Silva Fennica 31(3) review arficles

Exploring Plant Topological Structure
with the AMAPmod Software:
an Outline

Christophe Godin, Evelyne Costes and Yves Caraglio

Godin, C., Costes, E. & Caraglio, Y. 1997. Exploring plant topological structure with the
AMAPmod software: an outline. Silva Fennica 31(3): 357-368.

In the last decades, architectural analysis has been used to understand and to model plant
development. These studies have lead us to reconsider the problem of measuring plants
while taking into account their topological structure at several scales of detail. A
computational platform, called AMAPmod, was created to work on such plant represen-
tations. This paper outlines the general methodology used in AMAPmod to represent
plant topological structures and to explore these special types of databases. Plant
structures are first encoded in order to build corresponding formal representations. Then,
a dedicated language, AML, enables the user to extract various types of information
from the plant databases and provides appropriate analyzing tools.

Keywords plant, architecture, development, coding, analysis, virtual
Authors” addresses Godin & Caraglio: CIRAD, Laboratoire de Modélisation des Plantes,
BP5035, 34032, Montpellier, France. Costes: INRA, Laboratoire d’ Arboriculture Fruitiére,

2 Place Viala, 34060, Montpellier, France
Received 24 January 1997 Accepted 29 July 1997

1 Introduction

Topological structures of plants have been wide-
ly explored at a qualitative level since the intro-
duction of architectural models by Hallé and
Oldeman (1970). In order to take topology into
account, first quantitative approaches to plant
architecture made use of topology-driven sam-
pling strategies, e.g. Honda et al. 1982, Rem-
phrey et al. 1983, Fisher and Weeks 1985,
de Reffye et al. 1988, Prusinkiewicz et al. 1994,

Bouchon et al. 1997. In these approaches, sam-
ples of plant entities were designed according to
topological and morphological criteria and then
studied using classical statistical methods. How-
ever, this strategy assumed that the biological
phenomenon of interest could be satisfactorily
characterized by an a priori choice of topologi-
cal and morphological parameters. We have now
reached a second stage in which the problem is
to study variations of biological phenomena as
functions of their topological location. In most
cases, these variations cannot be characterized

357

Silva Fennica 31(3)

review arficles

by simple direct observations. It is thus neces-
sary to preserve the information related to plant
3D structures, including both the type of entities
and their topological relationships, during the
measurement processes. If topological structure
is recorded and can be reconstructed within com-
puters, then we may develop efficient computing
tools for exploring these complex objects quan-
titatively.

We have developed such a general methodolo-
gy for analyzing plants which makes use of the
representation of plant topological structures. This
methodology is implemented in the AMAPmod
software (Godin et al. 1997). Data bases, created
from field measurements of plants, can be ana-
lyzed with various exploring and modeling tools.
These tools are available through a program-
ming language named AML (AMAP Modeling
Language) which enables the user to work on
various objects, i.e. formal representations of
plants, samples of data, or models. The user can
use specialised functions to load, save, analyze,
display or operate on each type of object.

This paper gives an outline of the AMAPmod
methodology for coding and exploring plants.
Section 2 sketches the multiscale model of plants
which has been designed in order to formally
represent plant topological structures. This for-
mal representation of plants can be encoded in
textual form, which enables users to encode plant
topological structures in order to process them
with computers. Section 3 illustrates this coding
strategy in a simple example. Section 4 shows
how computer representations of plant structures
can be loaded and explored within AMAPmod
at several levels of complexity to illustrate dif-
ferent types of computing operation.

