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1 Introduction

Growth studies in many branches of science have
demonstrated that more complex nonlinear func-
tions are justified and required if the range of the
independent variable encompasses juvenile, ad-
olescent, mature and senescent stages of growth
(Philip 1994). Then a function with a sigmoid
form, ideally its origin at (0,0), a point of inflec-
tion occurring early in the adolescent stage and

either approaching a maximum value, an asymp-
tote, or peaking and falling in the senescent stage,
is justified. Examples of such models include the
logistic, the Gompertz, the Chapman-Richards
and the von Bertalanffy functions. In contrast to
empirical models, e.g., polynomial equations, the
above theoretical models have an underlying hy-
pothesis associated with cause or function of the
phenomenon described by the response variable
and have meaningful parameters from a forestry
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perspective. Theoretically based equations may
also be more reliable for predictions which in-
volve extrapolations beyond the range of data
compared to empirical polynomial equations
(Martin and Ek 1984). More importantly, theo-
retical nonlinear mathematical models provide
the basis for an objective method of estimating
yield class (growth potential) and the sustainable
yield of a crop.

Even though there are few theoretical models
formulated specifically for forestry applications,
many developed in other disciplines have a con-
siderable potential for modelling forest growth
and yield parameters. However, the use of theo-
retical nonlinear mathematical models explicitly
formulated to provide consistent growth and yield
has not progressed in the field of forestry. This is
partly attributed to the fact that the statistical
methodology used for fitting nonlinear models
to forest growth data is closely related to the
mathematics of the models and the importance
of this relationship is not well understood in a
forestry context (Fekedulegn 1996).

Nonlinear models are more difficult to specify
and estimate than linear models and the solu-
tions are determined iteratively (Ratkowsky
1983). The iterative methods used in nonlinear
regression include the modified Gauss-Newton
method (Taylor series), gradient or steepest-de-
scent method, multivariate secant or false posi-
tion, and the Marquardt method (Draper and
Smith 1981). If a model, after reparameteriza-

tion, does not behave in a near-linear fashion,
the parameter estimates will not have desirable
properties such us unbiasedness, normality, and
minimum variance and hence, complex estima-
tion techniques (e.g., the Marquardt (1963) meth-
od) may be necessary (Ratkowsky 1983 and
1990). In such cases, the use of partial deriva-
tives rather than computational approximations
usually results in more efficient and more pre-
cise parameter estimation. Therefore, the pur-
pose of this study was to derive the partial deriv-
atives of nine nonlinear growth models and dem-
onstrate the method of parameter estimation us-
ing experimental height growth data.

2 Models and Sample Data

The growth models considered are given in Table
1. Further details, background and historical in-
formation can be found in the sources mentioned
in Table 1. For all models considered, ω is the
dependent growth variable, t is the independent
variable (usually age in years), α , β, k, and m are
parameters to be estimated, exp is the base of
natural logarithms, and ε is the additive error
term. The mathematical properties of the models
and meaningful forestry interpretation of the pa-
rameters are discussed by Fekedulegn (1996).
The Bowmont Norway Spruce Thinning Experi-
ment (1930–1974) was established at the
Roxburghe district of the Border region of Scot-

Table 1. Nonlinear mathematical models considered in the study.

Model Integral form Source

Negative exponential ω(t) = α(1 – exp(–kt)) + ε Philip (1994)

Monomolecular ω(t) = α(1 – β exp(–kt)) + ε Draper & Smith (1981)

Mitcherlich ω(t) = (α – βkt) + ε Phillips & Campbell (1968)

Gompertz ω(t) = α exp(–β exp(–kt)) + ε Draper & Smith (1981)

Logistic ω(t) = α / (1 + β exp(–kt)) + ε Nelder (1961), Oliver (1964)

Chapman-Richards ω(t) = α(1 – β exp(–kt))1/(1–m) + ε Draper & Smith (1981)

von Bertalanffy ω(t) = (α1–m – β exp(–kt))1/(1–m) + ε Bertalanffy (1957), Vanclay (1994)

