree of clustering, and is defi ned as

g a bi i= Â Â2 2/  (8)

where ai is the distance from a random point 
to the closest tree and bi is the distance from a 
random tree to its closest neighbour. The smaller 
the index, the more regular the pattern. For a 
Poisson process g = 1, while g < 1 is considered 
regular and g > 1 indicates clustering. Since equa-
tion (8) includes a random factor the calculation 
gives a slightly different value for g every time. 
The variations are small, however, so we simply 
used the average of seven calculations.

The pair correlation function, g(r), is a (relative) 
measure of the probability that two trees occur at 
a mutual distance r. For a Poisson process, g(r) 
� 1. If distances r are more likely than random, 
g(r) > 1, indicating clustering. Values g(r) < 1 
indicate regularity. In a sense, g(r) is a spatial 

version of the grouping index defi ned above. g(r) 
was calculated using the method presented by 
Penttinen et al. (1992).

The mark correlation function, �mm(r), meas-
ures the spatial correlation of marks (Penttinen 
et al. 1992). We calculated �mm(r) for tree diam-
eters, d. �mm(r) > 1 for distances r where it is 
likely that tree sizes are similar, and �mm(r) < 
1 for distances at which tree sizes are likely to 
be dissimilar. For no correlation, �mm(r) = 1. 
Again, the numerical estimation was carried out 
following Penttinen et al. (1992).

The L function is essentially a normalised inte-
gral of g(r). For a Poisson process, L(r) = r. 
The L function can be used as a tool for determin-
ing the goodness-of-fi t of simulations of spatial 
point processes (Stoyan and Penttinen 2000). We 
evaluated a range for the simulated L function 
from nine independent simulations with the same 
parameter values, and this range was compared 
with the L functions of the measured stands.

Fig. 4. Testplot 2.

Fig. 3. Testplot 1.

Table 1. Charcteristics of measured plots.

 Plot 1 Plot 2

Year of establish- Clear felling 1987
  ment in 1985

Age < 15

Method of Natural regenera- Planting
  establishement tion with seed trees
 (removal in 1993),
 Soil preparation

Mean height (m) 1.6 5.4

Density (ha–1) 11 000 4400

Site type*) Vaccinium (VT) Vaccinium
  Myrtillus
  (MT)
*) Site type as defi ned by Cajander (1949)
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3 Application of the Method

3.1 Rate of Convergence

The Markov chain defi ned above always con-
verges towards the probability distribution f(X) 
(Eqn 5), however, the rate of convergence depends 
on various factors. The more trees we have, the 
longer it takes to reach the equilibrium distri-
bution. Therefore, although the initial structure 
does not affect the fi nal result, a good guess will 
accelerate the process.

The rate of convergence also depends on the 
value of �. Three values were compared for 
an imaginary stand of 124 trees with diameters 
between 2.4 cm and 4.8 cm, distributed over 
a plot of 25 × 25 m2 in size. The simulation 
was initialised with an arbitrary (rather grouped) 
confi guration, and the value of the initial potential 
was used as a reference. It is apparent from 
Fig. 7 that larger values of � imply lower mean 
potentials and variance but concurrently slightly 
slower rates of convergence.

3.2 Adjusting for Regularity

Higher mean potentials correspond to more reg-
ular confi gurations than low mean potentials, 
and the regularity of the resulting stand structure 
therefore depends on the value of �. The three 
values of � used above lead to somewhat dif-
ferent stand structures eg. in the sense of Hop-
kins grouping index. Calculating averages and 
variances over 11 simulations with each � we 
received the following. (Table 2)

This property implies that a simple adjustment 
of � will allow us to choose freely the degree of 
regularity (g < 1) of the stand structure to be cre-

ated, provided that the desired regularity property 
can be quantifi ed. In case of very different size 
of trees we can even receive g > 1.

For a given value of �, the stands with the 
larger trees are more regular than those with the 
smaller trees, since higher total potential allows 
less randomness. This resembles the development 
of structure in a real stand. While trees grow 
competition intensifi es especially where density 
is high. Therefore mortality is highest in dense 
parts, and as a result the structure becomes more 
regular.

3.3 Site Effects

To illustrate the effect of site potential on stand 
confi guration, three different cases were simu-
lated. Adding a straight line of lowered poten-
tial accross the plot caused more trees to group 
around the line (Fig. 6). Similarly, pointwise 
decrease in potential attracted trees to the point, 
while a similar increase in potential created rela-
tively sparse spots in the stand (Fig. 7). A gradient 
in site potential induced a corresponding gradient 
in the density of trees accross the plot (Fig. 8).

3.4 Simulating Measured Testplots

An important criterion for the applicability of the 
present method, the algorithm should be able to 

Table 2. Mean Hopkins grouping index (g) and its 
variance (�2) for stand confi gurations created with 
different values of � (N = 11).