2 Formal Representation of
Plants

Plants are formally represented in AMAPmod
by multiscale tree graphs (MTGs). The MTG
formalism has been designed to enable users to
express both the modularity and the multiscale
nature of plant structures (Godin et al. 1997). At
a given scale, plant modularity is represented by
a directed graph. A directed graph is defined by

358

a set of objects, called vertices, and a binary
relation between these vertices. The binary rela-
tion defines a set of ordered pairs of vertices,
called edges. Vertices represent botanical enti-
ties and edges correspond to physical connec-
tions between these entities. The direction of
edges respects the temporal causality of the con-
nection between entities: edges are always di-
rected from older entities to younger ones. Giv-
en an edge (a,b), we say that a is a father of b
and b is a son of a. Directed graphs representing
plants have tree-like structures: every vertex, ex-
cept the root one, has exactly one father vertex.
Moreover, in order to identify the different axes
of a given plant, two types of connections are
distinguished: an entity can either precede (type
‘<‘) or bear (type ‘+’) another entity. Among the
sons of a given vertex, only one can be linked to
its father by a ‘<‘ edge (one entity can only
precede at most one entity). The other ones are
necessarily linked to the father by a ‘+’ edge. In
this way, an axis is a maximal series of entities
in the graph connected by a ‘<‘ link. In order to
describe different characteristics of plant enti-
ties, vertices can have values, e.g. length, diame-
ter, spatial location, leaf area, number of flow-
ers, type of branched entities, etc. (Fig. 1).

A plant can be analyzed at several scales, in
terms of internodes, axes or, at more macroscop-
ic scales, in terms of branching systems. Ac-
cording to the above discussion, each scale of
analysis corresponds to a modular structure which
can be formally represented by a tree graph. In
addition, we observe that entities at one scale
consist of entities at a finer scale. For instance,
growth units are structured sets of internodes
and reiterated complexes may be analyzed as
branching systems made of axes. Therefore, there
exist relations between the different scales which
have to be formally represented. A MTG inte-
grates in a homogeneous framework the differ-
ent tree graphs corresponding to plant descrip-
tions at different scales (Fig. 2). Vertices at one
scale are composed of vertices at a higher scale
(Fig. 2e). If an entity a is composed of n entities
X1, X, ..., X, fOr every i € [1, n], a is called the
complex of x;, and x; is a component of a. The
complex of any entity x; is denoted m(x;). If the
scale of a is defined by the integer s, then for
every i € [1, n] the scale of x;is s + 1. The most

Godin, Costes and Caraglio Exploring Plant Topological Structure with the AMAPmod Software ...

Fig. 1. (a) Growth units constituting an annual shoot Quercus ilex (Fagaceae). (b)
Graph representation of the growth unit organization.

f
L,

(o]

\"/'&(
')‘
1}‘ =

A
.

ototo—d—o
+
J
A
4
R
\,

A

d
!
1 o
§0¢ § 1k age :
0 (:, 09 Fig. 2 A tree at different scales (?f percep-
3 c'; g, tion. The formal representation of the
{, z ¥ d 2 overall tree structure is the superposi-
0.y ’/0 g tion of the partial structures existing
04 # at different scales (a) tree scale s = s¢
7 £ = 0, (b) axis scale s = 1, (c) growth
5\ 1) 9’ unit scale, s = 2, (d) internode scale
3 ; % '8 (leaves are not represented in the tree
38 EJO' graph. They would be represented as
e & internode attributes), s = 3, (e) corre-
]

sponding multiscale tree graph.

359

Silva Fennica 31(3)

review articles

macroscopic scale s, consists of a single vertex,
representing the entire database, and by conven-
tion has value 0. In order to maintain coherence
between the different tree graph representations
of the same individual, MTGs must respect the
following consistency constraint: if there exists
an edge (x,y) in the tree graph representing the
plant structure at scale s + 1, and if the complex-
es of x and y are different, then there necessarily
exists a corresponding edge (n(x), ™(y)) between
these complexes in the tree graph representing
the plant at scale s. This expresses that the con-
nection between two macroentities results from
the connection between two of their components.

