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The yield of various forest variables is predicted by means of a simulation system to
provide information for forest management planning. These predictions contain many
kinds of uncertainty, for example, prediction and measurement errors. Inevitably, this
has an effect on forest management planning. It is well known that uncertainty in the
forest yields causes optimistic bias in the observed values of the objective function. This
bias increases with the error variances. The amount of bias, however, also depends on
the error structure and the relations between the objective variables. In this paper, the
effect of uncertainty in forest yields on optimization is studied by simulation. The effect
of two different sources of error, the correlation structure of these errors and relations
among the objective variables are considered, as well as the effect of two different
optimization approaches. The relations between the objective variables and the error
structure had a notable effect on the optimization results.

Keywords decision analysis, forest planning, prediction, uncertainty
Authors' address Finnish Forest Research Institute, Kannus Research Station, P.O. Box
44, FIN-69101 Kannus, Finland
Fax + 358 6 8743 201 E-mail annika.kangas@metla.fi
Received 27 July 1999 Accepted 16 November 1999

Silva Fennica 33(4) research articles

1 Introduction

In forest management planning, the land area is
divided into homogeneous units (here called for-
est stands), for which various management sched-
ules can be applied. These schedules may vary
with respect to the treatments (e.g. clearcutting
or thinning), timing (different years or periods)
of these treatments, or both. The goal of forest

management planning is to select a combination
of standwise management schedules that is opti-
mal with respect to chosen criterion variables at
the forest holding or area level. The optimization
is based on predicted yields of various forest
products under different schedules. The predic-
tions are obtained with the aid of a simulation
system consisting of several models, such as
growth and mortality models.
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The yields predicted with statistical models
include uncertainty which has four main sourc-
es: (i) model misspecification, (ii) random esti-
mation error of the model coefficients, (iii) re-
sidual variation of the models, and (iv) errors in
the independent variables of the models (e.g.
Kangas 1997). The independent variables may
include sampling error, measurement error or
prediction error, if the independent variables of
the model are predicted with another model (e.g.
Gertner 1991). In addition to the uncertainty about
forest yields, there are other sources of uncer-
tainty; the future prices of timber, for example.

The structure of the errors varies with respect
to the error source. For example, additive meas-
urement errors in a standwise inventory are per-
fectly correlated among the management sched-
ules of any particular stand (within-stand corre-
lation). Instead, the measurement errors in dif-
ferent stands may be independent (between-stand
correlation). It may be assumed that the predic-
tion errors are positively correlated among the
management schedules of a particular stand: if
stand growth is overestimated in connection with
one treatment alternative, this will most likely
apply to other treatment alternatives available
for the same stand as well. However, these cor-
relations cannot be observed, as only one treat-
ment can be applied in a stand at time. The
prediction errors may also be positively correlat-
ed among the stands and among the planning
periods considered. For example, in Hof et al.
(1995) the product levels were assumed to be
spatially correlated.

The errors for different forest products may be
correlated in a given stand. For example, if the
growth of a stand in a certain planning period is
overestimated, then the value of the growing
stock at the end of this period will also be over-
estimated. The errors can either be independent
of the value of the measured/predicted variable
or they can depend on it. For example, the meas-
urement error for tree height is often the larger
the higher the tree. In the former case the errors
can be described with an additive error model, in
the latter case with a multiplicative error model.

Since the sources of uncertainty differ in their
characteristics, also their effects on optimization
differ. The interpretation of the effects of uncer-
tainty can also differ. For example, if the price of

timber is above the expected value, the decision
maker can adapt to the new situation by selling
more timber. If the growth of a stand has been
over- or underestimated, it is not possible to
adapt to the situation since the true values usual-
ly remain unknown until the stand is cut (Pick-
ens et al. 1991).

Numerical optimization is finding increasing-
ly wider use in forest management planning.
Usually, uncertainty about forest development is
ignored and optimization is done as if under
certainty. This can lead to two kinds of undesir-
able results. Firstly, a non-optimal alternative
may be chosen. This leads to a smaller realized
objective function value than the optimal objec-
tive function value. This loss is called “regret”
(Bell 1982). In the case of constrained optimiza-
tion the non-optimal alternative may also be in-
feasible. Secondly, the true worth of the optimal
solution may be overestimated. This kind of loss
is called “disappointment” (Bell 1985).