� 25 5 1
g 0.82 0.93 0.99
�  0.055 0.12 0.14

Fig. 5. Convergence of the simulation method with 
three different values of �. One iteration means 25 
move attemps. The y-axis shows the total change 
in potential from the initial structure.
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create stand confi gurations that resemble actual 
stands in terms of some measure of regularity. As 
a preliminary test of this property, we assessed 
how closely and how consistently the algorithm 
was able to reproduce the measured stands (Sec-
tion 2.2). The objective was to simulate the 
confi gurations of plots 1 and 2 from input infor-
mation that could be easily observed from any 
actual stand.

The algorithm was initialised by placing the 
measured trees randomly in a periodic 20 m × 
20 m rectangle. For both plots, site effects were 
added to account for the method of regeneration 
observable in the measured pattern. To simulate 
the soil preparation in plot 1, we implemented 
50-cm-wide strips (the average width of a plough 

track) of negative potential at 3 m intervals. The 
values of c and q (Eq. 1) were set to 15 and 1, 
respectively. The resulting confi guration (Fig. 9) 
looked rather similar to the original, but the value 
of the grouping index, 1.1, was much lower than 
the one calculated for the measured stand (2.1). 
The pair correlation function, g(r), also seemed 
too small even at short distances (not shown). To 
improve the simulation, we inserted the effect of 
the removed seed trees, measured as stumps on 
the plot (Fig. 3), into the site potential function 
as positive terms. This is justifi ed as it seems 
unlikely for a seedling to be established close to 
a big seed tree, and the effect is likely to persist 
even a few years after the removal of the seed 
tree due to the remaining root system.

Fig. 9. Simulated pattern of plot 1. Only planting fur-
rows as site potential.

Fig. 6. A negative site potential across the stand. Fig. 7. A positive site potential on the low left and up 
(a forest road). Two negative point potentials close 
to each other in the middle.

Fig. 8. Decreasing site potential from left to right.
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The introduction of the unfavourable patches 
made the rest of the trees pack tighter to the 
remaining areas (Fig. 10). Both site effects, the 
furrows and the stumps, can be seen clearly in the 
tree pattern, yet there is still a lot of randomness. 
The grouping index was 1.6 which indicates clear 
clustering compared to the Poisson process. The 
pair correlation functions of both the original and 
simulated patterns (Fig. 11) peak at very short 
distances and again around three meters, which is 
the harrowing furrow interval. In both cases, the 

correlation stays positive over the second peak. 
This suggests that the soil properties have been 
the dominating factor over tree-to-tree interaction 
determining the locations of the new seedlings. 
This is a typical feature of young naturally regen-
erated stands. Why the pair correlation stays high 
longer in the measured pattern is probably due to 
the fact that, while in simulation the harrowing 
track was a straight line, in reality it has wider and 
narrower spots which further increase the group-
ing tendency. This tendency is further manifested 
by the L-function, where the measured L stays 
above the simulated values (Fig. 12).

The mark correlation functions, kmm(r), for 
measured and simulated stands show similar 
peaks at distances r < 1 m, but after that the simu-
lated function drops below 1 while the measured 
stays above 1 up to about r = 3 m (Fig. 13). For 
distances r > 3, both settle around the value 1 
with random fl uctuations.

A slightly different approach was selected 
when simulating the tree pattern of plot 2. Also 

Fig. 10. Simulated pattern of plot 1. Planting furrows 
and stumps as site potential.

Fig. 11. Pair correlation functions of the measured and 
simulated patterns of plot 1.

Fig. 12. L functions of the measured and simulated 
patterns of plot 1. The measured pattern is shown 
as the minimum and maximum of nine simulated 
confi gurations.

Fig. 13. Mark correlation functions of plot 1.
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here the rows of trees are clearly visible and we 
could employ similar site potential functions as 
in the previous case. Now, however, since the 
trees are planted, the dominant factor determining 
pairwise distances is not the distance between 
rows but between trees on the same row. We 
therefore made an artifi cial correction in the pair-
wise potential function. If the distance between 
two trees was between 1.1–1.25 meters (that 
seems to have been the opted distance between 
neighbours while planting the seedlings) the tree-
to-tree potential term was divided by 10. No site 
terms were used.

The algorithm now favours tree distances of the 
given interval (Fig. 14). The grouping index for 
the simulated pattern is 0.63, as compared with 
0.62 for the measured stand. The pair correlation 
function (Fig. 15), as well as the L function (Fig. 
16), are very similar to those of the measured 

plot. Since we omitted the site terms, the tree 
rows in the simulated pattern are not as visible as 
in the measured plot. This could be corrected as 
in the case of plot 1 but it would hardly improve 
the calculated characteristics.

The mark correlation functions �mm are simi-
lar for the measured and simulated stands, with 
�mm(r) < 1 for r < 1 m, both peaking at r = 1m 
and then settling at about �mm(r) = 1 (Fig. 17). 
The variation in the simulated curve is slightly 
wider and the equilibrium level slightly higher 
than the measured, but the qualitatively the two 
curves are similar.

Fig. 14. Simulated confi guration of plot 2.