3 Coding Individuals

Different strategies have been proposed for re-
cording topological structures of real plants ei-
ther for representing plant at a single scale, e.g.
(Room et al. 1996, Hanan and Room 1997) or
for multiscale representations (Godin and Costes
1995, Godin et al. 1997). In AMAPmod, plant
topological structures are abstracted as multi-
scale tree graphs. Describing a plant topology
thus consists of describing the multiscale tree
graph corresponding to this plant. The descrip-
tion of a given plant can be specified using a
“coding language”. This language consists of a
naming strategy for the vertices and the edges of
multiscale graphs. A graph description consists
of enumerating the vertices consecutively using
their names. The name of a vertex is constructed
in such a way that it clearly defines the topologi-
cal location of a given vertex in the overall multi-
scale graph. The vertices and their features are
described using this formal language in a so
called “code file”. Let us illustrate the general
principle of this coding language by the topolog-
ical structure of the plant depicted in Fig. 3.
Each vertex is associated with a label consist-
ing of a letter, called its class, and an integer,
called its index. The class of a vertex often refers
to the nature of the corresponding botanical enti-
ty, e.g. I for internode, U for growth unit, B for
branching system, etc. The index of a vertex is
an integer which enables the user to locally iden-
tify a vertex among its immediate neighbors.

360

U2

Fig. 3. Coding the topological structure of a two year
old poplar tree.

Apart from this purely structural role, indexes
may be used to convey additional meaning: they
can be used for instance to encode the year of
growth of an entity, its rank in an axis, etc.

At a given scale, plants are inspected by work-
ing upwards from the base of the trunk and sym-
bols representing each vertex and its relationship
to its father are either written down or keyed
directly into a laptop computer.

The coded string starts with the single symbol
‘/’. Coding a single axis (e.g. the series of inter-
nodes of the trunk depicted in Fig. 4a) would
then yield the string:

Godin, Costes and Caraglio

Exploring Plant Topological Structure with the AMAPmod Software ...

Fig. 4. (a) Tree graph at internode scale. (b) Multiscale tree graph (MTG).

/I11<12<13<I4<I5<I16<17<I8<I9<I10<I11<I12
<I13<114<I115<116<117<118<119

For a branching structure (Fig 4a), encoding a
tree-like structure in a linear sequence of sym-
bols leads us to introduce a bracket notation,
frequently used in computer science to encode
tree-like structures as strings (e.g. Prusinkiewicz
and Lindenmayer 1990). A square bracket is
opened each time a bifurcation point is encoun-
tered during the visit (i.e. for vertices having
more than one son). A square bracket is closed
each time a terminal vertex has just been visited
(i.e. a vertex with no son) and before backtrack-
ing to the last bifurcation point. In the above
example, entity 16 is a bifurcation point since the
description process can either continue by visit-
ing entity I7 or 120. In this case, the bifurcation
point 16 is first stored in a bifurcation point stack

(which is initially empty). Secondly, an opened
square bracket is inserted in the output string and
thirdly, the visiting process resumes at one of the
two possible continuations, for example 120, lead-
ing to the following code:

/11<I2<13<14<I5<I16[+I20

The entire branch 120 to 128 is then encoded like
entities I1 to I6. Entity 129 has no son, and thus is
a terminal entity. This results in inserting a closed
square bracket in the string:

/11<12<13<14<I5<16[+120<121<122<123<124
<125<126<127<128<129]

The last bifurcation point can then be read at the

top of the bifurcation point stack and the visiting
process can resume on the next possible continu-

361

Silva Fennica 31(3)

review arficles

ation of 16, i.e. 17, leading eventually to the final
output code string:

/T11<12<13<I4<I5<16[+I20<121<122<123<1124
<I25<126<127<128<I129][<I7<18<I19<I10<I11<I12
<I13<I14<I15<I16<I17<I118<I19]

Once all the continuations of a bifurcation point
have been processed, it is popped out from the
bifurcation stack.

