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The objective of this paper was to predict a model for describing stand structure of tree
heights (h) and diameters at breast height (dbh). The research material consisted of data
collected from 64 stands of Norway spruce (Picea abies Karst.) and 91 stands of Scots
pine (Pinus sylvestris L.) located in southern Finland. Both stand types contained birch
(Betula pendula Roth and B. pubescent Ehrh.) admixtures. The traditional univariate
approach (Model I) of using the dbh distribution (Johnson’s SB) together with a height
curve (Näslund’s function) was compared against the bivariate approaches, Johnson’s
SBB distribution (Model II) and Model Iε. In Model Iε within-dbh-class h-variation was
included by transforming a normally distributed homogenous error of linearized Näslund’s
function to concern real heights. Basal-area-weighted distributions were estimated using
the maximum likelihood (ML) method. Species-specific prediction models were derived
using linear regression analysis. The models were compared with Kolmogorov-Smirnov
tests for marginal distributions, accuracy of stand variables and the dbh-h relationship of
individual trees. The differences in the stand characteristics between the models were
marginal. Model I gave a slightly better fit for spruce, but Model II was better for pine
stands. The univariate Model I resulted in clearly too narrow marginal h-distribution for
pine. It is recommended applying of a constrained ML method for reasonable dbh-h
relationship instead of using a pure ML method when fitting the SBB model.
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1 Introduction

The empirical breast-height-diameter (dbh) dis-
tribution is usually not determined in standwise
inventories. In order to use tree-specific models
in growth simulators, the dbh distribution and
tree heights have to be predicted as a function of
stand characteristics. Successfully applied prob-
ability-density functions (pdf) for describing dbh
distributions include the Weibull function (Bai-
ley and Dell 1973, Rennolls et al. 1985, Kilkki
and Päivinen 1986), the beta-function (Päivinen
1980, Kou 1982, Siipilehto 1988, Maltamo et al.
1995), and Johnson’s SB function (Hafley and
Schreuder 1977, Tham 1988, Zhou et al. 1996,
Siipilehto 1999). The tradition in Finland has
been to apply basal-area-weighted distribution
models while elsewhere dbh-frequency distribu-
tion models have been widely used (Gove and
Patil 1998). Some recent work carried out in
Finland has concentrated on developing more
flexible methods for describing dbh distributions,
for example the percentile prediction method
(Maltamo et al. 2000) and calibrating of the pre-
dicted parametric distribution (Kangas and Mal-
tamo 2000). One advantage of these methods
lies in their ability to describe the bi- and multi-
modality of the distribution.

When the dbh distribution is applied to a stand,
individual trees can be selected randomly or sys-
tematically, the latter being the common prac-
tice. Systematic sampling based on an equal
basal-area interval has been more effective than
sampling based on an equal diameter interval
(Kilkki et al. 1989). The less the number of
sampled trees is, the greater the difference, fa-
vouring the basal-area sampling.

The more sophisticated the tree-specific growth
models are, the more detailed and reasonable the
predicted stand structure should be. The social
status of a tree, which reflects on its further
development (i.e. growth and mortality), depends
not only on its relative diameter, but also on its
relative height in a stand. In addition, knowledge
of the height variation, both between and within
dbh classes, improves the chances of successful-
ly imitating different types of thinnings (Hafley
and Buford 1985). Stand structure in terms of
tree heights and diameters, including within dbh
class height variation, can be described using

bivariate pdf. Johnson’s SBB distribution has been
used for this purpose in a number of studies
(Hafley and Schreuder 1977, Hafley and Buford
1985, Siipilehto 1996, Tewari and Gadow 1997,
Tewari et al. 1999). The trivariate SBBB distribu-
tion approach has been applied in describing the
joint distribution of tree diameters, heights and
volumes (Schreuder et al. 1982a, Schreuder et
al. 1982b). Kilkki and Siitonen (1975) presented
a bivariate model based on the beta dbh distribu-
tion and Näslund’s height curve together with
conditional height distributions described using
the beta function. No other available or generat-
ed bivariate generalizations of the univariate log-
normal, gamma or Weibull distribution has been
able to provide reasonable diameter-height rela-
tionships (Schreuder and Hafley 1977).

Traditionally, stand structure has been de-
scribed by predicting diameter distribution to-
gether with the diameter-height relationship to
estimate the average height per dbh class and
hence volume (Päivinen 1980, Clutter et al. 1983).
Even if the bivariate pdf method has been ap-
plied in describing stand structure in terms of
tree diameters and heights, comparisons with the
traditional method, or any discussion of its avail-
ability, are lacking.

The purpose of this study was to compare
methods of generating individual trees in stands,
including between and within dbh-class height
variation. This was done by predicting the pa-
rameters of both marginal distributions and the
correlation coefficient for the bivariate pdf mod-
el, and alternatively the height curve including
error structure when using the traditional ap-
proach. Methods were compared in terms of the
obtained stand variables, such as total stem
number with total and timber-assortment vol-
umes. The goodness of fit of the models was
tested statistically and visually i.e. plotting ran-
domly selected trees from the predicted model
against observed trees. Two tree species were
studied, the shade-tolerant Norway spruce (Pi-
cea abies Karst.) species and the shade-intoler-
ant Scots pine (Pinus sylvestris L.) species.
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2 Material and Methods

2.1 Data

Study material consisted of 64 stands dominated
by Norway spruce and 91 stands dominated by
Scots pine both with birch (Betula pendula Roth.
and B. pubescent Ehrh.) admixtures (Table 1).
The stands were located in southern and south-
eastern Finland, respectively. The number of co-
niferous trees in the modelling data varied be-
tween 32 and 122 spruces and between 8 and 63
pines per plot. The diameter and the height of all
the trees on the plots were measured. Distribu-
tions were computed and studied only in the case
of conifers. However, the correlations between
distribution parameters and the proportion of
birch admixture were checked during model con-
struction. For more detailed description of the
data, see (Mielikäinen 1980, Mielikäinen 1985,
Siipilehto 1999).

