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Development of Spatially Feasible 
Forest Plans: a Comparison of Two 
Modeling Approaches

Kevin Boston and Pete Bettinger

Boston, K. & Bettinger, P. 2001. Development of spatially feasible forest plans: a comparison 
of two modeling approaches. Silva Fennica 35(4): 425–435.

Spatial goals are becoming more frequent aspects of forest management plans as regula-
tory and organizational policies change in response to fi sheries and wildlife concerns. 
The combination of green-up constraints (harvesting restrictions that prevent the cutting 
of adjacent units for a specifi ed period of time) and habitat requirements for red-cockaded 
woodpeckers (RCW) in the southeastern U.S. suggests that spatially feasible forest plans 
be developed to guide management activities. We examined two modeling approaches 
aimed at developing management plans that had both harvest volume goals, RCW habitat, 
and green-up constraints. The fi rst was a two-stage method that in one stage used linear 
programming to assign volume goals, and in a second stage used a tabu search – genetic 
algorithm heuristic technique to minimize the deviations from the volume goals while 
maximizing the present net revenue and addressing the RCW and green-up constraints. 
The second approach was a one-stage procedure where the entire management plan was 
developed with the tabu search – genetic algorithm heuristic technique, thus it did not 
use the guidance for timber volume levels provided by the LP solution. The goal was to 
test two modeling approaches to solving a realistic spatial harvest scheduling problem. 
One is where to volume goals are calculated prior to developing the spatially feasible 
forest plan, while the other approach simultaneously addresses the volume goals while 
developing the spatially feasible forest plan. The resulting forest plan from the two-stage 
approach was superior to that produced from the one-stage approach in terms of net 
present value. The main point from this analysis is that heuristic techniques may benefi t 
from guidance provided by relaxed LP solutions in their effort to develop effi cient forest 
management plans, particularly when both commodity production and complex spatial 
wildlife habitat goals are considered. Differences in the production of forest products 
were apparent between the two modeling approaches, which could have a signifi cant 
effect on the selection of wood processing equipment and facilities.
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1 Introduction

Forest planning efforts in the United States and 
abroad are increasingly addressing spatial goals, 
either regulatory or voluntary, that relate to wild-
life and fi sheries concerns, due to an increased 
awareness of the importance of landscape pat-
tern on wildlife populations. The adoption of the 
American Forest & Paper Association’s (AF&PA) 
Sustainable Forestry Initiative (SFI) (American 
Forest & Paper Association 2001) by more than 
90% of the forest companies in the U.S. means 
that these companies must develop plans that 
restrict the average clearcut size to less than 48 
ha. Furthermore, many fi rms voluntarily limit the 
maximum clearcut size; these usually range from 
between 60 to 90 ha. Additionally, the listing of 
the red-cockaded woodpecker (Picoides borealis) 
(RCW) as an endangered species mandates that 
private landowners follow the guidelines devel-
oped by USDI Fish and Wildlife Service (FWS). 
These guidelines have spatial aspects, and to 
follow them requires knowledge of the types 
of resources in specifi c forest locations. These 
circumstances encourage the use of discrete 
0,1 (integer) decision variables in forest plan-
ning efforts. As the number of integer variables 
increases, however, it becomes more diffi cult, if 
not impossible, to develop forest plans with tra-
ditional mathematical programming approaches 
(e.g., linear or integer programming).

Green-up or adjacency constraints have been 
among the most commonly studied constraints in 
spatial harvest scheduling. A variety of techniques 
have been used to solve these problems, begin-
ning with traditional mathematical programming 
(Weintraub and Navon 1976). Recently some 
researchers have exploited the problem struc-
ture of green-up constraints and have developed 
specialized optimization algorithms (Murray and 
Church 1996, Snyder and ReVelle 1997). Further, 
Hoganson and Borges (1998) used dynamic pro-
gramming to develop forest plans with adjacency 
constraints. Several stochastic approaches have 
also been used, including Monte Carlo integer 
programming (O’Hara et al. 1989, Nelson and 
Brodie 1990, Clements et al. 1990), simulated 
annealing (Lockwood and Moore 1992, Dahlin 
and Sallnas 1993, Van Deusen 1999), and genetic 

algorithms (Mullen and Butler 1999). Finally, 
hill-climbing algorithms, such as tabu search, 
have also been used to account for spatial harvest-
ing constraints (Murray and Church 1995, Boston 
and Bettinger 1999).