Let us now extend this coding strategy to mul-
tiscale structures. Consider a plant described at
three different scales, for example the scale of
internodes, the scale of growth units and the
scale of plants (Fig. 4b). The depth first proce-
dure explained above is generalized to multi-
scale structures in the following way. The multi-
scale coding strategy consists basically of de-
scribing the plant structure at the highest scale in
a depth first order. However, during this process,
each time a new boundary of a macroscopic
entity is crossed when passing from entity a to
entity b, the corresponding macroentity label,
suffixed by a ‘/’, must be inserted into the code
string just before the label of b and after the edge
type of (a,b). If more than one macroscopic
boundary is crossed at a time, corresponding
labels suffixed by ‘/’ must be inserted into the
code string at the same location, labels of the
most macroscopic entities first. In the multiscale
graph of Fig. 4b for example, the depth first visit
is carried out at the internode level (highest scale).
The visit starts by entering in vertex I1 at the
scale of internodes. However, to reach this entity
from the outside, we cross boundaries of P1 and
U1, in this order. Then the depth first visit starts
by creating the code string:

/P1/U1/1I1

Then, the coding proceeds through vertices I1 to
16, with no new macroscopic boundary encoun-
tered. 16 is a bifurcation point and as explained
above, this vertex is stored in the bifurcation
point stack, a ‘[* is inserted in the code string
and the depth first process continues on the son
of 16 whose label is 120. Since to reach 120 from
16 the new macroscopic boundary of the first
growth unit of the branch is crossed, on 120 the
generated code string is

362

/P1/U1/11<12<13<I4<I5<16[+U1/120

One can note that the boundary of growth unit u1
of the trunk is also crossed when passing from 16
to 120. However, since this is not a new bound-
ary — it has already been encountered during the
visit process before — it produces no symbol.

Similarly on the new branch, coding continues
and crosses a growth unit boundary between in-
ternodes 124 and 125:

/P1/U1/11<12<13<14<I5<16[+U1/120<121<I22
<I23<124<U2/125<126<127<128<129]

Once the end of the branch is reached at entity
129, a ‘]’ is inserted in the code string and the
process backtracks to bifurcation point 16 in or-
der to resume the visit at the internode scale on
the next son of 16, i.e. I7. Then coding goes
through to the end of the poplar trunk since there
are no more bifurcation points. Between entities
17 and 119, two new growth unit boundaries are
crossed which generate the final code string:

/P1/U1/11<12<13<I14<I5<I6[+U1/120<121<122
<123<124<U2/125<126<127<128<129]
[<I7<I8<I9<U2/110<I111<I112<113<I14
<I15<U3/116<117<118<I119]

It is often the case in practical applications that a
number of attributes are measured on certain
plant entities. Measured values can be attached
to corresponding entities using a bracket nota-
tion, ‘{...} . For instance, assume that one wants
to note the length and the diameter of observed
growth units. For each measured growth unit, a
pair of ordered values defines respectively its
measured length and diameter. Then, the prece-
dent code string would become:

/P1/U1{10,5.93}/I11<12<13<I14<I5
<I6[+U1{7,3.5}/120<121<122<123<124
<U2{4,2.1}/125<126<127<128<129]
[<I7<18<19<U2{8,4.3}/110<111<I12
<I13<I14<115<U3{7.5,3.9}/1I16
<I17<118<119]

In this string, we can read that the first growth
unit of the trunk, u1, has length 10 cm and dia-
meter 5.9 mm (units are assumed to be known
and fixed).

Godin, Costes and Caraglio

Exploring Plant Topological Structure with the AMAPmod Software ...

In practical applications, coding plants as raw
sequences of symbols becomes quite unreada-
ble. In order to give the user a better feedback of
the plant topology in the code itself, we can
slightly change the above code format in order to
achieve better legibility. Each square bracket is
replaced by a new line and an indentation level
corresponding to the nested degree of this square
bracket. Similarly, a new line is created after
each feature set and the feature values are writ-
ten in specific columns. The following table gives

the final code corresponding to the example in -

Fig. 3.
Length Diameter
/P1/U1 10 5.9
/11<12<13<14<I5<I6
+U1 il 3.5
/120<121<122<123<124<U2 4 2.1
/125<126<127<128<129
<I7<I8<I9<U2 8 4.3
/I110<I111<I112<113<114<I115<U3 7.5 3.9
/116<117<118<I119
4 Exploring Plants

Once a plant database has been created, it can be
analyzed using the AMAPmod software. The
different objects, methods and models contained
in AMAPmod can be accessed through a func-
tional language called AML. This language has
been designed to optimize access to plant data-
bases.