Richard’s ω(t) = α / (1 + β exp(–kt)) 1/m + ε Richard (1959), Myers (1986)

Weibull ω(t) = (α – β exp(–kt m)) + ε Ratkowsky (1983), Myers (1986)
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land to investigate effects of four thinning treat-
ments on growth and yield of Norway spruce
(Picea abies L.). Each treatment was replicated
four times and a total of 16 permanent sample
plots each with an area of 0.04 hectare were
measured at five year intervals up until 1970 and
at irregular intervals thereafter. At the time of
establishing the experiment in 1930 the stand
was 20 years old and the local yield class was 15
cubic meters per hectare per year. Top height
growth data from sample plot 3661, that received
a B-grade thinning treatment, are used to fit the
nonlinear growth models and demonstrate the
method of parameter estimation (Table 2). A B-
grade thinning treatment refers to the removal of
dead and dying trees only. These data were made
available by the UK Forestry Commission under
an end-user license (Methley 1996).

3 Method of Estimation

For a nonlinear model

ω εi i if t= ( ) +,B (1)

i = 1, 2,… n, where ω is the response variable, t
is the independent variable, B is the vector of
parameters βj to be estimated (β1, β2,..., βp), εi is
a random error term, p is the number of un-
known parameters, and n is the number of obser-
vation. The estimators of βj’s are found by mini-
mizing the sum of squares residual (SSRes) func-
tion

SS f ts i i
i

n

Re ,= − ( )[ ]
=
∑ ω B

2
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(2)

under the assumption that the εi are normal and
independent with mean zero and common vari-
ance σ2. Since ωi and ti are fixed observations,
the sum of squares residual is a function of   B.
Least squares estimates of B are values which

when substituted into Eq. (2) will make the SSRes

a minimum and are found by differentiating Eq.
(2) with respect to each parameter and setting
the result to zero. This provides the p normal
equations that must be solved for Bˆ . These nor-
mal equations take the form
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for j = 1, 2, …, p. When the model is nonlinear in
the parameters so are the normal equations. Con-
sequently, for the nonlinear models considered
in Table 1, it is impossible to obtain a closed
form solution to the least squares estimate of the
parameters by solving the p normal equations
described in Eq. (3). Hence an iterative method
must be employed to minimize the SSRes (Draper
and Smith 1981, Ratkowsky 1983).

The NLIN (nonlinear regression) procedure in
SAS (1985) was used to fit the models to the
height growth data and estimate the parameters.
The Marquardt (1963) iterative method was cho-
sen as it represents a compromise between the
linearization (Gauss-Newton) method and the
steepest descent method and appears to combine
the best features of both while avoiding their
most serious limitations (Draper and Smith 1981).
The Marquardt iterative method requires specifi-
cation of the names and starting values of the
parameters to be estimated, the model using a
single dependent variable, and the partial deriva-
tives of the model with respect to each parameter
(SAS 1985). The usual statistical tests which are
appropriate in the general linear model case are,
in general, not appropriate when the model is
nonlinear and one cannot use the F statistic to
obtain conclusions at any stated level of signifi-
cance (Draper and Smith 1981). Hence the mod-
els were compared based on the proportion of
the unexplained variation.

Table 2. Top height growth data from Bowmont Norway Spruce Thinning Experiment, sample plot 3661.

Top height (m) 7.3 9.0 10.9 12.6 13.9 15.4 16.9 18.2 19.0 20.0

Age (years) 20 25 30 35 40 45 50 55 60 64
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4 Results

4.1 Partial Derivatives

For ease of understanding the symbols of the
parameters of the nonlinear models given in
Table 1, α, β, k, and m, are replaced by new
symbols β0, β1, β2, and β3 respectively. The para-
meters for all models considered in this paper
are defined as follows: β0 is the asymptote or the
potential maximum of the response variable;

β1 is the biological constant; β2 is the parameter
governing the rate at which the response vari-
able approaches its potential maximum; and
β3 is the allometric constant. The partial deriva-
tives of the models with respect to each parame-
ter (∂ω /∂βj) are given in Tables 3–7. The NLIN
procedure in SAS (1985) requires that the inte-
gral forms and the partial derivatives of the non-
linear models must be entered in the program
using valid SAS syntax.