The models were tested using independent data
that was a sub-sample of the 7th National Forest
Inventory (NFI7) in Finland, the target population
being the well to moderately managed, undam-
aged and one-storeyed stands. Each NFI7-based

permanent INKA sample plot consisted of a clus-
ter of three circular plots within a stand. In addi-
tion, each plot was divided into two parts; a longer
radius for tallied trees and a shorter for more de-
tailed measurements. The total number of tallied
trees was about 120. In each plot, a smaller sub-
plot was delineated with an area of one-third of
the total plot area. In the sub-plot tree heights were
also measured (Gustavsen et al. 1988). Diameters
and heights in each data set were measured to an
accuracy of 1 mm and 1 dm, respectively. Only
trees on the sub-plots with measured diameters
and heights were used. The stand characteristics
were calculated from these observations (Table
1). The tree volumes were calculated using mod-
els with tree diameter and height as the predictors
of the stem volume (Laasasenaho 1982).

2.2 Estimating the Models

2.2.1 Bivariate Johnson’s S
BB

 Distribution

Bivariate Johnson’s SBB function (1) is based on
the bivariate normal distribution (Johnson 1949).
The original variables, diameters and heights were

Table 1. The mean stand characteristics for modelling and test data. There were 64 and 112
stands of Norway spruce and 91 and 103 stands of Scots pine in the modelling and test data,
respectively. The meaning of shape index (ψ) is described in the model construction section.

dgM hgM G N ψ

Modelling data
Spruce Mean 20.2 17.6 16.5 1017 0.708

Sd 6.0 4.8 5.7 796 0.120
Min 9.6 7.3 6.5 217 0.375
Max 32.8 25.2 30.8 3184 0.937

Pine Mean 25.0 21.9 13.7 359 0.867
Sd 4.1 2.8 3.3 182 0.067
Min 14.6 10.8 6.6 104 0.667
Max 36.1 29.1 21.9 1100 0.985

Test data
Spruce Mean 21.7 18.0 19.9 782 0.801

Sd 4.9 3.6 5.5 438 0.110
Min 11.8 10.5 8.1 265 0.527
Max 34.3 28.2 35.4 2925 1.034

Pine Mean 20.7 17.0 18.1 749 0.897
Sd 5.5 3.7 4.8 454 0.085
Min 11.7 10.3 5.7 81 0.642
Max 35.0 25.8 31.6 2210 1.084
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transformed to standard normal variates using
Formula 2.
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γ and δ are shape parameters, ξ is the minimum
and λ is the range of either diameters (d) or
heights (h), while zd and zh are the standard nor-
mal variates and ρ is the correlation coefficient
between them.

The SBB distribution was applied as a basal-
area-weighted diameter and height distribution.
The maximum likelihood (ML) estimates for the
parameters were solved with an iterative FOR-
TRAN program by maximizing the log-likeli-
hood function (3) separately for dbh and h distri-
butions (see Johnson 1949, Schreuder and Haf-
ley 1977).
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where, x1j = dj, x2j = hj, i = 1, 2, j = 1,..,n; n is the
number of observed diameters and heights (or
classes) in a stand, xij is the observed diameter or
height, gj is the corresponding basal area of a
tree, and G is the total basal area.

The iterative method was simplified by fixing
the minimum diameter (ξd) to have the value 0
cm and minimum height (ξh) equal to breast
height, 1.3 m. The parameters for both the mar-
ginal distributions were searched iteratively by
increasing the value of the λ parameters step by

step starting from the observed range. If both
end points could initially be fixed, the ML esti-
mates would have a closed-form solution
(Schreuder and Hafley 1977) and also, methods
using percentiles would be simple (Knoebel and
Burkhart 1991). The parameters were solved as
in the study of Schreuder and Hafley (1977) with
the exception of basal-area-weighting. The shape
parameters γ and δ were solved using Formulas
4 and 5.
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When the solutions for both marginal distribu-
tions were found, the correlation parameter was
calculated using Formula 6.

ˆ /ρ =
=
∑g z z Gj dj hj
j

n

1

(6)

One of the properties of interest is the regression
relationship between the diameter and height ob-
tained from SBB. The usual mean regression is
complicated, but the median regression takes a
much simpler form (Schreuder and Hafley 1977),
as shown by Formula 7.
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in which φ and θ can be denoted in terms of the
SBB parameters as

φ ρδ δ= d h/

and

θ ργ γ δ= −{ }exp ( ) /d h h

The regression curve (7) can have various forms
depending on the relationship between the pa-
rameters φ and θ (Fig. 1). The typical sigmoid
form of the height curve is obtained if both pa-
rameters, φ and θ, are greater than one. If param-
eter φ equals one, then parameter θ should be
greater than one to result in a concave form of
the height curve.

To avoid unreasonable height curves, Schreud-
er and Hafley (1977) recommended constraining
φ to be greater or equal to one while fitting the
distribution. If necessary, this was done itera-
tively by increasing the range of the diameters
(in steps of 0.5 cm) and by decreasing the range
of the heights (in steps of 0.2 m). In this way, the
parameter φ was increased more effectively than

increasing only the range of the diameters as was
used by Schreuder and Hafley (1977). Both, un-
constrained and constrained solutions for SBB

parameters were studied in this paper.
The shape of the height distribution, condi-

tional for diameter, changes depending on the
diameter (see Siipilehto 1996). It is symmetric
with respect to the median diameter. Decreasing
diameter has the effect of making the condition-
al height distribution increasingly positively
skewed (with the tail towards the higher trees).
Increasing the diameter causes the distribution
to become more negatively skewed.