4.1 Creating Plant Representations

The formal representation of a plant, and more
generally of a set of plants, can be built by
AMAPmod from its code file using the AML
function MTGC):

AML > g = MTG(“tree_code_file.txt”)

The procedure MTG attempts to build the plant
formal representation, checking for syntactic and
semantic correctness of the code file. If the file is
not consistent, the procedure outputs a set of
errors which have to be corrected before apply-
ing a new syntactic analysis. Once the file is

syntactically consistent, the MTG is built (cf.
Fig. 4b) and is available in the variable g. How-
ever, for efficiency reasons, the latest construct-
ed MTG is said to be “active”: it will be consid-
ered as an implicit argument of most of the func-
tions dealing with MTGs. To get the list of all
vertices contained in g, for instance, we write:

AML > vlist = VixList()

instead of

AML > vlist

VixList(g)

The function VtxList() extracts the set of verti-
ces from the active MTG g and returns the result
in variable vlist.

Once the MTG is loaded, it is frequently use-
ful to make sure that the database actually corre-
sponds to the observed data. Part of this check-
ing process has already been done by the MTG()
function. But, some high-level checking may
still be necessary to ensure that the database is
completely consistent. For instance, in our ex-
ample, we might want to check the number of
plants in the database. Since plants are repre-
sented by vertices at scale 1, the set of plants is
built by:

AML > plants = VtxList(Scale — 1)

Like v1ist, the set plants is a set of vertices. The
number of plants can be obtained by computing
the size of the set plants.

AML > plant_nb = Size(plants)

Each plant constituting the database can be indi-
vidually and interactively accessed via AML.
For instance, assuming the plant corresponding
to the example of Fig. 4b is represented by a
vertex (at scale 1) with label P1. Plant P1 can be
identified in the database by selecting the vertex
at scale 1 having index 1:

AML > plantl = Foreach _p In plants:
Select(_p, Index(_p)==1)

In this expression, the Foreach construct is used
to browse the set of plant vertices plants. For

363

Silva Fennica 31(3)

review arficles

each plant vertex _p in this set, operator Select is
applied and returns a non void value only for
vertices whose index value is 1. Plant1 thus con-
tains the vertex representing plant P1. Now it is
possible to apply new functions to this vertex in
order to explore the nature of plant P1. Assume
for instance we want to know the number of
growth units composing P1:

AML > gu_nb = Size(Components(plantl))

Components() is a built-in function which ap-
plies to a vertex v and returns the vertices com-
posing v at the next superior scale. Since plant1l
is a vertex at scale 1, representing plant P1,
components of plantl are vertices at scale 2, i.e.
growth units. It is also possible to compute the
number of internodes composing a plant by sim-
ply specifying the optional argument Scale in
function Components:

AML > internode_nb =
Size(Components(plantl, Scale — 3))

Many such direct queries can be made on the plant
database which provide interactive access to it.
However, a complementary synthesizing view of
the database may be obtained by a graphical re-
construction of plant geometry. Geometrical pa-
rameters, like branching and phyllotactic angles,
diameters, length, shapes, are read from the data-
base. If they are not available, mean values can
be inferred from samples or from additional data
describing plant general geometry (Godin et al.
1996). A 3D interpretation of the MTG provides
the user with natural feedback on the database.
Built-in function PlantFrame() computes the 3D-
geometry of plants. For example,

AML > framel = PlantFrame(plantl)

computes a 3D-geometrical interpretation of P1
topology at scale 2, i.e. in terms of growth units
(Fig. 5a). Like in the previous example, Plant-
Frame() takes Scale as an optional argument
which enables us to build the 3D-geometrical
interpretation of P1 at the level of internodes
(Fig. 5b):

AML > frame2 = PlantFrame(plantl, Scale — 3)

364

a b

Fig. 5. 3D geometrical reconstruction of the MTG.
Reconstruction (a) at growth unit scale. (b) at
internode scale.