Table 3. Partial derivatives of the negative exponential, monomolecular, and the Mitcherlich growth models.

Partial Model
derivative The negative exponential The monomolecular The Mitcherlich

ω(t) = β0(1 – exp(–β2t)) + ε ω(t) = β0(1 – β1 exp(–β2t)) + ε ω(t) = (β0 – β1β2
t) + ε

∂ω/∂β0 (1 – exp(–β2t)) (1 – β1 exp(–β2t)) 1.0

∂ω/∂β1 — does not exist (–β0 exp(–β2t)) –β2
t

∂ω/∂β2 (β0t exp(–β2t)) (β0β1t exp(–β2t)) –β1tβ2
t–1

Table 4. Partial derivatives of the Gompertz and logistic growth models.

Partial Model
derivative The Gompertz The logistic

ω(t) = β0 exp(–β1 exp(–β2t)) + ε ω(t) = β0 / (1 + β1 exp(–β2t)) + ε

∂ω/∂β0 exp(–β1 exp(–β2t)) 1 / (1 + β1 exp(–β2t))

∂ω/∂β1 –β0 exp(–β1 exp(–β2t))(exp(–β2t)) (–β0 exp(–β2t)) / (1 + β1 exp(–β2t))2

∂ω/∂β2 β0β1t exp(–β1 exp(–β2t))(exp(–β2t)) ((β0β1t) / (1 + β1 exp(–β2t)) 2)(exp(–β2t))

Table 5. Partial derivatives of the Chapman-Richards growth model.

Partial Model
derivative The Chapman-Richards

ω β β β εβ( ) ( exp( ))t t= − − +−
0 1 2

1
11 3

∂ω/∂β0 ( exp( ))1 1 2

1
1 3− − −β β βt

∂ω/∂β1 ( / ( ))( exp( )) (exp( ))− − − − −−
−

β β β β ββ
0 3 1 2

1
1

1

21 1 3t t

∂ω/∂β2 ( / ( ))( exp( )) (exp( ))β β β β β ββ
0 1 3 1 2

1
1

1

21 1 3t t t− − − −−
−

∂ω/∂β3 ( / ( ) )( exp( )) ln( exp( ))β β β β β ββ
0 3

2
1 2

1
1

1 21 1 13− − − − −−t t
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Table 6. Partial derivatives of the von Bertalanffy growth model.

Partial Model
derivative The von Bertalanffy
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1 2
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


exp( )t

∂ω/∂β1 ( exp( ) / ( )) exp( )( )− − − − −( )− −
−

β β β β ββ β
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1
1

1
1 3 3t t
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1 3 2 0

1
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1
1

1
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Table 7. Partial derivatives of the Richard’s and the Weibull growth models.

Partial Model
derivative The Richard’s The Weibull

ω β β β εβt t( ) = + −( ) +0 1 2

1

1 3exp( ) ω β β β εβt t( ) = − −( ) +0 1 2
3exp( )

∂ω/∂β0 1 1 2

1

3+ −( )
−

β β βexp( )t 1.0

∂ω/∂β1 −( ) + −( ) −( )
− −β β β β ββ0 3 1 2

1
1

21 3exp( ) exp( )t t –exp(–β2tβ3)

∂ω/∂β2 β β β β β ββ0 1 3 1 2

1
1

21 3t t t( ) + −( ) −( )
− −

exp( ) exp( ) exp(–β2tβ3) β1tβ3

∂ω/∂β3 β β β β β ββ0 1 2

1

1 2 3
21 13+ −( ) + −( )