Wildlife habitat requirements have been 
included in several planning models developed 
during the last ten years. Hof and Joyce (1992) 
were among the fi rst to combine timber produc-
tion goals with edge and interior forest habitat 
goals into a spatial harvest scheduling problem. 
They solved a small problem using a branch and 
bound algorithm. Bettinger et al. (1997) and Bet-
tinger et al. (1999) developed two systems that 
used tabu search to combine timber production 
goals and spatial habitat goals for elk (Cervus 
elaphus roosevelti). And Arthaud and Rose (1996) 
developed a system to combine aspen produc-
tion with ruffed grouse goals (Bonasa umbellus). 
Most agree that a heuristic approach is required 
to solve the operationally-sized problems that 
include spatial goals, yet there is less agreement 
on the use of these models for large-scale forest 
planning problems.

This paper describes two different modeling 
approaches for developing spatially feasible 
forest plans that include the green-up constraints 
and habitat guidelines for the recovery of the 
RCW on private forestlands in the southeastern 
United States. The fi rst approach, Model A, is 
a two-stage approach (Fig. 1) that begins by 
developing a continuous solution using linear 
programming (LP), with the goal of determin-
ing timber volume targets. These targets become 
goals for the second stage, which uses a heu-
ristic optimization technique to develop a tacti-
cal forest plan. The heuristic technique accounts 
for the green-up and spatial RCW constraints 
while simultaneously maximizes the net present 
value and minimizes deviations from the volume 
targets. The advantage of the two-stage approach 
is that the second stage contains knowledge of 
the upper-bound on the potential solution values 
generated by the fi rst stage (albeit we are solv-
ing a relaxed problem that does not contain 
the RCW or green-up spatial constraints). The 
second approach, Model B, used only one stage 
to develop the spatially feasible forest plans. This 
approach assumes that the achievement of volume 
goals is implicit in the heuristic search process, 



427

Boston and Bettinger Development of Spatially Feasible Forest Plans: a Comparison of Two Modeling Approaches

rather than being set by a prior process. It has 
the goal of maximizing net present value while 
minimizing the desired differences between har-
vest levels, and while meeting the green-up and 
RCW constraints. The advantage of Model B is 
that the volume levels are computed while simul-
taneously considering the spatial constraints. The 
objective of this research was to determine the 
benefi ts and challenges involved with each mod-
eling approach (two- or one-stage) to guide the 
development of spatially feasible tactical forest 
plans that incorporate spatial constraints for wild-
life.

2 Methods

We fi rst summarize the problem statement we 
used for meeting the objectives of this analysis, 
then briefl y describe a spatial database. We then 
describe the development of the LP-based forest 
plan used in Model A, followed by the devel-
opment of the heuristic process used in both 
models to develop the spatially-feasible forest 
management plan. The LP-based forest plan pro-
vided volume goals for Model A but did not 

include green-up and RCW constraints, which 
were incorporated into the spatially feasible forest 
plans.

2.1 Problem Statement and Data 
Assumptions

We are assuming in this discussion that some 
forest landowners and managers associated with 
forest products fi rms in the southeastern United 
States have commodity production as well as 
wildlife habitat goals. The managers’ goals are 
twofold: to maximize net present value of the 
forest resource, and to adhere to the restrictions 
placed on them by government and voluntary reg-
ulations. The RCW habitat guidelines came from 
Lipscomb and Williams (1998), who suggest the 
establishment of two zones around each RCW 
nest to meet the habitat requirements for RCWs 
on private lands. The inner zone, the cluster  zone, 
was created with a 61.0 m buffer (1.2 ha) around 
each nest, with the goal of maintaining the basal 
area between 11.5 and 18.4 m2 ha–1. It is assumed 
that a combination of precommercial thinning 
and prescribed burning will be used to maintain 
the open-pine habitat, and no commercial timber 
harvesting will be scheduled in this zone. The 
outer zone, the forage zone, is the area between 
61.0 and 804.6 m of the nest location (represent-
ing 203.4 ha). Within this zone, a minimum of 
24.3 ha of pine forests are to be maintained 
for RCW forage purposes. This zone requires a 
minimum total pine tree basal area of 278.7 m2, 
with tree diameters averaging at least 25.4 cm. 
Within each time period, no harvest is allowed 
in the forage zone until the structural goals are 
met.