Refinements of this 3D geometrical reconstruc-
tion may be obtained with the possibility to
change the shape of the different plant compo-
nents, possibly at different scales, to tune geo-
metrical features (length, diameter, insertion an-
gle, phyllotaxy, ...) as functions of the topologi-
cal position of entities in the plant structure.

4.2 Extraction of Plant Entity Features

When attributes of entities are available in MTGs,
it is possible to retrieve their values by using the
function Feature():

AML > first_gu = Trunk(plantl)@l

AML > first_gu_diameter =
Feature(first_gu, “Diameter”)

The first line retrieves the vertex corresponding
to the first growth unit of the trunk of P1 (func-
tion Trunk() returns the ordered set of compo-
nents of the trunk of vertex P1, and operator @
with argument 1 selects the first element of this

Godin, Costes and Caraglio

Exploring Plant Topological Structure with the AMAPmod Software ...

set). Then, in the second line, the diameter of
this growth unit is extracted from the database.
Variable first_gu_diameter then contains the value
5.9 (see the code file). Similarly the length of the
first growth unit can be retrieved:

AML > first_gu_length =
Feature(first_gu, “Length”)

Variable first_gu_length contains value 10.
The user can simplify this extraction by creat-
ing alias names:

AML > diameter(_x) = Feature(_x, “Diameter”)

AML > length(_x) = Feature(_x, “Length”)

It is then possible with these functions to build
data arrays corresponding to feature values asso-
ciated with growth units.

AML > growth_unit_set = VtxList(Scale — 2)

AML > Foreach _x In growth_unit_set: length(_x)

Moreover, new synthesized attributes can be de-
fined by creating new functions using these ba-
sic features. For example, making the simple
assumption that the general form of a growth
unit is a cylinder, we can compute the volume of
a growth unit:

AML > volume(_x) =
(PI*diameter(_x)"2 / 4)*length(_x)

where PI denotes the real constant T and * de-
notes the power function. Now, the user can use
this new function on any growth unit entity as if
it were a feature recorded in the MTG. For in-
stance, the volume of the first growth unit is
computed by:

AL > first_gu_length = volume(first_gu)
The total volume of the trunk:

ML > trunk_volume = Sum(Foreach _gu
In Trunk(plantl) : volume(_gu))

The wood volume of the whole plant can be
computed by:

AML > plant_volume = Sum(Foreach _gu
In Components(plantl) : volume(_gu))

4.3 Extracting More Information from
Plant Databases

As illustrated in the previous section, plant data-
bases can be investigated by building appropri-
ate AML queries. Built-in words of the AML
language may be combined in various ways in
order to create new queries. In this way, more
and more elaborated types of queries can be
constructed by creating user-defined functions
which are equivalent to computing programs. In
order to illustrate this procedure, let us assume
that we would like to study distributions of num-
bers of internodes per growth units, such distri-
butions being an important basic prerequisite for
botanically-based 3D plant simulations (e.g. Bar-
thélémy 1991, de Reffye et al. 1991, Jaeger and
de Reffye 1992, Bouchon et al. 1997). At a first
stage, we consider all the growth units contained
in the plant database together. We first need to
define a function which returns the number of
internodes of a given growth unit. Since in the
database, each growth unit (at scale 2) is com-
posed of internodes (at scale 3) we compute the
set of internodes constituting a given growth
unit _x as follows:

AML > internode_set(_x) = Components(_x)

The object returned by function internode_set()
is a set of vertices. The number of internodes of
a given growth unit is thus the size of this set:

AML > internode_nb(_x) =
Size(internode_set(_x))

Second, the entities on which the previous func-
tion has to be applied, must be located in the
database. A set of vertices is created by selecting
plant entities having a certain property.