The effect of uncertainty has been studied fair-
ly widely in the context of linear programming.
It has been noted that uncertainty about the coef-
ficients of the objective function causes optimiza-
tion to be optimistically biased. This means that
the value of the optimal solution will be over-
estimated if there are random errors in the objec-
tive function coefficients (Hobbs and Hepenstal
1989). Errors on the right hand sides of the con-
straints have the opposite effect (Itami 1974).
Uncertainty about the forest yields also causes
optimistic bias in the observed value of the opti-
mal solution, and the obtained solutions may be
infeasible (Pickens and Dress 1988, Pickens et
al. 1991). The aforementioned problems apply
also to other optimization approaches, not only
to linear programming. The effect of uncertainty
on decision making has also been studied from
the perspective of deciding the optimal invento-
ry method and timing (Ståhl 1994, Ståhl et al.
1994).

The effect of uncertainty about the forest yields
on the feasibility of the optimization problem
have been accounted for by chance-constrained
optimization (e.g. Hof et al. 1992, 1996, see also
Weintraub and Abramovich 1995). In these stud-
ies the expected values and the variances of the
uncertain coefficients were assumed to be known.
It is more realistic, however, to assume only an
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These random errors were a combination of un-
biased random errors from different sources,
propagating through the simulation system.

The sources of uncertainty considered were
prediction errors of different models used in sim-
ulation, and measurement errors of the initial
stand variables. The initial stand variables were
assumed to be from a compartmentwise invento-
ry, and thus they only included measurement
errors, not sampling errors. Random errors were
generated with different assumptions about the
correlation structure among these errors.

The optimal solution for each stand with each
set of simulated criterion variables was then cho-
sen and compared to the “true” optimal solution.
Optimization was carried out using either un-
constrained optimization, in which an additive
utility function was maximized (see Kangas 1992,
Pukkala and Kangas 1993,1996) or constrained
optimization, which was solved using an LP-
formulation. The utility function was obtained
from the dual solution of the LP-problem, in
order to obtain comparable results with these
two approaches. In a more general case, the util-
ity function could be a nonlinear function of the
criterion variables (e.g. Kangas et al. 1998).

2 Methods

2.1 The Effect of Random Errors on the
Expected Value of the Utility Function

In a simple case it is possible to examine the bias
due to optimization under uncertainty analytical-
ly. The decision maker is assumed to maximize
his or her utility U. Let there be n alternative
management options, with utilities Ui, i = 1,...,n
that are not known exactly. The observed utili-
ties are ui = Ui + ei. Then, the optimization bias is
defined as

bias U E ui i= −max( ) (max( )) (1)

If n = 2 and the joint distribution of the observed
utilities ui is known, then the expected maximum
utility can be presented as

unbiased estimate of the forest yields to be known
(e.g. Pickens and Dress 1988, Pickens et al. 1991).
In this case, an estimate of the optimization bias
can be obtained using simulation: with an addi-
tional simulation level including generated ran-
dom variation, the optimization bias can be mod-
elled (Pickens et al. 1991). The obtained esti-
mate of the bias can then be used to aid decision
making in the original situation. The simulation
approach can also be used to ensure the feasibil-
ity of the chosen solution (Pickens et al. 1991).

The effect of uncertainty about the forest yields
on the expected value of the objective function
has been studied by generating random variation
from some distribution to forest variables of in-
terest in the LP-matrix (e.g., Pickens and Dress
1988, Pickens et al. 1991). However, this way it
is difficult to consider the varying sources of
uncertainty with varying characteristics. A real-
istic error structure may be difficult to incorpo-
rate. When the forest yields under different treat-
ment alternatives are projected by a simulation
system in which the errors from different sourc-
es are propagated (e.g. Gertner 1987, Mowrer
1991, Kangas 1997), it is easier to account for
the error structure.

In this study, the effect of uncertainty is first
considered theoretically. Then, the effect of un-
certainty about forest yields is studied by simu-
lation. The aim of this study is to examine the
effect of the error structure on the optimization
results. Managing the uncertainty is beyond the
scope of this study. However, it is shown that the
error structure need to be taken into account in
order to properly account for the uncertainty in
planning.