The GIS database, acquired from a forest prod-
ucts fi rm in Georgia (USA), represents a typical 
industrial ownership in the southeastern United 
States. The database contains mostly pine plan-
tations, plus a mixture of hardwood areas not 
managed for timber production. It also contains 
approximately 700 potential logging units, result-
ing in approximately 10 000 0–1 decision varia-
bles. Sixteen RCW nest locations were randomly 
assigned to the area, with an assumption that 
there were enough large pine trees in the random 
locations to serve as RCW nest sites in the inner 
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Fig. 1. Model A and Model B approaches to strategic 
and tactical planning.
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circles. Harvesting will be permitted in the forage 
circles only if the habitat requirements can be 
met. Timber yields were estimated with equa-
tions developed by Harrison and Borders (1996) 
for three types of wood products: sawlogs, chip-
and-saw logs, and pulpwood. Basal areas were 
estimated by using Bulletin 19 from the Geor-
gia Forestry Association (Saucier et al. 1981). 
Assumed product prices are shown in Table 1. 
We assumed a logging cost of US$ 0.27 per 
ft3, and an 8% real discount rate to derive net 
present value. All penalty values associated with 
not achieving a volume target for a particular 
timber product were discounted using an 8% real 
discount rate. Since we have less certainty regard-
ing the information in the later periods, penalty 
values are discounted to refl ect less certainty 
regarding the goals.

2.1.1 Model A

Model A is a two-stage method for generating 
a forest plan: fi rst a continuous (strategic) plan 
is developed, then a tactical plan is developed to 
address the spatial restrictions. The continuous 
forest plan, formulated as a linear programming 
problem, was solved by using the Forestry-Ori-
ented Linear Programming Interpreter (Garcia 
1984). The goal was to maximize the discounted 
net present value over 15 1-year periods; mini-
mum harvest age was assumed to be 19 years. 
It was assumed that all stands were regenerated 
to meet the AF&PA SFI guidelines (American 
Forest & Paper Association 2001) which require 
immediate regeneration. The continuous forest 
plan provides the target harvest goals for the 
tactical plan, and it can be considered a “relaxed” 
problem, since the green-up constraints and RCW 

constraints were absent. The results from the 
continuous forest plan provide a theoretical upper 
bound on the solution. The maximum harvest 
volume from the forest over a 15-period plan-
ning horizon is generated with the LP solution, 
and is attempted to be implemented with the 
tactical solution. This is diffi cult, because a highly 
intensive management objective can lead to a 
large the difference between the results of the 
continuous, non-spatial solution and the dis-
crete, spatially-constrained solution. The objec-
tive function consists of maximizing the net 
present value of revenue from harvests less log-
ging costs:
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where J = number of products; j = product type; N = 
number of harvest units; n = harvest unit; T = number 
of time periods; t = time period; Revnt = revenue per 
cubic meter for unit n harvested in time period t; Lcnt 
= logging cost per cubic meter for unit n harvested in 
time period t; Vjnt = volume per hectare of product j 
in unit n harvested during time period t; Xnt = propor-
tion of unit n harvested during time period t.

A minimum harvest age of 19 years was assumed 
for each timber stand, and except for sawlog 
volumes, which were set to 10% per period, 
individual product volumes could not change by 
more than 5% per time period.

Table 1. Prices assumed for forest products.

Product Price ($/ cf3)

Pulpwood 0.34
Chip-and-saw logs 1.00
Sawlogs 1.15
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The formulation for the discrete (tactical) plan-
ning problem is similar to the continuous plan 
and to the objective function found in Boston and 
Bettinger (1999). The objective function for the 
problem is:
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where Xnt = 0,1 variable indicating whether unit 
n is harvested during time period t; Vpjt = volume 
penalty per cubic meter of product j during time 
period t; dujt = positive deviation from volume 
goal of product j during time period t; and dljt = 
negative deviation from volume goal of product j 
during time period t. The volume goals we used 
were those that resulted from the strategic plan. 
Penalties were used to guide the heuristic search 
process towards solutions that would emulate 
the continuous forest planning solution. Table 2 
illustrates the penalty values for the tactical plan 
portion of Model A.