Fig. 17. Mark correlation functions of plot 2.

Fig. 15. Pair correlation functions of the measured and 
simulated patterns of plot 2

Fig. 16. L functions of the measured and simulated 
patterns of plot 2. The measured pattern is shown 
as the minimum and maximum of nine simulated 
confi gurations.
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4 Discussion

We have presented a method to create a 3-dimen-
sional spatial structure for a stand for modelling 
purposes. As initial information, only tree density 
and size distribution are needed. The method 
seems very promising since it is both simple 
and fl exible, but still covers practically any kinds 
of stand. One equation is enough to give the 
information needed about the stand structure to 
the simulation algorithm. Still the algorithm can 
be adjusted to create regular to random or even 
clustered patterns. Furthermore, the method can 
be applied to single species stands as well as 
mixed stands. Site effects such as inhomogeni-
ties in the ground, seeding furrows or seed trees 
can also be taken into account whenever such 
information is available. Practically the more we 
know about the stand we want to create, the more 
we can include in the algorithm.

The present method differs from previous appli-
cations of the Gibbs process to tree stands (Ogata 
and Tanemura 1985, Goulard et al. 1996) in a 
number of ways. Perhaps most importantly, we 
have introduced the effect of site variation as 
an independent background potential term, s(xi). 
This bears some similarity to the Cox process 
which samples an intensity function for an inho-
mogeneous Poisson process (Stoyan and Pent-
tinen 2000). The background potential allows for 
the creation of clustered confi gurations where the 
clustering follows the site characteristics, such 
as effects caused by the regeneration method. 
To account for similar effects, Goulard et al. 
(1996) allowed for the pair potential to be attrac-
tive at some distances. Secondly, the formulation 
of the pair potential function differs from previ-
ous models which have often been piecewise 
continous functions of inter-tree distance (Ogata 
and Tanemura 1985, Stoyan, Kendall and Mecke 
1995, Goulard et al. 1996, Penttinen et al. 1992, 
Stoyan and Penttinen 2000). Thirdly, the present 
model incorporates quantitative marks in the pair 
potential function, which has not often been 
done previously (Stoyan and Penttinen 2000). 
Ogata and Tanemura (1985) considered qualita-
tive marks in a binary point process, while Gou-
lard et al. (1996) used quantitative marks based 

on breast height diameter in a piecewise constant 
model of the pair potential. The present formula-
tion is continuous, includes tree sizes, and can be 
interpreted as a method of generating a marked 
point process.

For applications of the present method to stand 
initialisation in growth models, it is important 
1) to test if the generated spatial confi gurations 
represent real confi gurations for some sets of 
parameter values, and if they do, 2) to defi ne a 
general method for determining the appropriate 
sets of parameters for different types of stand. 
Unlike in other studies on point processes, our 
objective has not been to estimate the parameters 
of the process from a given data set, but to try and 
determine the parameters from some outstand-
ing characteristics of the stand in question, and 
to test the resemblance between the measured 
and simulated stand using measures defi ned for 
spatial patterns.

Based on the present preliminary test of the 
method, it seems likely that parameter values 
can generally be found that reproduce the spatial 
characteristics of any measured stands. In the 
highlight of the examples, regular stands may be 
easier to simulate than clustered stands, but this 
is the case with any spatial simulation method 
(Stoyan and Penttinen 2000). In the case of clus-
tered stands, the site potential appears to play a 
major role. It is encouraging that the measures of 
spatial correlation generated by the method seem 
qualitatively consistent with the corresponding 
measured values, including the mark correlation 
function �mm. This suggests that the inclusion of 
stem diameters in the pair potential function may 
be adequate. However, larger data sets and further 
methods of comparison between measured and 
simulated stands should be used to further test 
the results. An interesting 3-dimensional tool for 
comparison could be drawing triangles to tree 
tops (Zenner and Hibbs 2000). The area of the 
triangles compared to the ground area measures 
the stand heterogeneity.

Ultimately, the required degree of accuracy 
between the simulated and measured stands will 
be determined by the response of the spatial 
growth models used. Errors in spatial pattern can 
be accepted if they have little effect on the over-
all growth characteristics of the stand. However, 
another criterion for practical applications is a 
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visual one: does the simulated structure look like 
the measured stand? This argument should not be 
belittled since, especially for a forest professional, 
growth simulation results are diffi cult to believe 
if the initial stage cannot be recognized.

Although the present preliminary analysis has 
demonstrated that the method bears promise for 
future applications, a number of problems remain 
to be solved. Our future work will focus on 1) 
further tests of the tree-to-tree interaction function 
and the adequacy of the marked point process 
defi ned by it, 2) inclusion of different species 
in the pair potential function, and 3) examining 
if more general rules can be constructed for 
the combination and relative weights of the pair 
potential function and the site potential, so far 
treated with ‘trial and error’. Most importantly, 
parameter sets will be defi ned for generating 
typical stands of seedlings for simulations in the 
growth model.
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