The simulation study was carried out as fol-
lows. Firstly, the expected values of forest yields
under a set of management schedules were sim-
ulated for given (simulated) stands. For the sake
of simplicity, each management schedule was
assumed to consist of only one treatment alter-
native. The expected yields were treated as if
they were the true values of the forest yields.
”True” optimal alternatives for each stand under
different objective functions and using two dif-
ferent approaches were found. After this, the
forest yields under the same treatment alterna-
tives were simulated so that there were (correlat-
ed) random errors in each criterion variable.
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If the joint distribution of the errors ei is known,
so is that of the observed utilities ui. The optimi-
zation bias (1) increases with increasing vari-
ance of the errors ei (e.g. Pickens et al. 1988).

In a more general case, the utility of the alter-
native options i, i = 1,...,n may consist of several
criterion variables Sij

U = Si
j=1

p

j ij∑α (3)

where αj, j = 1,...,p are the weights given to the
criterion variables Sj. The observed value of each
criterion variable under each alternative i, sij,
may contain random errors as sij = Sij + eij. In this
case, the error variance of observed utility ui can
be calculated from the error variances and covar-
iances of the observed criterion variables sij
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Thus, when the errors in the criterion variables
are negatively correlated, the error variance of ui

is reduced and optimization bias is reduced. When
they are positively correlated, the error variance
of ui increases and the optimization bias also
increases. However, these relationships may be
confused by the correlation of the objective vari-
ables Sj themselves. If the errors are multiplica-
tive, i.e. sij = Sijeij, the problem can be re-formu-
lated as to a problem of additive errors using
logarithms, in order to obtain an analytical pres-
entation of the bias.

2.2 Forest Management Planning
Situation

In a forest management planning situation, we
have m, k = 1,...,m separate stands with nk treat-
ment alternatives. The formulation of the man-
agement problem, using an unconstrained ap-
proach with a utility function, is then to maxi-
mize the utility of a plan by maximizing the sum

of utilities over the m stands, nk treatment alter-
natives and p objective variables as
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where xki is the proportion of stand k treated ac-

cording to alternative i and xki
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In the unconstrained optimization approach, the
whole stand will be treated according to the same
treatment, i.e. xki is either 1 or 0.

The expected loss due to choosing a non-opti-
mal alternative is defined as the expected value
of the difference between the true objective func-
tion value of a chosen alternative and the true
optimum as
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where xki
opt  is the proportion of stand k treated

with alternative i in optimal solution, and xki
cho

the proportion of stand k treated with alternative
i in the chosen solution.

In the constrained optimization approach, the
corresponding problem is formulated by using
one of the criterion variables (say p) as an objec-
tive variable and the others (say 1,..., p – 1) as
constraints in
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where nk is the number of treatment alternatives,
p – 1 is the number of constraints, bj is the value
of constraint for criterion variable Sj, and xki is
the proportion of the area of stand k on which
treatment alternative i is applied. The problem
can be solved using linear programming.

The LP-problem can also be presented as a
(casewise) additive utility function by using the
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dual solution in determining the weights αj (Seo
1980, Kilkki 1985). In this study, the weights in
the utility function were obtained from the dual
solution of a corresponding LP-problem, so that
the approaches are comparable.

When the error structure becomes complicat-
ed, an analytical presentation of the optimization
biases is difficult to obtain. This is especially
true with forest management planning where the
errors in the criterion variables may contain er-
rors from several sources (e.g. sampling error,
prediction error, measurement error) and some
of these errors may be additive and some multi-
plicative, some independent and some correlat-
ed. This being the case, simulation is the easiest
way to study the effects of different assump-
tions. Using simulation, the expected value of
maximum utility can be estimated as

E u
R

u i ni ir
r

R

max( ) max( ), ,...,( ) ≈ =
=
∑1

1
1

(8)

where R is the number of simulation realizations.
The expected loss is estimated respectively.

2.3 The Simulation Experiment

The simulation was carried out for a set of twelve
simulated stands, which were, for simplicity’s
sake, assumed to be equal in area. The ages of
the stands varied from 15 to 85 years (mean 50),
mean diameter from 7 to 30 cm (mean 17.8), and
basal area from 10 to 33 m2/ha (mean 21.1). A
set of management schedules, each consisting of
one treatment, was simulated for each stand. The
treatment alternatives included twelwe thinning
alternatives, which were combinations of the tim-
ing of thinning (after 5 years, 10 years or 15
years), the proportion of stems removed (30 %,
and 60 %) and the treewise probabilities for re-
moval. These probabilities were due to the pri-
mary thinning principles chosen: low thinning
(the probability of removal being the highest for
small trees) and high thinning (the probability of
removal being the highest for large trees). In
addition, one alternative was always to let the
stand grow and yet another to clear-cut the stand
at the end of the period. There were altogether
fourteen management schedules for each stand.