( ) ,V X du dl volume goaljnt nt nt nt

n

N

j t− ∀+ =
=

∑
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 (4)

Where dunt and dlnt are the upper and lower deviation 
variables from the volume goal in each period.

The fi rst constraint in the discrete planning prob-
lem is a singularity constraint, which limits each 
unit to one treatment during the planning hori-
zon.
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Table 2. Penalty values (Vpjt) used in the tactical forest 
plans (price = product price).

 Volume deviation (%)

Product 0–5 5–10 10–15 15–20 20+

Pulpwood 0 price price2 price2 price2

Chip-and-saw logs 0 price price2 price2 price2

Sawlogs 0 0 price price price2

Four policy constraints were considered. Two 
methods for controlling green-up sizes were used: 
controlling the maximum opening size, and con-
trolling the average opening size. As these repre-
sent the green-up constraints faced by the forest 
industry in the southeastern US. We fi rst defi ned 
a maximum opening size for each logging unit 
n and its set of adjacent neighbors (Un). For the 
3-year green-up constraints used in this model, 
we defi ned a set (Tm) of near-time periods (mz, 
where m1 = t–3, m2 = t–2, m3 = t–1, m4 = t, 
m5 = t+1, m6 = t+2, and m7 = t+3; all mz (0 
otherwise not in Tm; all mz (T otherwise not 
in Tm). Therefore, an opening is not just the 
harvests that occur in time period t, but also those 
around each unit n that have occurred during the 
near-time periods. The maximum opening size 
constraint is:

( ) ( ) ;A A X Maximum opening size where Xz zt
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If Xnt = 1, Wnt = 1      ∀ t ∈ Tm

Else Wnt = 0

where Nn = the set of adjacent neighbors to unit n;
Sn = subset of adjacent units to the neighbors of unit 
n, and all units adjacent to neighbors of neighbors, etc. 
as per Murray (1999); Wzt = 0,1 variable indicating 
whether unit z was harvested during a time period near 
t defi ned in Tm; Tm = the set of near-time periods; m 
= a near-time period; Az = area of unit z; An = area 
of unit n; and Xnt = 0,1 variable indicating whether 
unit n is harvested during time period t. For this prob-
lem, the maximum opening size used was 91 ha.
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A maximum average opening size can be defi ned 
for each time period. If each opening is centered 
around a focal unit (f) during a time period (t), we 
can defi ne the size of the opening (Oft) as:
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Af = area of focal unit f; and Xft = 0,1 variable indi-
cating whether focal unit f is harvested during time 
period t.

Because we are attempting to calculate the aver-
age opening size, we do not wish to count open-
ings more than once. This miscounting could 
occur if we allowed each unit (n) in an opening 
(composed of multiple units n) to be considered 
the “center”. Therefore, only one unit (n) can be 
delineated as the focal center (f) of the opening in 
any time period, and the total number of openings 
equals the number of focal centers of openings. 
Thus,

f n and X X∑ ∑ ∑ ∑≤ ≤ft nt  (8)

The average opening size for a set of openings 
in a time period (t) can then be constrained with 
the following equation:
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where F = the total number of openings; f = the focal 
center of an opening, or an opening; and Oft = an 
opening centered around a focal unit f during time 
period t. For this problem, the maximum average 
opening used was 48 ha., the limit set by the AF&PA 
(American Forest & Paper Association 2001).

The last constraints are for units contained within 
the RCW forage areas, the area between 61.0 
and 804.6 meters of the nest tree. Constraint 10 
requires a minimum of 278.7 m2 of total pine 
basal area within the forage area. Constraint 11 
requires a minimum average diameter of 25.4 cm 
for the pine trees within the forage area.
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Where Rp = the pth RCW forage area, from the set of 
Rp ranging from R1 to RP, containing units n; BAnt = 
the basal area of unit n during time period t.
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Where Dnt = the average tree diameter of unit n 
during time period t.