The set of growth units is the set of entities at
scale 2:

AML > gu_set = VtxList(Scale — 2)

Third, we have to apply function internode_nb()
to each element of the selected set of entities:

AML > samplel =

Foreach _x In gu_set : internode_nb(_x)

365

Silva Fennica 31(3)

review articles

order 2

order 1

0 10 20 30 40 50 60 0 10 20

30 40 50

a b

order 3 order 4
30 30
20 20
10 10
0 0
0°5:7 1071520 725" 3038 o

101520 25 30

Fig. 6. Different distributions of the number
of internodes per growth unit, in differ-

T d

We use iterator Foreach in order to browse the
whole set of growth units of the database, and to
apply our internode_nb() function to each of
them.

Now, we want to get the distribution of the
number of internodes on a more restricted set of
growth units. More precisely, we would like to
study the distribution of internode numbers of
different populations corresponding to particular
locations in the plant structure. We thus have to
define these populations first and then to iterate
the function internode_nb() on each entity of
this new population like in the previous exam-
ple. Let us consider for example the population
made of the growth units composing branches of
order 1. Consider again the whole set of growth
units gu_set. Among them, those which are lo-
cated on branches (defined as entities of order 1
in AML) are defined by:

AML > gul = Foreach _x In VtxList
(Scale — 2) : Select(_x, Order(_x) == 1)

Here again, we use the iterator Foreach in order

to browse the whole set of growth units of the
database, and to apply the Select operator to

366

ent topological situations.

each of them. Select will return only growth unit
vertices whose order is 1. AML variable gul thus
contains all the growth units in the corpus which
are located on branches. Eventually, after the
sample of values is built, the above function is
applied to the selected entities:

AML > sample = Foreach _x
In gul : internode_number(_x)
At this stage, a set of values has been extracted
from the plant database corresponding to a topo-
logically selected set of entities. This sample of
data can be further investigated with appropriate
AML tools. For example, AML provides the
built-in function Histogram() which builds the
histogram corresponding to a set of values.

AML > histol = Histogram(sample)

AML > Plot(histol)

This plot gives the graph depicted in Fig. 6a.
Similarly, by selecting samples corresponding to

different topological situations, we would obtain
the series of plots in Fig. 6 (Caraglio et al. 1990).

Godin, Costes and Caraglio

Exploring Plant Topological Structure with the AMAPmod Software ...

5 Conclusion

This paper outlined the general methodology for
representing, encoding and exploring plants as
defined in AMAPmod, by giving simple and
fully explained examples. Using the AML lan-
guage, the user can define complex queries by
combining functions and design in this way his
own exploring strategy. Since plants are repre-
sented in databases by structured objects, i.e.
MTGs, queries may return objects which pre-
serve parts of the structure of MTGs: e.g. spatial
or temporal sequences of events or tree-struc-
tured data. Tools for studying these complex
objects are currently under development in
AMAPmod (Godin et al. 1997, Guédon et al.
1995, Costes and Guédon 1997).

Moreover, preservation of plant topological
and spatial information in measurements enables
us to achieve better independence between plant
databases and end-user applications: potentially,
various types of analyses can be applied on the
same database. In addition to studying morpho-
logical characteristics (architecture, geometry,
form, allometric relations, ...), plant structure de-
scriptions can be used to study the coupling of
structure and physiological functions (photosyn-
thesis, fruiting, mechanical support, water trans-
port, etc.).

The will to have a common language which
can be used to describe a wide range of species
and the need to factorize the development of
computer tools to work on plant structure data-
bases have been major motivations in the devel-
opment of AMAPmod. As a consequence, a cur-
rent key issue in using AMAPmod is related to
the definition of plant corpora. This would first-
ly enable research scientists to efficiently ex-
change plant data. Secondly, this would enable
modelers to compare their models on the basis of
public (or at least partially shared) sets of data.
As a counterpart, data collection may be more
expensive in this more general perspective than
in the context of a precise study. This might not
be a too severe limitation if the definition of
plant corpora are justified in terms of facilitating
collaborative research.

References

Barthélémy, D. 1991. Levels of organization and rep-
etition phenomena in seeds plants. Acta Biotheo-
retica 39: 309-323.

Bouchon, J., de Reffye, P. & Barthélémy, D. (eds.)
1997. Modélisation et simulation de 1’architecture
des végétaux. Science Update. INRA éditions.