In the unconstrained optimization case, the op-

timal solution was obtained using a linear addi-
tive utility function (Eq. 5). The expected value
of the maximum utility and the corresponding
values of the criterion variables were calculated
from simulations and compared to the true opti-
mum (Eqs. 8 and 1). Also, the expected loss due
to choosing a non-optimal alternative was calcu-
lated (Eq. 6).

In the constrained optimization case, the prob-
lem was solved using an LP-formulation. This
meant maximizing one of the variables as the
objective, the other criterion variables being treat-
ed as constraints. As in the unconstrained case,
the expected value of the maximum objective
function value was calculated, as well as the
expected loss with respect to objective variable.
Also, the proportion of solutions that were infea-
sible was calculated.

The criterion variables used in this study were
(i) the present discounted value of net incomes
from cuttings (Finnish marks, FIM), (ii) the mon-
etary value of the growing stock after 20 years
(FIM), (iii) the amount of dead and decaying
wood (m3/ha), and (iv) the growth of the stand
(m3/ha). The discount rate applied in the calcula-
tions was 3 %. The stumpage price for pine saw
logs was FIM 238/m3 and that for pine pulp-
wood FIM 84/m3, which were the mean prices in
Finland for the 1994/1995 logging year (Statisti-
cal Yearbook of Forestry 1996).

The above mentioned criterion variables were
chosen since they represent both the common
variables for planning and variables which are
frequently used, for example, in biodiversity con-
siderations. They also represent different kinds
of prediction uncertainty. In the simulation ex-
periment, the weights of these variables were
varied, giving several different problems.

2.4 Prediction of the Criterion Variables

The initial stand table for each simulated stand
was obtained using the Weibull distribution, the
parameters for which were predicted using basal
area and mean diameter (e.g. Kilkki et al. 1989).
The sources of error in the initial stand table
were the measurement errors for the basal area
and mean diameter. The measurement errors were
assumed to be additive, normally distributed and
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mutually independent between stands.
The simulation of the development of the stands

was based on models for diameter growth and
height growth of single trees (Hynynen 1995a).
In addition to height and diameter growth mod-
els, models for crown ratio (Hynynen 1995b),
volume (Laasasenaho 1982), dominant tree
growth (Vuokila and Väliaho 1980), and natural
mortality (Hynynen 1993) were also used. Natu-
ral mortality was modeled as the maximum
number of trees in a stand with given stand char-
acteristics. Surplus trees were removed from the

tree list. The flow chart of the simulation for one
stand is presented in Fig. 1. A more detailed
description of the simulation system can be found
in Kangas (1997). However, unlike in Kangas
(1997), the trees to be removed due to natural
mortality in the present study were not chosen
randomly but by removing a constant proportion
from each diameter class.

In addition to the measurement errors, the un-
certainty in the criterion variables was due to the
residual errors of the above mentioned models.
The prediction errors in the criterion variables

for i = 1,...,N

No Yes

Calculate proportion of
trees to be removed

Remove the proportion
of each diameter class

START

Read measurement data
– basal area + error
– mean diameter + error

Predict dominant height growth

Predict characteristics of tree i
– diameter growth * error
– height growth * error
– volume * error
– crown height * error

Calculate stand characteristics
– mean diameter
– dominant height

Predict maximum stem number * error

Is stem number larger than maximum?

Calculate final stand characteristics

Is period final?

Yes

STOP

Fig. 1. Flow chart of the simulation in one stand.
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are a result from the errors in tree characteristics,
such as diameter and height, and from the errors
in stem number. The development of each stand
under the different treatment regimes was simu-
lated R (R = 100) times over four 5-year plan-
ning periods, altogether 20 years. In each reali-
zation r, random errors were generated to the
predicted tree characteristics. In this study, the
prediction errors were assumed to be multiplica-
tive lognormal errors. Similarly, multiplicative
random errors were generated for the maximum
number of stems in a stand. Each time any model
was used, the result was multiplied with a gener-
ated value from a lognormal distribution. The
variances for the lognormal distributions were
obtained from the residual variances of the used
models (Table 1).