2.2.2 Näslund’s Height Curve

Näslund’s (1936) height curve (8) was fitted in
the linearized form (9)
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in which β0, β1 and α are the parameters of the
model. (α = 2 for pine and α = 3 for spruce)

The values for the power α were iteratively
found by grid searches. The power of 2 worked
well with pine, but the power of 3 gave consider-
ably better fits with spruce due to increased flex-
ibility.

The residual variation (sεz) of εz from Equation
9 was assumed to be homogenous and normally
distributed (see Näslund 1936 p. 52). Applying
the height model, it was transformed to concern
real within-dbh-class height variation (sεh). Us-
ing Taylor’s series expansion, the variance of
the height model can be written in terms of the
transformation function (z) and residual variance
(σε z

2 ) as (e.g. Lappi 1993):
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Fig. 1. The SBB median regressions (‘height curves’)
with different values of parameter φ and θ. (Siipi-
lehto1996)
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in which α = 2 for pine and 3 for spruce.

The average forms of the height curves and error
variations for spruce and pine are given in Fig. 2.
The height curve for pine typically bends more
than that of spruce. The residual variation around
the height curve first increased with increasing
diameter and then the variation starts to slightly

decrease with the bigger diameter classes. The
standard error for pine seemed to be greater than
that for spruce, particularly within the smallest
dbh classes.

2.3 Model Construction and Evaluation

2.3.1 Approach

Two main approaches for predicting stand struc-
ture were studied. The traditional approach us-
ing dbh distribution together with height curve is
denoted by Model I. The bivariate SBB pdf for
the joint dbh-height distribution is denoted by
Model II. Both approaches were applied in two
different ways. Either denotation Model Iε or
Model I is used, whether or not the error varia-
tion around the height curve is included in the
model. Denotations Model IIφ or Model II are
used to describe the prediction models for con-
strained (φ > 1) or unconstrained solution for the
SBB distribution parameters, respectively. The
predicted SB dbh distributions in Model I are
also included in Model IIφ for Norway spruce
and in Model II for Scots pine.

Models for Johnson’s SB dbh distribution were
previously presented by Siipilehto (1999). These
models were intended to be used together with

Fig. 2. Näslund’s height curves (left) with the average parameters for spruce (—) and pine (- - -). Corresponding
average standard error of height (right) as a function of diameter for spruce (—) and pine (- - -). Used
parameters were β0 = 0.894, β1 = 0.185 and standard error sεz = 0.199 with power α = 2 for pine, and
β0 = 1.811, β1 = 0.308 and standard error sεz = 0.277 with power α = 3 for spruce.
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the new height-distribution models formulated
in this study to define the bivariate SBB distribu-
tion. Due to the peculiar behaviour of diameter-
height relationships derived for spruce in 25 %
of cases, new (constrained) diameter distribu-
tions were fitted and modelled; only a few itera-
tive steps were needed for these constrained so-
lutions. Thus, new models for spruce were so
close to the previous models (Siipilehto 1999)
that comparing them was unnecessary.

However, the previous models for Scots pine
(Siipilehto 1999) were studied together with the
new models. This was done for three reasons: (i)
only 16 cases out of the 91 ML-estimated (un-
constrained) distributions produced reasonable
diameter and height relationships with respect to
the value of parameter φ, (ii) forcing φ >1 result-
ed in such parameters for the marginal distribu-
tions that were hardly as well correlated to stand
characteristics as the unconstrained ML parame-
ters, (iii) the log-likelihood of the new distribu-
tions were ‘far’ from the maximum. It was obvi-
ous that the lack-of-fit in the height curve, to-
gether with reliable marginal distributions, and
on the other hand, the lack-of-fit in the new
marginal distributions, together with a satisfying
diameter-height relationship, had to be compared.

2.3.2 Prediction Models

Models for the parameters γ, δ and ρ of the SBB

distribution, as well as the parameters β1 of Näs-
lund’s height curve and the residual error varia-
tion (sεz), were fitted applying least squares line-
ar regression estimation. This was done using
REG procedure in SAS (SAS 1985). The param-
eters were predicted with observed stand charac-
teristics (tree-species specific basal area (G), stem
number (N), basal area median diameter (dgM)
and height (hgM)).

While fitting the prediction models, observa-
tions when the parameter λd was greater than
100 or when the parameter δd was less than 0.7
were excluded. This was done because these
distributions either did not converge or they in-
dicated bimodal basal-area distributions. In ad-
dition, such distribution parameters (outliers)
would violate the fit of the regression model.
Altogether, seventeen pine stands were excluded

for Model IIφ and five pine stands in the case of
Model II. Due to the difference in size of the
modelling data sets, the accuracy of the predic-
tion models was not strictly comparable. How-
ever, none of the stands were excluded from
modelling the parameters for spruce or when
evaluating fitted prediction models.

Some of the parameters were solved in terms
of the known median and the predicted parame-
ters. When predicting the SB marginal distribu-
tions, the parameter γi was solved according to
the basal area median diameter dgM or height hgM

using Formula 13. Thus, known medians were
set for predicted marginal distributions.

ˆ ˆ ln ˆ ˆ ˆ ln ˆγ δ λ ξ δ ξi i i i i i i iM M= + −( ) − −( ) (13)

where i = d, h, and M is the median

The predicted height curve was forced to pass
through the known point of dgM, hgM by using the
value of parameter β0 given by Formula 14.