2.1.2 Model B

The product of Model B is a forest plan that 
considers both the harvest levels and spatial con-
straints simultaneously. The goals and constraints 
used in Model B are exactly the same as those 
in Model A, except that Equation 3 is altered 
and Equation 4 is not used. First, a set of equa-
tions to defi ne the deviations between periods is 
developed:
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where deviationjt represents the variation between 
harvest volume for product j during time periods 
t and t+1. No penalty was incurred if the volume 
produced of chip-and-saw and pulp logs varies 
less than 5 % between periods. Sawlog volumes 
were allowed to vary up to 10% without incurring 
a penalty value. The original Equation 3 is altered 
to become Equation 13:



431

Boston and Bettinger Development of Spatially Feasible Forest Plans: a Comparison of Two Modeling Approaches

where deviations in volume levels, by product, 
from one period to the next are penalized. This 
retains the intent of Equations 2 and 3, which 
were devised to produce a fl ow of volume with 
some allowable variation between periods but 
were given some slack to allow the achievement 
of the goals. These were the same allowable vari-
ations to the volume goals that were used in the 
continuous model in approach A.

2.2 Heuristic Technique

The heuristic technique used for stage 2 of Model 
A and for the entire Model B process is a hybrid 
algorithm consisting of fi ve components. The fi rst 
is a Monte Carlo integer programming algorithm 
that randomly develops an initial solution. This 
process selects a logging unit, determines whether 
it meets the minimum harvest age requirement, 
and ensures that its incorporation into the solu-
tion does not violate the green-up constraints or 
the RCW habitat guidelines. This selection proc-
ess continues until 20 units have been scheduled 
in each period. Because each new run of the 
heuristic technique uses a new seed for use in a 
random number generator, this component allows 
an increase in the proportion of the solution space 
explored when the program is executed repeat-
edly.

The second component is the core tabu search 
routine, similar to the algorithms described in 
Murray and Church (1995), Bettinger et al. 
(1997), and Boston and Bettinger (1999). It is 
composed of two elements: (1) a tabu list that 
maintains a record of the recent moves, and (2) 
aspiration criteria. After experimentation, 100 
iterations was selected as the tabu list length. 
For this application, the aspiration criterion was 
assumed to be the overall best objective function 
value. The best move from the neighborhood 
of moves is considered fi rst, whether or not it 
improves the current solution. If the move is not 
tabu, it is accepted into the solution. In addition, 
if the move is tabu yet exceeds the aspiration 
criteria, it is accepted into the solution. If a move 

is tabu and does not exceed the aspiration criteria, 
it is rejected.

The third component is the intensifi cation rou-
tine. The objective of an intensifi cation routine is 
to search for better solutions within a portion of 
the neighborhood that has already yielded a good 
solution. This intensifi cation routine begins by 
recalling the current best solution from the core 
tabu search routine. By using a 2-opt neighbor-
hood (where the harvest timing of one unit is 
swapped with that of another) described in Bet-
tinger et al. (1999), two units can simultaneously 
change their status. This process, however, only 
considers non-forage-area units. The intensifi ca-
tion routine has the same short-term memory 
features as the core tabu search routine, but the 
tabu list has been reduced from 100 to 20 itera-
tions.

Tabu search fi nds good solutions to large com-
binatorial problems, but the solutions tend to be 
concentrated in a small portion of the solution 
space (Glover et al. 1995). Thus, the fourth and 
fi fth components of the heuristic technique have 
the goal of changing the neighborhood considered 
by the core tabu search algorithm. The fourth 
component is a diversifi cation routine that sched-
ules those units with the lowest frequency of 
entering the solution, while maintaining the mini-
mum harvest age requirement and not violating 
the green-up constraints. This diversifi cation 
forces the algorithm to the least explored por-
tion of the solution space. The resulting solution 
becomes the starting point for a return to the core 
tabu search routine.

The last component aims to combine two good 
solutions to fi nd a superior solution. It is based 
on a crossover routine used in genetic algorithms. 
The best solutions from the 1-opt and 2-opt tabu 
search processes are selected for the genetic 
crossover routine, which treats the solutions to 
the forest planning problems as if they were 
chromosomes, with each unit being a gene on 
a chromosome. The values for the genes–the 
alleles–become the periods when the unit is har-
vested. By using a random number generator 
that selects the crossover point, the two “chromo-
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somes” are recombined into two new solutions. 
The solution with the highest objective function 
value survives the crossover and becomes the 
starting solution for a continuation of the core 
tabu search routine.