Since all the alternatives for a given stand
were predicted with the same models, the pre-
diction errors for a given tree most likely are
positively correlated among the treatment alter-
natives of that stand. Most of the simulations
were carried out assuming this inter-alternative
correlation to be either zero or one in logarith-
mic scale. The prediction errors in the adjacent
periods were assumed to be independent for the
height growth. The autocorrelation between the
adjacent 5-year periods was assumed to be 0.5
for the diameter growth, 0.9 for the volume and
crown ratio and 0.81 for the maximum stem
number (see Kangas 1997). Prediction errors were
also assumed to be mutually independent be-
tween the stands.

3 Results

3.1 The Effect of Multiplicative Prediction
Errors on the Observed Objective
Function Value

In the simulation study, the constrained optimi-
zation approach was carried out first. Four dif-
ferent problems, with different objective varia-
ble and constraint variable(s) were considered.
The problems considered were 1) net income as
objective with value of growing stock as con-
straint, 2) value of growing stock as objective with
net income as constraint, 3) growth as objective
with net income as constraint, and 4) volume of
dead and decaying wood as objective with net
income and value of growing stock as constraints.
For each of these problems, several values for the
constraint (right hand side, RHS) were tried.
However, the value of the RHS did not markedly
affect the results in the range studied.

The prediction errors in each stand were first
assumed to be uncorrelated among the treatment
alternatives. The bias in the observed objective
function value of the LP-problem varied from –
1.27 % to –81.98 %, depending on the prediction
variance of considered variables (Fig. 2). When
the correlation of prediction errors among the
treatment alternatives was assumed to be one,
the corresponding values varied from –1.13 % to
–19.47 %. The effect of correlation assumption

Table 1. The relative standard errors of the used mod-
els. The RMSE of diameter and height growth
models (Hynynen 1995a) and crown ratio model
(Hynynen 1995b) is related to the predicted mean
value, and that of volume model (Laasasenaho
1982) and maximum number of stems model
(Hynynen 1993) is obtained from model fit.

Model Relative RMSE

Diameter growth 35.2 %
Height growth 30.4 %
Crown ratio 14.1 %
Tree volume 07.1 %
Number of stems 17.1 %

Fig. 2. Relative bias of the objective function value in
four different LP-problems, assuming independ-
ent ■■ or perfectly correlated ■ prediction errors (in
logarithmic scale) among treatments. The prob-
lems vary with respect to the objective variable /
constraint variable(s). Net stands for net income,
val the value of growing stock, gro the stand growth
and dead for the volume of dead and decaying
wood.

0

–100

–20

–40

–60

–80

net / val val / net gro / net dead / net + val

–81.98

–19.47

–3.55–2.92–2.06–2.02–1.27–1.13

Bias, %
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was greatest for the case with dead and decaying
wood as objective. For this variable the predic-
tion variance is the greatest.

The effect of correlation on the optimization
bias was more closely examined in a case with
dead and decaying wood as objective and growth
as constraint (Fig 3), as the correlation had the
greatest effect on problems with largest error
variances. The bias increased almost linearly as
a function of the correlation.

The problems 1–4 were then solved again us-
ing an unconstrained approach with additive util-
ity function, in which the weights of the criterion
variables were obtained from the dual solutions
of the aforementioned LP-problems. The bias of
the observed utility function value varied from
–0.73 % to –58.57 %, if the prediction errors
were assumed to be uncorrelated among the alter-
natives, and from –0.76 % to –17.76 %, if the
correlation was equal to one. The biases had
smaller absolute values than in the constrained
case. This is due to the problem formulation: the
utility function was constructed of two (or three)
criterion variables, in which the errors could be
to opposite directions (see also eq. 4), while the
objective function in the constrained approach
included only one variable.