ˆ
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ˆβ β
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1 3
1=

−( )
−−

d

h
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gM

gM (14)

Transformations in the dependent variables were
used in homogenization of the residual variance,
in linearization and in determining the logical
behaviour of the models. For example, Fisher’s z-
transformation for correlation coefficient (zρ = 0.5
ln[(1 + ρ)/(1 – ρ)]) made the linear regression
model applicable and lnδ ensured the positive
value for δ. Note, the bias correcting factor (se

2/2)
should be used when applying models for lnδ.

An additional stand characteristic was derived
to describe the shape of the empirical diameter
distribution. In advanced stands, the number of
stems is not evaluated in the current forest man-
agement planning fieldwork. Consequently, the
great variation in the shape of distributions can
not be predicted (Siipilehto 1999). In this paper,
stem number data was assumed to be known and
the following shape index was utilized (15). The
‘calculated basal area’ (gMN) was compared with
the observed basal area G. The shape index (ψ)
behaviour is discussed in more detail in a study
by Siipilehto (1999).

ψ = G g NM (15)
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in which

g dM gM= ( )π
4

100
2

2.3.3 Assessment of Model Fit

The fits of the predicted distributions were stud-
ied in many different ways. Of course, the stand
total and timber-assortment volumes, as well as
the stem number obtained from predicted distri-
butions, are very important factors. These were
obtained using numerical integration of the pre-
dicted univariate or bivariate models. One cen-
timeter and half meter steps were applied for
diameters and heights, respectively. In the case
of Model Iε, eleven height observations were
taken systematically from a conditional height
distribution.

The test criteria, relative bias (%), and stand-
ard deviation of the prediction errors (sb), were
calculated as shown in Formulas 16 and 17. The
denominator in Formula 16 was ‘observed stand
characteristic’, because otherwise the same ab-
solute value of under- or over-estimate would
have a different relative value.

bias
n

Y Y Yi i i
i

n

%
ˆ /= −( )[ ]

=
∑100

1

1

(16)

s
n

e biasb i
i

n

= −( )
=
∑1 2

1
% (17)

in which Yi is the observed and Ŷi  is the predict-
ed stand characteristic and ei is the relative pre-
diction error (%) in stand i.

The fit of the marginal distributions for diame-
ters and heights was examined using the Kol-
mogorov-Smirnov (KS) test at alpha 0.1 level.
Because the differences between compared mod-
els could be marginal, they were additionally
ranked with the KS quotient, which is the limit
KS value divided by the actual KS value (Tham
1988). In the case of a great number of observa-
tions (n > 100) the approximative limit value
was calculated (Sokal and Rolf 1981).

In addition, as conditional height distributions
were used to describe within the dbh-class height
variation, the forms of predicted trees should be

examined. Neither KS tests for marginal distri-
butions, nor the generated stand characteristics
could discover possible irrelevance in individual
tree dimensions. The fit of the predicted diame-
ter-height relationship and the individual tree
form was studied visually. Fifty trees per stand
were generated from random numbers to illus-
trate the basal-area-weighted sample from the
original stands. The generated trees were plotted
together with the observed trees to enable visual
evaluation of the goodness of fit. The trees form-
ing the predicted stand plots were generated us-
ing the same random numbers to ease compari-
sons between the models. Evenly-distributed ran-
dom numbers were transformed into standard
normally-distributed random numbers by the
method of Box-Muller (Press et al. 1992).

Tree slenderness (h/dbh) was used to study
tree form variation. For this, the ranges for the
reasonable tree slenderness were set in accord-
ance with the modelling data. The least-slender
tree form was constant for both species, Min(h/
dbh) = 0.5, while the most-slender tree form was
given as a function of diameter, namely Max
(h/dbh) = 1.8 – 0.026(dbh for Norway spruce
(see Fig. 5a), and Max(h/dbh) = dbh/(0.75 +
0.155dbh)2 for Scots pine (see Fig. 7a). The func-
tion for Scots pine was derived from Näslund’s
height curve. The predicted trees outside these
ranges were considered outliers.

3 Results and Discussion

3.1 Parameter Prediction Models

The estimated prediction models are given first
for Model I (Table 2) and secondly for Model II
(Tables 3 and 4). Note that the equations used for
predicting dbh distribution in Model I (Table 2)
are also included in Model II (Table 3). Contrary
to the presupposed poorer degree of determination
for Model IIφ in comparison to Model II, there was
actually a slight increase. The degree of determi-
nation for the parameter λh for Scots pine was
greatly increased due to the requirement φ > 1
(Tables 3 and 4). This was due to the iterative
decrease in the value of parameter λh, which was
finally close to the observed range of heights.

The degrees of determinations of the models for
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Table 3. Estimates (and standard deviations) for the prediction equations in Model IIφ for Norway spruce and in
Model II for Scots pine.

λh–1.3 ln δh zρ

Spruce Model IIφ
Constant –5.525 (4.882) –4.925 (1.622) 1.8381 (0.175)
dgM –0.02878 (0.0067)
hgM 0.883 (0.128)
ln hgM –0.201 (0.087)
hgM/dgM 15.087 (5.225)
ψ 6.419 (1.690)
ln (1/ψ) 2.762 (1.099) 0.4436 (0.215)

r2 0.641 0.644 0.482
se 3.310 0.200 0.176

Pine Model II
Constant 2.0107 (3.157) 2.3995 (0.569) 1.4236 (0.179)
dgM –0.02964 (0.0072)
hgM 0.9703 (0.131)
G 0.2449 (0.103)
1/ψ –1.5169 (0.489)

r2 0.423 0.101 0.167
se 3.249 0.440 0.242

Note: dbh distributions in Table 2 are used together with these models in order to define SBB distribution.The dependent variable for ρ was
transformed to zρ = 0.5 ln[(1 + ρ)/(1 – ρ)] for the linear model.