−
−exp( ) ln exp( )t t exp(–β2tβ3) β1β2 ln(t)t β3

4.2 Starting Value Specification

The Marquardt iterative method requires that an
initial or starting value for each parameter be
estimated. Starting value specification is one of
the most difficult problems encountered in esti-
mating parameters of nonlinear models (Draper
and Smith 1981). However, the problem of spec-
ifying initial values of parameters can be solved

with proper understanding of the definition of
the parameters in the context of the phenomenon
being modelled. Wrong starting values result in
longer iteration, greater execution time, non-con-
vergence of the iteration, and possibly conver-
gence to unwanted local minimum sum of squares
residual (SAS 1985). Hence expressions that pro-
vide good starting values for some of the param-
eters were developed. The most efficient order
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for determining starting values is β0, β2, β3, and
finally β1.

The only parameter that is simple to specify is
β0. This is attributed to the clarity of its defini-
tion. The parameterβ0 is defined in the literature
(Bertalanffy 1957, Richard 1959) as maximum
possible value of the dependent variable deter-
mined by the productive capacity of the site.
Therefore, in modelling the top height-age rela-
tionship β0 was specified as the maximum value
of the response variable in the data. For all non-
linear models given in Table 1 the β2 parameter
is defined as the rate constant at which the re-
sponse variable approaches its maximum possi-
ble value β0. On the basis of this definition it was
found that the expression

ω ω
β

2 1 2 1

0

−( ) −( )t t

s

(4)

where ω1 and ω2 are values of the response vari-
able corresponding to a wide range of the predic-
tor variable t1 and t2, and β0s is the starting value
specified for the β0 parameter, gave good start-
ing values for the β2 parameter. For modelling
biological growth variables the allometric con-
stant, β3, lies between zero and one (0 < β3 < 1)
for the Chapman-Richards growth model and is
positive (β3 > 0) for the von Bertalanffy and
Weibull growth models. The starting value for
the biological constant, β1, was specified by eval-
uating the models at the start of growth when the
predictor variable is zero. Table 8 gives expres-
sions used to specify starting values of the β1

parameter for each model. ω(0) is the magnitude
of the response variable at the start of growth,
which ideally is zero, but one should choose a
relatively small positive number.

4.3 Parameter Estimates and Analysis

The least squares estimates of the parameters of
the nonlinear models for top height-age relation-
ship are given in Tables 9–10. The parameter
estimates for the Mitcherlich, monomolecular,
Gompertz, logistic and Richard’s growth func-
tions are all statistically significant at the 5%
level. Estimates of β1, β2, and β3 for Chapman-
Richards and the von Bertalanffy growth models
are not statistically significant at the 5% level.

Parameter estimates of the Weibull growth mod-
el except β2 are statistically significant at the 5%
level. However, the Marquardt iteration proce-
dure did not converge for the negative exponen-
tial model and hence, no parameter estimates of
this model are presented.

Statistical significance of the parameters of
the nonlinear models was determined by evalu-
ating the 95% asymptotic confidence intervals
of the estimated parameters. The null hypothesis
H0:βj  = 0 was rejected when the 95% asymptotic
confidence interval of βj does not include zero.
Table 11 provides predicted values of top height
over the range of age using the least squares
parameter estimates derived from the Marquardt
algorithm. The monomolecular, Mitcherlich,
Gompertz, Richard’s, and the Weibull models
have produced a slightly smaller residual stand-
ard error (0.13 m) compared to the logistic (0.18
m), and the von Bertalanffy and the Chapman-
Richards models (0.14 m). All the models in
Table 11 appear to predict reasonable estimates
over the entire range of age.

When nonlinear models are fitted to a biologi-
cal growth data set statistical non-significance of
the estimated parameters might imply one of the
following: (a) one or more parameters in the

Table 8. Expressions used to specify starting value for
the biological constant (β1).