On the other hand, the bias in each of the
criterion variables had greater absolute value in
the unconstrained than in the constrained case.
For example, when net income was used as an
objective variable and growing stock was used
as a constraint, the net income in the LP-solution
was overestimated by 1.1 %–1.3 %, depending
on the assumed correlation and value of the con-
straint. The value of the growing stock was, on
the other hand, underestimated by 0.3–1.0 %. In
a respective unconstrained problem, the utility
function value was overestimated by 0.5 %–0.8
%. However, the net income was at the same
time overestimated by 2.5 %–7.7 %, and the
value of the growing stock was underestimated
by 2.4 %–13.4 %. In the chosen solution, an
underestimation in one variable was compensat-
ed for by an overestimation in another with both
approaches. In the constrained optimization case,
however, such compensation is only possible
when the constraint is met. Thus, possibilities
for compensating are larger in the unconstrained
case. The larger relative underestimation in the

value of growing stock, compared to the overes-
timation of net income, is due to the larger weight
of net income in the utility function.

The expected loss (Eq. 7) generally had small-
er absolute values than the bias. In the aforemen-
tioned problems with constrained approach, the
expected loss in net income varied from 1.0 % to
1.3 %. Using an unconstrained approach, the
expected loss varied from 0.4 % to 0.5 % of the
utility function value. In the latter case the loss,
as well as the bias, was constructed from two (or
three) variables, the prediction errors of which
could be to opposite directions. Thus, the ex-
pected loss for each criterion variable could be
much greater. For example, the expected loss in
net income varied from –6.1 % to 1.8 % (i.e. the
net income was in some cases greater in the
chosen than in the optimal solution). On the
other hand, the expected loss in the value of the
growing stock was 3.5 %–13.4 %, which was
more than could be compensated by the increased
net income.

However, when the unconstrained approach
was used with only one variable as an objective
variable (the weight of this variable was 1 in the
utility function), the observed biases and losses
had similar (or smaller) absolute values than those
in the constrained case (Fig. 4). Thus, the greater
absolute values of bias for the criterion variables
in the unconstrained case are due to combining
the criterion variables, not to inferior perform-
ance of the approach as such.

Fig. 3. Relative bias of the objective value in LP-
problem with dead and decaying wood as objec-
tive and stand growth as constraint, with different
assumptions of the correlation of prediction errors
among the treatments alternatives of one stand.



Kangas and Kangas Optimization Bias in Forest Management Planning Solutions Due to Errors in Forest Variables

311

3.2 The Effect of Additive Measurement
Errors on the Observed Objective
Function Value

The effect of additive measurement errors of the
stand variables (mean diameter and basal area),
from which the original growing stock was pre-
dicted, was quite small. In some cases, the meas-
urement errors increased the absolute value of
the optimization bias (growth as an objective
variable and growing stock as a constraint), and
in some cases they reduced it (growing stock as
an objective variable, net income as a constraint)
(Fig. 5).

When an unconstrained approach was used for
the problem with net income and value of grow-
ing stock as criterion variables, increasing the CV
of measurement errors had a very small effect on
the bias of the utility function value (Fig. 6a). On
the other hand, the effect of the measurement er-
rors on the biases of the two criterion variables
was notable (Fig. 6b). This can be explained by
the interactions between the criterion variables
in the simulation. For example, overestimation
of the basal area may lead to underestimation of
the growth. Then, an underestimation of one var-
iable in the optimal solution can be compensated
for by an overestimation in the other.

Fig. 4. Relative bias of the objective function value
with four different objective variables in the utili-
ty function, assuming independent ■■ or perfectly
correlated ■ prediction errors (in logarithmic scale)
among treatments.

Fig. 5. Effect of measurement errors with different CV
(coefficient of variation) on the relative bias of the
objective function value, with growth as objective
and value of growing stock as constraint ■, and
with value of growing stock as objective and net
income as constraint ■■. In each case, the predic-
tion errors are assumed independent errors among
treatments.

Fig. 6. Effect of measurement errors with different CV
on the relative bias of (a) utility function value
and (b) the values of the criterion variables, with
value of net income ■ and value of growing stock
■■ as objectives. In each case, the prediction errors
are assumed independent errors among treatments.
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3.3 The Effect of Prediction Errors on the
Feasibility of the Obtained Solution

The variance of the prediction errors of the con-
straint variable had a notable effect on the pro-
portion of the LP-solutions that were truly feasi-
ble. The biggest proportion of feasible solutions
was obtained with the amount of dead wood as
an objective and stand growth as a constraint, 90
%. When the net income was set as an objective
variable and the growing stock as a constraint,
the constraint was met in 62 % of the realiza-
tions. If the amount of dead wood was set as a
constraint, the constraint was met only in 21 %
of the realizations. In each case, independent
prediction errors among the treatments were as-
sumed. (Fig. 7). If both the growing stock and
the amount of dead wood were used as con-
straints, the dead wood constraint was feasible in
56 % of realizations. This is due to the fact that
the constraint variables are positively correlated
and the growing stock constraint was more re-
strictive, thus the dead wood constraint was met
when the other constraint was also met.