Table 2. Estimates (and standard deviations) for the prediction equations in Model I and Model Iε.

β1 sez λd ln δd

Spruce Model I
Const. 0.4097 (0.008) –0.248 (0.095) –12.804 (8.891) –1.089 (0.142)
dgM 0.00389 (0.001) 0.00494 (0.001) 1.096 (0.240)
hgM –0.0102 (0.001)
dgM/ hgM 0.209 (0.084)
ψ 43.572 (11.95) 2.139 (0.198)
1/ψ 0.127 (0.041)

r2 0.754 0.42 0.416 0.654
se 0.016 0.064 11.12 0.425

Pine Model I
Const. 0.291 (0.009) 0.0629 (0.050) –15.405 (11.070) –1.834 (0.337)
dgM 0.00134 (0.0005) 0.876 (0.208)
hgM –0.00634 (0.0008)
hgM/ dgM 0.112 (0.044)
ψ 39.478 (12.432) 2.842 (0.387)

r2 0.61 0.07 0.279 0.377
se 0.011 0.042 7.837 0.249

Note: dbh distribution models for Norway spruce are also included into Model IIφ and for Scots pine into Model II.
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correlation parameter (ρ), as well as for the error
variation (sεz) for Scots pine were rather low (7–
17 %), considerably lower than for spruce (42–48
%) (Tables 2, 3 and 4, Fig. 3). This could be partly
due to the generally lower correlation between
diameter and height for pine when compared to
spruce. For example, the Pearson correlation co-
efficient between diameter and height was 0.95
for spruce and 0.79 for pine for the entire data sets,
while the standwise correlations varied within the
range 0.79–0.98 and 0.21–0.89, respectively.

3.2 Model Evaluation for Norway Spruce

3.2.1 Marginal Distributions

According to the results of the KS tests (α =
0.1), the predicted distributions fitted well with

the observed distributions and the differences
between the models were marginal (Table 5).
The derived height-frequency distributions did
not pass the KS test in one or two cases in Model
I or Model Iε, respectively. According to the KS
quotient (see Tham 1988) the predicted SB height

Table 4. Estimates (and standard deviations) for the prediction equations in Model IIφ for Scots pine.

λd ln δd λh–1.3 ln δh zρ

Pine Model IIφ
Const –45.734 (16.82) –1.477 (0.330) 1.580 (1.311) –1.040 (0.485) 1.279 (0.195)
ψ 73.175 (19.06) 2.839 (0.381) 1.586 (0.560)
dgM 1.389 (0.352) –0.022 (0.008)
hgM 1.072 (0.060)

r2 0.355 0.435 0.817 0.100 0.104
se 10.97 0.225 1.322 0.331 0.248

Table 5. The number of predicted Norway spruce stands
that did not pass the KS one-sample goodness-of-
fit test at alpha 0.1 level. The total numbers of
stands were 64 in the modelling data and 112 in
the test data.

Model Model IIφ Model Iε Model I

Distribution dbh h h h
Modelling data 2 1 2 1
Test data 2 1 1 1

Fig. 3. Predicted (P) and observed (O) standard error (sεz) of linearized Näslund’s height curve for spruce
(left) and for pine (right).
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distribution (Model IIφ) was superior in 26 or 38
cases out of 64 to that derived from Model Iε or
Model I, respectively.

3.2.2 Stand Characteristics

Because the dbh distribution model was com-
mon for the spruce models, the results in stem-
number estimation were the same; the bias in
stem number was an overestimate of 4 % with a
deviation of 8 % in the model data. All the
models for Norway spruce proved to be relative-
ly accurate in predicting the total and timber-
assortment volumes of a stand (Table 6). The
bias in total volume of spruce trees varied from
almost unbiased estimates (0.05–0.11 %) (Mod-
el I and Model Iε) to a bias of 0.5 % (Model IIφ).
All the models slightly under-estimated the vol-
umes of saw-timber and over-estimated those of

pulpwood. The relative errors in saw-timber vol-
umes were quite high (22–24 %) even though
the smallest saw-timber fractions (< 5 m3ha–1)
were ignored during the computing of relative
errors. Näslund’s height curve proved to gener-
ate slightly more accurate assortment volumes
than the bivariate SBB, but the differences be-
tween the models were marginal. Due to the
clearly bimodal empirical distributions of the
two spruce stands, the predicted distributions
did not fit and lead to a clear underestimation
(22 and 43 m3ha–1) of the saw-timber volume.
These two stands are not included in Table 6.

In the test data the total and saw-timber vol-
umes were under-estimated between 3.0 % and
6.6 %, and the smaller fractions, pulpwood and
non-industrial wood, were correspondingly over-
estimated (Table 7). The smallest biases and er-
ror deviations were most often given by models
including Näslund’s height curve. There were

Table 6. The absolute and relative bias (and standard deviation) of the prediction errors in the total (VT), saw-
timber (VS), pulpwood (VP), and non-industrial wood (VN) volumes for Norway spruce in the modelling
data. The smallest relative biases and deviations are highlighted in bold.