Caraglio, Y., Elguero, E., Mialet, I. & Rey, H. 1990.
Le Peuplier. modélisation et simulation de son
architecture. Rapport annuel, convention idf/cirad,
CIRAD, Laboratoire de Modélisation des Plantes.

Costes, E. & Guédon, Y. 1997. Modelling the syllep-
tic branching on one-year-old trunks of apple cul-
tivars. Journal of American Society for Horticul-
tural Science 122(1): 53-62.

de Reffye, P., Dinouard, P. & Barthélémy, D. 1991.
Modélisation et simulation de 1’architecture de
[’Orme du Japon Zelkova serrata Thunb. Makino
Ulmaceae: la notion d’axe de référence. In:
L’Arbre, Biologie et développement. Naturalia
Monspeliensia: 251-266.

— Edelin, C., Frangon, J., Jaeger, M. & Puech, C.
1988. Plant models faithful to botanical structure
and development. In: Dill, J. (ed.), Proceedings of
SIGGRAPH’88, vol. 22, p. 151-158, Atlanta.
Computer Graphics.

Fisher, J. & Weeks, C. 1985. Tree architecture of
Neea (Nyctaginaceae): geometry and simulation
of branches and the presence of two different mod-
els. Bull. Mus. natn. Hist. nat 7: 385-401.

Godin, C., Bellouti, S. & Costes, E. 1996. Restitution
virtuelle de plantes réelles: un nouvel outil pour
I’aide a I’analyse de données botaniques et
agronomiques. In: Proceedings of the Interface to
Real and Virtual Worlds, p. 369-378.

— & Costes, E. 1995. How to get representation of
real plants in computers for exploring their botan-
ical organization. In: Proceedings of the 4th Inter-
national Symposium on Computer Modelling in
Fruit Research and Orchard Management, p. 45—
52.

— , Guédon, Y., Costes, E. & Caraglio, Y. 1997.
Measuring and analyzing plants with the AMAP-
mod software. In: Michalewicz, M. (ed.), Advances
in computational life sciences I: Plants to ecosys-
tems, p. 63-94. CSIRO, Australia.

Guédon, Y., Costes, E. & Caraglio, Y. 1995. Modéli-
sation de structures végétales résultant de la suc-

367

Silva Fennica 31(3)

review articles

cession d’entités botaniques élémentaires. In:
L’Arbre. Biologie et développement. Naturalia
Monspeliensia. in press.

Hallé, F. & Oldeman, R.A.A. 1970. Essai sur
Iarchitecture et la dynamique de croissance des
arbres tropicaux. Masson, Paris.

Hanan, J. & Room, P. 1997. Practical aspects of plant
research. In: Michalewicz, M. (ed), Advances in
computational life sciences I: Plants to ecosys-
tems, ch. 2, p. 28-43. CSIRO, Australia.

Honda, H., Tomlinson, P. & Fisher, J.B. 1982. Two
geometrical models of branching of tropical trees.
Ann. Bot. 49: 1-12.

Jaeger, M. & de Reffye, P. 1992. Basic concepts of
computer simulation of plant growth. Journal of
Biosciences 17: 275-291.

Prusinkiewicz, P. & Lindenmayer, A. 1990. The algo-
rithmic beauty of plants. Springer Verlag.

— , Remphrey, W., Davidson, C. & Hammel, M.
1994. Modeling the architecture of expanding Frax-
inus pennsylvanica shoots using L-systems. Ca-
nadian Journal of Botany 72: 701-714.

Remphrey, W.R., Neal, B.R. & Steeves, T.A. 1983.
The morphology and growth of Arctostaphylos
uva-ursi bearberry: an architectural model simu-
lating colonizing growth. Canadian Journal of Bot-
any 61: 2451-2458.

Room, P., Hanan, J. & Prusinkiewicz, P. 1996. Virtu-
al plants: new perspectives for ecologists, pathol-
ogists and agricultural scientists. Trends in Plant
Science, p. 33-38.

Total of 19 references

368