This heuristic technique has produced good 
results for similar spatial harvest scheduling prob-
lems with 3000 to 5000 0–1 integer variables (a 
companion paper on validation of the heuristic 
technique is in preparation); the current heuristic 
technique uses 2-opt moves, which should pro-
vide even better results (Bettinger and Boston 
1999). Extending the use of this solution method 
to larger scheduling problems therefore seems 
reasonable, although its performance cannot be 
directly compared against known optimal solu-
tions. The results we provide from the heuristic 
technique are the best solution from a set of 
twenty generated for stage 2 of Model A, and 
the best solution from a set of twenty produced 
for Model B.

3 Results

The linear programming solution (stage 1 of 
Model A, the “relaxed” solution to the planning 
problem) indicates that when spatial constraints 
are not considered and non-integer solutions 
allowed, the optimal strategy for this land base is 
to primarily produce chip-and-saw logs and pulp-
wood logs. As we will soon see, however, once 

the spatial constraints are considered, harvests 
become delayed due to green-up constraints and 
RCW habitat requirements, causing an increase in 
the percentage of sawlogs and chip-and-saw logs 
produced, reducing the percentage of pulpwood 
logs. In terms of net present value produced per 
time period, the two-stage modeling approach 
(Model A) produced better results than the one-
stage approach (Model B, Fig. 2). This only con-
siders the revenue produced from the forest, and 
do not include the remaining the forest’s residual 
asset value, since the goal was to develop a plan 
that maximizes the income from the property 
over a 15-yr planning horizon. In fact, the net 
present value for Model A was more than that 
for Model B in every time period. Incorporating 
a residual value calculation therefore would not 
change the result of this analysis. Solution values 
for both Model A and Model B are generally less 
than the LP results, since the LP solution is a 
relaxed version of the forest planning problem.

In terms of actual products produced, Model 
A closely follows the LP solution for the fi rst 12 
periods for pulpwood production (Fig. 3) and the 
fi rst 13 periods of chip-and-saw production (Fig. 
4). Model B drops in production of pulpwood 
after period 12, yet it produces a nearly even fl ow 
for chip-and-saw logs. Both modeling approaches 
show large variations in sawlog production (Fig. 
5), although Model A more closely refl ects the 
targets derived from the LP solution as would 
be expected. Neither model produces, over the 
15-year planning horizon, the mix of products 
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Fig. 2. Net present value per time period from LP, 
Model A heuristic, and Model B heuristic forest 
plans (discounted revenue, with no penalty values 
included).



433

Boston and Bettinger Development of Spatially Feasible Forest Plans: a Comparison of Two Modeling Approaches

suggested by the relaxed LP solution: larger quan-
tities of smaller products in the later time periods. 
Both models generally show more sawlog pro-
duction over time, suggesting the harvest delays 
caused by the spatial constraints and the implied 
integer constraints with the removal of fractional 
solutions lead to production of a larger quantity 
of sawlogs and chip-and-saw logs.

The solution time for Model A required 10 
hours for this problem (700 logging units, 10 000 
0–1 variables), while Model B required 20 hours 
for the same number of iterations, each on a 
Pentium 233 with Windows NT operating system. 
We anticipate more effi cient programming tech-
niques would lead to a substantial improvement 
in the computer time required to generate a solu-
tion, therefore these time commitments should 
not be seen as a deterrent to the development of 
spatially feasible forest plans.

4 Discussion and Conclusions

The comparison of solutions from Models A and 
B, while important, must be made with a caveat 
in mind. Model B actually utilized higher penalty 
values for non-smooth harvest levels, since the 
deviations of harvests from period-to-period are 
incorporated directly with the spatial constraints 
in the problem formulation. For example, should 
the spatial constraints force the solution far from 
the original LP solution (the fi rst stage of Model 

A), the solution of Model A may not refl ect 
the original harvest level smoothness criteria. 
Given the complexity of the formulations, and 
our attempt to adequately formulate the problem 
in both one-stage and two-stage processes, one 
could argue that the resulting formulations are not 
exactly the same, and the resulting comparisons 
should be viewed in this manner.