Model Expression

Monomolecular ω β β0 10 1( ) = −( )s

Mitcherlich ω β β0 0 1( ) = −( )s

Gompertz ω β β0 0
1( ) = ( )−

se

Logistic ω β β0 10 1( ) = +( )s

Chapman-Richards ω β ββ β0 0
1

1

1
13 3( ) = −( )− −

s

von Bertalanffy ω β β β0 10 1

1
1 3( ) = −( ) −s

Richard’s ω β β β0 10 1

1

3( ) = +( )s

Weibull ω β β0 0 1( ) = −( )s



Fekedulegn, Mac Siurtain & Colbert Parameter Estimation of Nonlinear Growth Models in Forestry

333

model may not be useful, or more accurately, a
reparameterized model involving fewer parame-
ters might be more appropriate; (b) the biologi-
cal growth data used for fitting the model are not
adequate for estimating all the parameters; or (c)
the model assumptions do not conform with the
biological system being modelled. The argument
in (b) was the case with the Chapman-Richards
and the von Bertelanffy growth models. Investi-
gation of the differential forms and second de-
rivatives of the Chapman-Richards and the von

Bertalanffy models indicate that the functions
are suitable to model a system that encompasses
the entire range of the life cycle (i.e., juvenile,
adolescent, mature and senescent stages) of a
biological response variable. However, the top
height growth measurements considered in this
study (Table 1) lacks data on juvenile and senes-
cent stages of growth. Hence, non-significance
of three of the parameters of the two models
might be attributed to this cause. To support this
argument we have included an initial data point

Table 9. Parameter estimates of the three-parameter models for top height-age relationship.

Parameter Model
Monomolecular Mitcherlich Gompertz Logistic

β0 34.48863145 34.48863073 25.67476848 22.86432616
β1 1.05406148 36.35313733 2.57813001 6.70940179
β2 0.01438658 0.98571641 0.03626337 0.05909335

Table 10. Parameter estimates of the four-parameter models for top height-age relationship.

Parameter Model
Chapman-Richards von Bertelanffy Richard’s Weibull

β0 28.347774 28.345941 25.484602 27.222914
β1 0.8301844 4.5621873 0.00008673 26.243522
β2 0.0253696 0.0253749 0.0367779 0.0051663
β3 0.4902212 0.4904567 0.00003342 1.3263582

Table 11. Actual and predicted values of top height and the associated residual standard error for each fitted
model.

Age Top Mono- Mitcherlich Gompertz Logistic Chapman- von Berta- Richard’s Weibul
(yrs) height molecular Richards lanffy

(m)

20 7.3 7.22 7.23 7.37 7.48 7.28 7.29 7.35 7.28
25 9.0 9.11 9.13 9.06 9.03 9.08 9.08 9.05 9.08
30 10.9 10.87 10.89 10.77 10.69 10.83 10.83 10.77 10.83
35 12.6 12.51 12.53 12.44 12.37 12.49 12.49 12.45 12.49
40 13.9 14.04 14.06 14.03 14.02 14.05 14.05 14.04 14.04
45 15.4 15.46 15.48 15.51 15.56 15.49 15.49 15.52 15.49
50 16.9 16.78 16.80 16.86 16.94 16.83 16.83 16.87 16.83
55 18.2 18.00 18.03 18.08 18.14 18.04 18.04 18.08 18.05
60 19.0 19.15 19.17 19.16 19.16 19.15 19.15 19.15 19.15
64 20.0 20.01 20.03 19.93 19.83 19.96 19.96 19.91 19.96
RSE1(m) 0.13 0.13 0.13 0.18 0.14 0.14 0.13 0.13

1 RSE: residual standard error
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(age = 0, top height = 0) to the data in Table 2
and refitted the Chapman-Richards and the von
Bertalanffy models. Table 12 shows the parame-
ter estimates, asymptotic standard error (ASE)
and asymptotic 95% confidence intervals (95%
ACI) for each parameter of these two models.
Without inclusion of the initial data point three
of the parameters (β1, β2, and β3) are not statisti-
cally significant (see Table 12). However, inclu-
sion of the initial data point has resulted in statis-
tically significant estimates of the three parame-
ters. Inclusion of any additional data point from
an early or juvenile stage of growth will result in
significant improvement in the estimates of the
parameters of these two models. This clearly
illustrates that significance of the parameters of
the Chapman-Richards and the von Bertalanffy
growth models depends on the range of the
growth data.