Model VT, m3ha–1 VS, m3ha–1 VP, m3ha–1 VN, m3ha–1

Model IIφ 0.98 (3.90) 2.50 (5.95) –0.74 (4.54) –0.41 (0.79)
Model Iε –0.25 (3.14) 0.99 (5.63) –0.60 (4.41) –0.39 (0.71)
Model I –0.23 (3.19) 0.97 (5.57) –0.52 (4.41) –0.44 (0.70)

% % % %
Model IIφ 0.54 (2.59) 2.19 (21.71) –2.91 (8.89) –7.28 (8.68)
Model Iε –0.11 (2.20) 1.34 (23.82) –2.14 (8.40) –5.93 (8.25)
Model I –0.05 (2.23) 1.60 (23.29) –1.94 (8.34) –6.73 (8.39)

Table 7. The absolute and relative bias (and standard deviation) of the prediction errors in total (VT), saw timber
(VS), pulpwood (VP), and non-industrial wood (VN) volumes for Norway spruce in the test data. The
smallest relative biases and deviations are highlighted in bold.

Model VT, m3ha–1 VS, m3ha–1 VP, m3ha–1 VN, m3ha–1

Model IIφ 5.32 (5.72) 5.71 (8.31) –0.19 (8.31) –0.19 (0.47)
Model Iε 4.47 (5.48) 3.81 (7.64) 0.80 (8.00) –0.14 (0.40)
Model I 4.54 (5.51) 3.64 (7.73) 1.08 (8.11) –0.18 (0.43)

% % % %
Model IIφ 3.29 (3.46) 5.16 (19.77) –2.08 (11.90) –4.42 (11.03)
Model Iε 3.04 (3.56) 6.56 (20.2) 0.68 (10.35) –2.54 (10.09)
Model I 3.12 (3.63) 6.11 (19.25) 1.11 (10.52) –3.45 (10.10)
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hardly any differences in the assortment vol-
umes regardless of whether the residual error
term was included (Model Iε) or excluded (Mod-
el I) when the Näslund’s height curve was ap-
plied.

3.2.3 Results in Visual Assessment

When the generated trees were plotted together
with the observed trees in order to visually eval-
uate the goodness of fit, no really peculiar tree
was to be found. In a few cases, the predicted
height curve did not coincide with the observed
trees very well. In these cases, the height curve
was concave or almost linear instead of being a
better fitting sigmoid (see Fig. 4).

Perhaps the best way to characterise the over-
all usefulness of the various models was through
an analysis of acceptable stem form described
by slenderness (height/dbh). The predicted trees
outside the set ranges, given in paragraph 2.3,
were considered to be outliers and they were
highlighted with larger symbols (Fig. 5b). There
seemed to be two trees that were too slender and
eight that were too tapered in the modelling data
in accordance with set criterions (Fig. 5a). Only
a few more outliers were found within the data
of predicted trees. Two trees out of 3 200 ran-

domly-selected predicted trees were clearly too
tapered and ten trees (each in a different stand
plot) too slender when using the bivariate distri-
bution (Model IIφ). In general, just 0.4 % of the
predicted trees had unreasonable tree forms. De-
spite the poor fit of the regression in stand 62
(see Fig 4), caused by bimodality and thereby
extremely low shape index (ψ), no tree form
outside the set ranges was found in this stand.
Generally, too wide conditional height distribu-
tion resulted in the tapered tree forms.

If the trees were generated using Model Iε,
only one tree had a visibly excessively tapered
form, but the forms of 26 trees were too slender.
This was partly due to the greater height varia-
tion within the largest diameter classes (dbh great-
er than 30 cm), partly because of the not-so-
concave height curve when compared to the SBB

median regression including the asymptote of
the greatest height. The proportion of outliers
was 0.8 % and these were found in 11 stand plots
out of 64 by both of the applied methods. If the
tree heights were predicted using Model I (with-
out error variation), the same kind of errors were
still found.

Fig. 4. Examples of spruce stand plots. The height curve, derived from predicted SBB distribution in Model IIφ
(—), was concave (left) or almost linear (right) instead of sigmoid as the Näslund’s height curve in Model I
(– –). Measured spruce trees are indicated in circles.
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3.3 Model Evaluation for Scots Pine

3.3.1 Marginal Distributions

According to KS tests (α = 0.1), all of the pre-
dicted basal-area distributions fitted to observed
distributions and only one height-frequency dis-
tribution did not pass the KS test in the model-
ling data (Table 8). However, the KS quotient

(Tham 1988) showed that the height distribu-
tions obtained using Model IIφ were superior to
the distributions obtained using Model II in 70
cases out of 91. Also, both fitted better than did
the height-frequency distribution from Model Iε
in 73 and 75 cases out of 91, respectively. There
was only some evidence in the test data for the
presumed better fit of the marginal distributions
based on Model II as compared to Model IIφ.
Finally, excluding the error variation (Model I)
resulted in excessively peaked and narrow height
distributions. Ultimately, 21 % of these distribu-
tions did not pass the KS test, which was about
ten times more than when including the residual
error term (Model Iε).

Fig. 5a. Observed tree forms (h/dbh) in the data set of
Norway spruce. Lines h/dbh = 1.8 – 0.026 dbh
and h/dbh = 0.5 were set for ranges for reasonable
tree forms. Tree form above (+) or below (–) set
ranges is considered as an ‘outlier’.

Table 8. The number of Scots pine stands that did not
pass the KS one-sample goodness-of-fit test at
alpha 0.1 level. There were a total of 91 stands in
the modelling data and 103 in the test data.