4 Discussion

Tactical forestry planning is a complex planning
problem. There may be tens of alternative man-
agement schedules for each stand, amounting to
thousands of possible solutions at the forest hold-
ing level. The number of possible criterion vari-
ables may be several hundreds. Predictions con-
cerning the future development of these varia-
bles, under alternative choices of action, contain
much uncertainty. Taking the uncertainty in these
variables into account makes planning even more
complex. The effects of uncertainty on the opti-
mal solution are twofold: first, the true value of
the optimal solution may be overestimated (opti-
mization bias) and second, the realized value of
the chosen solution may be smaller than that of
the optimal solution (expected loss). In con-
strained optimization case, the solution may also
be infeasible.

So far, many simplifying assumptions have
been made in studies examining the effects of
uncertainty on the choice of a forest plan. Often,
the errors in the criterion variables are assumed
to be additive, mutually independent and nor-
mally distributed (e.g. Pickens et al. 1991). Since
the errors may be from several sources with dif-
ferent characteristics, such assumption may sim-
plify the situation too much. In this study, the
effects of two different sources of error, the cor-
relation structure of the prediction errors and the
relations between the objective variables in the
optimization problem were considered. The Mon-
te Carlo simulation with treewise growth and
yield models requires much computer resources,
as does the optimization algorithm. Thus, the
computations made in this study only included
twelwe stands. In spite of the small number of
stands, the results indicate clearly the effect of
prediction variance and correlation assumptions
on the planning problems.

The correlation among the errors of treatment
alternatives proved to be important: the larger
the correlation among the treatments, the smaller
the absolute value of bias. The effect of multipli-
cative errors was greater than that of additive
errors. Since the measurement errors were as-
sumed to be additive and perfectly correlated
among treatment alternatives, their effect on the
observed utility function value was negligible.

Fig. 7. Proportion of feasible solutions in three LP-
problems with net income as objective and value
of growing stock as constraint, with net income as
objective and volume of dead and decaying wood
as constraint and with volume of dead wood as an
objective and stand growth as a constraint. In each
case, the prediction errors are assumed independ-
ent errors among treatments.
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Increasing CV of measurement errors in stand
variables could in some cases even lead to de-
creasing absolute value of bias in the optimiza-
tion. The prediction errors were assumed multi-
plicative and thus, the effect of prediction errors
proved to be greater. If also the measurement
errors were assumed multiplicative, the results
would have been different.

Yet, increasing the CV of measurement errors
increased the absolute value of the biases for
different criterion variables. The phenomenon is
due to the interactions of the variables in the
simulation system, and the possibility of com-
pensating the loss in one criterion variable by a
gain in the other. Although our simulation sys-
tem consisted of only six models, the effects of
interactions were surprising. With a more com-
plicated system, for example with the natural
regeneration and development of plants includ-
ed, the effects of interactions could be difficult
to understand.

The constrained approach and the uncon-
strained approach behaved similarly in many re-
spects. The unconstrained approach with addi-
tive utility function seemed to be more vulnera-
ble to errors, as the underestimation of one crite-
rion variable can be fully compensated by a larg-
er overestimation in the others. The effect of
uncertainty on the utility function value may be
small, but the biases of the criterion variables
may be considerable at the same time. However,
this holds true also for LP-problem, if the objec-
tive function is a combination of two or more
variables.

In the studied case, the utility function was
obtained from the dual solution of the LP-prob-
lem. Generally, the utility function may be a
nonlinear function of the criterion variables (e.g.
Kangas et al. 1998). In such case, the effect of
uncertainty on the observed utility function val-
ue may be more profound, similarly as the effect
of measurement errors in independent variables
depends on the curvature of the models (Gertner
1991, Ducey and Larson 1999). This aspect re-
mains to be studied.