It is important to note that some of the models
such as the negative exponential, monomolecu-
lar and the Mitcherlich have no points of inflec-
tion and are not sigmoid shaped. Hence, the mod-
els are not appropriate for modelling the entire
range of the life cycle of biological response
variables such as height growth that exhibit a
sigmoid pattern over time (reason (c) in the pre-
vious paragraph). In other words, growth pattern
of most living organisms follow slow initial and
terminal growth rates, with fastest growth during
the middle of the life cycle, and a maximum
final size (Kramer and Kozlowski 1979, Philip
1994). But evaluation of the second derivative
(d2ω/dt2) of the negative exponential, monomo-
lecular, and the Mitcherlich models indicate that
it is negative (d2ω/dt2 < 0) over the entire rage of
the independent variable. Hence, the current an-
nual increment (dω/dt) of a biological response
variable, according to these models, decreases
throughout the range of the independent variable
and this is contrary to the general pattern of
growth of a biological system. These models,
however, are useful for quantifying the latter
stages of growth of a biological system. There-
fore, statistical significance of the parameters of
these models does not necessarily indicate the
usefulness of the functions to simulate the top
height growth data presented in Table 2 or to
quantify any biological growth data that encom-
passes the entire life cycle of the response varia-
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ble being studied. On the other hand, the Gom-
pertz, logistic, Chapman-Richards, Richard’s, and
the von Bertalnffy growth models have points of
inflection and are sigmoid. These models are
suitable for quantifying a growth phenomenon
that exhibit a sigmoid pattern over time.

5 Discussion

The main focus of this paper is to provide the
major components (i.e., the partial derivatives)
required for estimating parameters of nonlinear
growth models, test significance of the parame-
ters, and interpret some of the relevant statistical
outputs from a forestry perspective. These re-
sults show the fundamental importance of partial
derivatives of nonlinear models in estimating
their parameters. The NLIN procedure in SAS
does not guarantee that the iteration converges
to a global minimum sum of squares residual
(SAS 1985). Hence, an alternative approach for
avoiding the problem of non-convergence or con-
vergence to unwanted local minimum sum of
squares residual is to specify a grid of values for
each parameter. Then NLIN evaluates the resid-
ual sum of squares at each combination of values
to determine the best starting values for the itera-
tive process. Initial values may be intelligent
guesses or preliminary estimates based on avail-
able information. Initial values may, for exam-
ple, be values suggested by the information
gained in fitting a similar equation in a different
laboratory or values suggested as “about right”
by the experimenter based on personal experi-
ence and knowledge. Based on meaningful bio-
logical definition of the parameters of the non-
linear models, expressions to specify initial val-
ues for the asymptote and the biological constant
were developed. These expressions were found
useful to specify initial values of the parameters
for modelling the sample top height data used in
the study.

Provided that one has knowledge of the mean-
ing of the parameters of the model and the phe-
nomena being modelled, it may be possible to
identify when an iteration procedure has con-
verged to a local minimum sum of squares resid-
ual. One recognizes this non-optimal solution by
reviewing the magnitude and sign of the estimat-

ed parameters, and the size of the asymptotic
correlation matrix of the estimated parameters.
Large asymptotic correlation matrices for the
estimated parameters of the nonlinear models
may indicate that some of the parameters are not
important or the model is overparameterized.
However, Draper and Smith (1981) explain that
large correlations of the estimated parameters do
not necessarily mean that the original model is
inappropriate for the physical situation under
study. For example, in a linear model, when a
particular β (a coefficient) does not appear to be
different from zero, it does not always imply that
the corresponding x (independent variable) is
ineffective; it may be that, in the particular set of
data under study, x does not change enough for
its effect to be discernible. In general, efficient
parameter estimation can best be achieved
through a good understanding of the meaning of
the parameters, the mathematics of the models,
including the partial derivatives, and the system
being modelled.
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