Model Model II Model IIφ Model Iε Model I

Distribution dbh h dbh h h h
Modelling data 0 1 0 1 4 11
Test data 2 1 2 3 2 22

Fig. 5b. ‘Outliers’ (+, –) obtained using Model IIφ (left) and using Model Iε (right).
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3.3.2 Stand Characteristics

All the models were relatively accurate in pre-
dicting the stand stem number or stand total
volume in model data (Table 9). The stem number
was 2.5 % biased (with standard deviation of 4
%) such that Model II gave an over-estimate and
Model IIφ gave an underestimate of the same
size. The volume characteristics were slightly
over-estimated, except in the case of Model IIφ,
which gave the most accurate total, pulpwood,
and non-industrial wood volumes. Model II gave
the least accurate estimates of the smallest trees
(pulpwood and non-industrial wood fractions).
However, the differences between the models
were marginal. The stem numbers obtained were
biased with respect to the median diameter if

Model II was applied.
In the test data the total volumes and the saw

timber volumes were under-estimated between
2.3 % and 9.8 % whereas the smaller fractions,
pulpwood and non-industrial wood, were corre-
spondingly over-estimated (Table 10). The small-
est biases and error deviations were again most
frequently given by Model IIφ. If Näslund’s height
curve was used, the differences in timber-assort-
ment volumes were marginal when either in-
cluding (Model Iε) or excluding (Model I) the
residual error term (ε), even though the KS test
results differed drastically. The total volume was
given accurately by Model II, but the timber-
assortments volumes were usually the most in-
accurate.

Table 10. The absolute and relative biases (and standard deviations) of the prediction errors in total volume (VT),
saw-timber volume (VS), pulpwood volume (VP), and non-industrial wood volume (VN) for Scots pine in the
test data. The smallest relative biases and deviations are highlighted in bold.

Model VT, m3ha–1 VS, m3ha–1 VP, m3ha–1 VN, m3ha–1

Model II 3.31 (1.86) 4.86 (5.17) –0.98 (5.25) –0.57 (0.78)
Model IIφ 4.37 (2.06) 5.19 (5.34) –1.04 (5.22) 0.21 (0.49)
Model Iε 3.58 (1.93) 4.95 (5.26) –0.91 (5.34) –0.46 (0.60)
Model I 3.27 (1.92) 4.54 (5.26) –0.82 (5.35) –0.45 (0.59)

% % % %
Model II 2.31 (1.31) 5.07 (26.84) –3.64 (9.83) –13.81 (12.82)
Model IIφ 3.04 (1.35) 7.63 (21.89) –1.51 (9.05) 4.56 (9.67)
Model Iε 2.56 (1.52) 9.80 (20.54) –2.52 (9.32) –11.61 (10.48)
Model I 2.45 (1.66) 8.83 (19.18) –2.19 (9.28) –11.53 (10.26)

Table 9. The absolute and relative biases (and standard deviations) of the prediction errors in total volume (VT),
saw-timber volume (VS), pulpwood volume (VP), and non-industrial wood volume (VN) for Scots pine in the
modelling data. The smallest relative biases and deviations are highlighted in bold.

Model VT, m3ha–1 VS, m3ha–1 VP, m3ha–1 VN, m3ha–1

Model II –0.86 (1.43) 0.85 (3.00) –1.52 (2.65) –0.18 (0.26)
Model IIφ 0.20 (1.61) –0.73 (3.10) 0.84 (2.38) 0.08 (0.19)
Model Iε –0.63 (1.34) 0.47 (3.08) –0.98 (2.58) –0.13 (0.19)
Model I –1.08 (1.36) –0.06 (3.00) –0.89 (2.56) –0.13 (0.18)

% % % %
Model II –0.69 (0.87) 0.34 (4.61) –5.90 (9.09) –10.54 (8.19)
Model IIφ 0.11 (1.02) –0.78 (3.50) 2.01 (8.06) 4.41 (6.66)
Model Iε –0.51 (0.80) 0.002 (4.55) –4.04 (8.96) –7.40 (6.86)
Model I –0.81 (0.81) –0.51 (4.62) –3.70 (8.97) –7.39 (6.79)
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3.3.3 Results in Visual Assessment

There were marked differences between Model
II and Model IIφ, but the latter was quite similar
to Model I as far as the dbh-height relationship
was concerned (Fig. 6). The height curve of the
Model II did not only bent unreasonably in the
upper part of the distribution, but it was also too
steep in the smallest diameters. Despite the great
differences throughout the SBB probability space
in Model II and Model IIφ, the randomly-select-
ed generated trees were quite similar (Fig. 6).

A total of eight measured Scots pines (0.22 %)
in the modelling data were just outside the set
ranges for tree slenderness. Model Iε produced
13 slender outliers (0.28 %) out of 4 600 gener-
ated trees (Fig. 7a). Correspondigly, Model II
produced 21 slender and 2 tapered outliers (0.50
%) and Model IIφ resulted in only six slender
outliers and one tapered outlier (0.15 %) out of
4 600 generated trees (Fig. 7b). The ‘outliers’
produced applying SBB or univariate SB together
with height curve were mostly to be found in the
opposite parts of the dbh distribution.

Fig. 6. An example of a pine stand plot. The height
curve derived from SBB in Model II (—) bended
unreasonably. Predicted Näslund’s height curve
in Model I (– –) and also height curve obtained
with Model IIφ (- - -) were reasonable and fitted
well. However, trees generated from SBB, either
using Model II (∆) or Model IIφ (��), were quite
similar.

4 Conclusions

No matter which approach was used, the good-
ness of fit of the bivariate dbh and the height
distribution model was fairly good. The lack-of-
fit proportion was greater than the risk level in
one (univariate) case only; 21 % of the height
distributions for Scots pine did not pass the KS
test if Näslund’s height curve was applied with-
out error variation. This was simply due to the
excessively narrow and peaked height distribu-
tions generated. However, this did not affect the
stand characteristics, which were relative accu-
rate for all the models applied. Unfortunately,
there are no such bivariate prediction models to
compare the results achieved in the present study
generated. The accuracy achieved in stem vol-
ume was, of course, close to that presented by
Siipilehto (1999) with univariate SB model. Due
to three small-sized plots in test data, the risk of
a bi- or multimodal distribution was obvious.