It was assumed that the true expected values of
the yields of forest variables were known so that
the expected values of the optimization bias and
loss could be estimated. However, in real appli-
cations of optimization we only have an un-

biased estimate of the forest yields available. In
such case, estimates of the bias and loss could be
obtained with the approach of Pickens et al.
(1991). Only the simulation of the LP-matrix
coefficients containing errors would be more
complicated. In the best case, the optimization
bias is taken into account in the estimates given
to the decision maker, as well as the probability
of the constraints being met. Such an approach,
however, requires accurate information about the
error sources, the level of uncertainty, and the
correlation structure of errors.

If the uncertainty is not taken into account in
the results given to the decision maker, it is
especially important to give the decision maker
understandable information about the bias and
loss that are due to the nature of optimization
procedure (see also Pickens and Dress 1988).
Even simplified considerations of uncertainty are
valuable. For example, private forest owners are
mostly persons who have no or only little prior
knowledge about planning or optimization. These
decision makers may rely too much on seeming-
ly accurate optimization results, if they are not
enlightened about the uncertainty. Then, the er-
rors inevitably taking place in reality may lead to
disappointment on planning in general. Espe-
cially, the information should be given to the
expert planners, who could then advise the deci-
sion makers in the decision making process. For
example, using input variables as constraints is
more reliable than using output variables (Pick-
ens and Dress 1988).

Management of uncertainty in optimization
calculations was not included in this study. How-
ever, different decision-makers have different
attitudes towards risk and uncertainty. Conse-
quently, they follow different decision rules.
When risk and uncertainty are involved in deci-
sion alternatives, rational decision-makers with
different risk taking behavior choose different
alternatives (e.g., Pukkala and Kangas 1996).
There are several ways to operationalise risks
and risk attitudes in optimization and in invest-
ment calculations. For example, the well known
Capital Asset Pricing Model (CAPM) has been
applied in forestry risk management. According
to CAPM, the expected return of an asset should
be risk-free plus the case-wisely determined risk
adjustment (the risk adjustment is the total amount
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of risk multiplied by ”the price” of risk) (e.g.,
Varian 1990). In numerical optimization, deci-
sion rules reflecting the attitude towards risk,
often also called as decision criteria, can be ap-
plied. Then, the risks involved in decision alter-
natives might be described, e.g., by distributions
of possible outcomes for each alternative.

The variables dealt with in this study were
wood-production-oriented ones, although some
of them have interest also from the ecological
viewpoint. The greatest uncertainty among these
variables was involved in the estimates of the
volume of dead wood, which is not an important
variable in pure timber management planning.
The measures related to non-wood forest prod-
ucts and benefits can be more complicated than
wood-production-oriented ones. They are often
constructed as indirect indices, containing dif-
ferent combinations of variables describing the
forest. Obviously, such indices may include re-
markable uncertainty.

In this study, all the errors were assumed to be
unbiased. However, it is possible that the growth
models over- or underestimate the reaction of
tree growth to treatments. Such biases may be
due to model misspecification, but they can also
be due to the measurement errors in the data set
from which the parameters of the models are
estimated (e.g. Kangas 1998). The more the ef-
fect of any one treatment is overestimated, the
more frequently a planning system recommends
such a treatment. This kind of bias may further
complicate the problem.

The time horizon used in this study was 20
years, which is a time horizon rather commonly
used in forest management planning. With long-
er time horizon, further complications are in-
volved. The longer the time horizon, the more
uncertainty the predictions contain (Kangas
1997). In addition, the longer the time horizon,
the more complicated the error structures, due to
the increasing number of treatments in each man-
agement schedule. Consequently, the results of
optimization should not be interpreted as fore-
casts of future development, in particular con-
cerning results related to objective variables and
to a long time period. More appropriate forecasts
could be obtained from models or systems esti-
mated for such use.

In this study, the uncertainty considered was

random variation. In order to produce practical
decision support considering uncertainty involved
in planning process as a whole, also other types
of uncertainty, such as ignorance or ambiguity,
should be considered. For example, the deci-
sion-makers may not be able to express their
preferences exactly. In such a case, uncertainties
in the problem formulation can successively be
reduced by applying interactive optimization pro-
cedures (e.g. Kangas et al. 1996), or fuzzy opti-
mization (e.g. Mendoza et al. 1993).
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