The impact of including spatial constraints 
along with the resulting integer requirements in 
forest plans is clarifi ed by examining the differ-
ence between the spatially feasible forest plans 
(the resulting spatial forest plans for Models A 
and B) and the relaxed LP solution (generated as 
stage 1 of Model A). Incorporating spatial con-
straints led to longer rotations, which produced a 
lower percentage of pulpwood logs and a higher 
percentage of chip-and-saw logs and sawlogs 
in the long-run. However, the magnitude of the 
difference between the relaxed LP solution and 
spatially feasible solutions generated by the heu-
ristic technique will depend on the arrangement 
of stands in a particular forest and the degree at 
which the continuous forest solution is converted 
to an integer solution. A forest with highly aggre-
gated stands (e.g., small ranges of age classes in 
concentrated areas) will probably show a larger 
difference between a relaxed LP solution and a 
spatially feasible solution than a forest with a 
dispersed age-class distribution. Thus the results 
shown here should not be viewed as being the 
universal effects of the RCW and green-up con-
straints applied to all forests in the southeastern 

Fig. 5. Sawlog volume from LP, Model A heuristic, and 
Model B heuristic forest plans.
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USA. To assess the impacts of spatial constraints 
on particular areas of the Southeast, we rec-
ommend the inclusion of spatial constraints in 
forest plans, particularly is the results will lead to 
the support (or non-support) of wood processing 
equipment, based on the anticipated raw material 
produced from a forest.

The problem formulations could easily be 
adapted to include other silvicultural treatments, 
such as thinning operations. Since these treat-
ments are not primarily used in the short-rotation 
plantation forests of the southeastern US, they 
were not included in the models presented here. 
Their inclusion would simply require the addition 
of other decision variables refl ecting the oppor-
tunity to choose those activities in the scheduling 
process.

Tabu search is a scheduling model that gen-
erally considers the impact of iterative, single 
changes in a solution to a problem, such as chang-
ing the harvest timing of a single management 
unit. These potential moves may shift the value 
of the resulting solution considerably. Using a 
2-opt procedure and a genetic crossover routine 
reduces these impacts, fi ne-tuning the solution 
values and allowing a more effi cient search of 
the solution space. The guidance provided by 
the LP solution in Model A, however, allows the 
heuristic technique to fi nd higher valued solutions 
than when used alone (in Model B). As a result, a 
two-stage approach (LP and heuristic) seems, at 
least with this problem, to produce more effi cient 
spatially feasible forest plans than a one-stage 
approach.

We recommend those considering a variety of 
forest product goals and wildlife habitat goals 
as joint products to pay close attention to the 
quality of resulting solutions generated by heu-
ristic techniques, and at a minimum, compare 
them, where possible, with relaxed LP solutions. 
The forest planning problem evaluated here, with 
three forest products that were mainly a function 
of stand age, were greatly infl uenced by delays 
in harvesting caused by the achievement and 
maintenance of wildlife habitat goals. Model A 
provided some guidance about these products 
to the heuristic, allowing the heuristic to fi nd 
better solutions when no guidance was provided 
(Model B). This is one of the problems with 
heuristics such as tabu search, they are unable 

to consider the entire production surface when 
solving a problem. The guidance from the LP 
solution produces a better result than allowing 
the tabu search heuristic to develop a harvest 
schedule that simultaneously meets the spatial 
constraints while minimizing the deviations from 
the desired volume levels.

With the likelihood that governmental reg-
ulations and internal policies of forest compa-
nies will increasingly emphasize wildlife habitat 
goals, the resulting situation will be one where 
companies increasingly ask their planners “what 
if” questions about the short- and long-term pros-
pects of management on their land. For example, 
planners may be called upon to examine the effect 
on harvest levels and cash fl ow if the required size 
of RCW habitat areas is increased (or decreased). 
To fully explore the potential effects of policies, 
which include spatial constraints, heuristic tech-
niques will more than likely be required, and 
the planning process may require a one- or two-
stage approach as described here. The benefi t of 
the two-stage approach is that some guidance is 
given the heuristic from the results of a “relaxed” 
solution to the problem. The benefi t of the one-
stage approach is that it considers the harvest 
levels while simultaneously meeting the spatial 
constraints. While the two-stage approach seems 
more appropriate for the green-up and RCW con-
straints we described, planners and managers 
will need to assess for themselves the relative 
benefi ts and costs to their organizations of these 
two planning processes, particularly if decisions 
are to be made, based on these results, regarding 
the development of wood processing facilities or 
selection of wood processing equipment.
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