There were no drastic differences in the good-
ness of fit for pine regardless of the SBB model
applied. Indeed, Hahn and Shapiro (1967) showed
that the quality of fit is relatively unaffected by
the choice of lower bound and range as long as
they are consistent with the data to be fitted. The
marginally improved goodness of fit of height
distributions for the constrained (φ > 1) model
was most likely due to the generally enhanced
correlation coefficient (ρ) between standard nor-
malized diameters (zd) and heights (zh) and the
better fit of the diameter-height relationship in
some extreme cases. As regards the independent
test data, the constrained model (Model IIφ) fit-
ted better than the unconstrained model (Model
II) for SBB in the lower part of the distribution. In
the accuracy of the total and saw-timber vol-
umes the situation was vice versa. Two reasons
may be found for this, firstly, the regression
within the smallest diameters obtained with Mod-
el II was too steep and secondly, the predicted
maximum end points were closer to the observed
ones when using Model II compared with Model
IIφ. Finally, Model II produced more unreasona-
ble tree forms (outliers) than Model Iφ. This was
not surprising as ML estimation focuses fitting
the marginal distributions, not the relationship
between dbh and height. Thus, the most unrea-
sonable dbh-height relationships were derived
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Fig. 7a. Observed tree forms (h/dbh) in the data set of Scots pine (left) and by Model Iε (right). Line h/dbh = 0.5
and curve h/dbh = dbh/(0.75 + 0.155 dbh)2 were set for ranges for reasonable tree form. Tree form above (+)
or below (–) set ranges is considered as an ‘outlier’.

Fig. 7b. ‘Outliers’ (+, –) obtained using Model II (left) and using Model IIφ (right).

from predicted SBB distribution using Model II
and they resulted in the least accurate volume
estimates.

Both of the principle methods, bivariate SBB

pdf and SB dbh distribution with height curve
and error structure, could be applied success-
fully in predicting the joint distribution of tree
heights and diameters. The proportion of pre-
dicted outliers (i.e. tree form beyond the ranges
of the modelling data) was slightly smaller when
using the Model IIφ than when using Model Iε,

respectively 0.4 % and 0.8 % for the models for
Norway spruce and 0.15 % and 0.28 % for Scots
pine. Thus, setting the constraint φ >1 for satis-
fying diameter-height relationships is recom-
mended when using the SBB distribution.

The advantage of the SBB model was most
probably based on the asymptote of the greatest
heights; there were no trees with peculiar forms
in the upper part of the bivariate distribution. If
the diameter-height relationship was reasonable
(φ > 1), extreme form values were very rarely to
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be found. On the contrary, the form of the pre-
dicted diameter-height relationship was not as
controlled as with Näslund’s height curve. The
greatest advantages in using Näslund’s height
curve lay in the sigmoid form of the curve within
the predicted variation of the parameter β1. In
addition, the standard deviation of the random
error in height was reasonably dependent on tree
diameter. Generally, randomly selected trees
around the height-curve fitted visually better with
the observed standwise data than with the ap-
plied SBB distribution. The reason for excessive-
ly slender generated Norway spruces lay in the
combination of the predicted dbh distribution
being too wide and the almost linearly increas-
ing height as diameter increased. Thus, these
outliers were found without random error being
involved.

The trees were selected in proportion to their
basal area, emulating angle-count selection. Thus,
the number of smaller trees was lower among the
generated trees than in the modelling data. Gove
and Patil (1998) presented a framework that al-
lows the basal area-dbh distribution to be param-
eterized once the dbh-frequency distribution is
known. However, this technique is complicated
with the SB function and it was not used. It was
obvious that height variation within the smallest
diameter classes was greater when using the SBB

model than when using Näslund’s height curve
with random error (see Siipilehto 1996). Conse-
quently, if the randomly generated trees were se-
lected in proportion to stem frequency, the results
obtained when using the SBB could have been
slightly worse than those obtained using Näs-
lund’s height curve. Indeed, Siipilehto (1996)
found more outliers when using bivariate SBB fre-
quency distribution (0.8–1.5 %) than when ap-
plying univariate SB dbh distribution with Näs-
lund’s height curve (0.5 %). Note that when the
stand characteristics in this study were comput-
ed by integrating frequency distributions, the least
accurate non-industrial wood fractions were giv-
en by the unconstrained Model II.

The shape of the conditional height distribu-
tion did not change with respect to diameter, if
Näslund’s height curve is used; it was always a
normal distribution. This was not the case with
the SBB. The conditional height distribution was
negatively skewed, i.e. the longer tail pointed

towards the smaller heights among the biggest
dbh classes. Perhaps the latter was biologically
more reasonable than having a normal distribu-
tion.

Johnson’s SBB distribution could be recom-
mended for describing bivariate stand structure,
particularly if the requirement φ >1 for reasona-
ble diameter-height relationship is applied. In
addition, it is to be recommended that tree selec-
tion be made in compliance with the basal-area
interval, as this will have the effect of only a few
small trees being selected. This recommendation
is a consequence of the relatively wide condi-
tional height distribution of trees falling into the
smallest diameter classes increasing the risk of
peculiar tree forms occurring. However, the tra-
ditional approach, together with predicted resid-
ual height variation, could be recommended as
well. Some improvement of the traditional ap-
proach could be achieved by neglecting the ho-
mogenous and normally-distributed error assump-
tions. Williams et al. (1996) showed how the
model for gross tree volume could be improved
by estimating the prediction model and non-nor-
mal error structure together.
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