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Application of the Metropolis algorithm for forest harvest scheduling is extended by

automating the relative weighting of objective function components. Previous applica-
tions of the Metropolis algorithm require the user to specify these weights, which

demands substantial trial and error in practice. This modification allows for general

incorporation of objective function components that are either periodic or spatial in

nature. A generic set of objective function components is developed to facilitate harvest
scheduling for a wide range of problems. The resulting algorithm generates multiple
feasible solutions rather than a single optimal solution.
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1 Introduction and provide an array of wildlife habitats. Indi-
vidual States may also have regulations that add
Forest land managers need flexible planning tookpatial requirements in addition to the AF&PA
that allow them to identify management schedregulations, e.g. California, Maine, Oregon, and
ules for their holdings that meet a wide range dfVashington.
objectives. Typically, they want to obtain an even A number of algorithms have been proposed
flow of goods over time while simultaneouslyfor handling harvest scheduling with adjacency
meeting economic and spatial requirements reonstraints. For example, solutions can be pro-
lated to clearcut blocksize and wildlife habitatvided by integer or mixed-Integer programming
In fact, most industrial forest land owners in th€MIP) for problems that are not too large
United States have agreed to follow a set diMeneghin et al. 1988, Torres-Rojo and Brodie
voluntary sustainable forestry initiatives (SFI)1990, Jones et al. 1991, Yoshimoto and Brodie
developed by the American Forest and Papdr994, Snyder and ReVelle 1996). Larger prob-
Association (AF&PA). These initiatives include lems can be dealt with by using multi-year cut-
restrictions on clearcutting until adjacent areadng periods (Carter et al. 1997), but AF&PA
have greened-up, and making efforts to enhanggeen-up constraints are best handled with single-
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year periods. Linear programming (LP) soluwell as ponds, fields, streams, or riparian areas.
tions are often used as a first step when adjacef- polygon rather than forest-stand based ap-
cy constraints are required, and the LP solutioproach is important, since proximity to water
is subsequently massaged to integer values layd other resources could be a necessary consider-
various heuristic algorithms (Jamnick and Walation. A management schedule involves assign-
ters 1993, Weintraub et al. 1994, Carroll et aling a specific management regime to each of N
1995). MIP approaches have also been demopelygons. Regimes are discrete, include the ac-
strated for habitat scheduling applications (Hofions and years when they occur, and can be
and Joyce 1993, Hof and Raphael 1993, Hof efuite numerous. For example, clearcutting a stand
al. 1994) for small problem sizes. in year 1 is a different regime from clearcutting
A number of published studies have used simin year 2. The intent is to assign management
ulated annealing (SA) for harvest schedulingregimes to polygons such that the users goals or
The Metropolis algorithm (MA) forms the basisconstraints are met in a nearly optimal fashion.
for SA, which is a procedure for slowly coercingThere are T years in the planning horizon, where
MA to converge to a single solution by adjustingTl is determined by when the last output or activ-
a temperature parameter. SA and MA have beety will occur under any of the user supplied
applied to harvest scheduling without the tradiregimes.
tional focus on finding an optimal financial solu- The next section presents an overview of the
tion (Lockwood and Moore 1993, Van Deuserproposed algorithm, which is related to Markov
1996). However, SA has also been used wherhain Monte Carlo methods (MCMC) (Geman
the goal is to locate a financial optimum (Murrayand Geman 1984, Besag 1986, and Besag et al.
and Church 1995, Tarp and Helles 1997). Th&995) and SA (Lockwood and Moore 1993).
algorithm proposed here does not focus ofhe algorithm uses methods similar to some pre-
optimization, but incorporation of financial viously advocated (Lockwood and Moore 1993,
objectives will be specifically discussed and demVYan Deusen 1996) but includes important prac-
onstrated. tical enhancements. The generic objective func-
Tabu search (TS) has been used to solve hdien and solution algorithm are described, exam-
vest scheduling problems with spatial constraintgle objective function components are developed,
TS allows for great flexibility relative to incor- and an example application demonstrates the util-
porating problem specific knowledge (Glover andty of the approach.
Laguna 1993), and applications have demon-
strated that TS works well (Bettinger et al. 1997, . . .
1998) for harvest scheduling. Other work sug2 Objective Function
gests that TS has methodological flaws (Mayer
et al. 1998) that limit its applicability to higher The algorithm is intended to seek management
dimensional problems such as harvest schedwdehedules that are feasible and produce nearly
ing. Regardless, a comparison of SA and T&inimal values of the objective function. Feasi-
(Murray and Church 1995) suggested that T8le schedules are those that satisfy the users
often produced better solutions than SA. Howgoals. The solution evolves iteratively, and the
ever, this application used a very traditional angialue of the objective function at iteratioiis

restricted form of SA where the temperature pa- J
rameter is monotonically decreased. More flexi- E(X') = Zw}'l C;(X") 1)
ble control of temperature can greatly improve =1

the performance of SA (Osman 1993), which isvhere X' denotes the management schedule at
analogous to what is being proposed here. Aiterationr, w is the weight based on the itera-
algorithm is developed that can flexibly meet theion r schedule, andi(X") is thejth objective
user’'s objectives, yet doesn’t require problenfunction component whose value is evaluated at
specific knowledge to be successful. therth schedule. The vectoX!, contains the list

The basic management unit used here is & regimes assigned to polygons 1 through
polygon, which can include stands of trees as', ..., xy'".
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The weights are re-evaluated after each iterdhe goal limits. An important aspect of this algo-
tion based on user defined goal functiapsfor  rithm is that evaluatindg=(X) — E(Z) requires
each component. Weights are adjusted as fabnly a few computations involving polygdn

lows: and its neighbors. Furthermore, the computa-
tions can be performed independently for each

if gi(X") > U; thenw;" = aw"?, objective function component. When the objec-

if gi(X") <L thenw" = wj"Ya, tive function becomes smaller as a result of

changing polygon to regimek (Step 3a), then
whereU andL are upper and lower limits de- this change is automatically accepted. WEE&f)
fined for each component aads an adjustment is larger tharE(X), the move to regim& may
factor between 0 and 1. Therefore, the compgstill be accepted with probability*, which helps
nent weight is decreased if it's goal is exceedegrevent the algorithm from getting stuck at local
or increased if the goal isn't attained. There isninima.
also a level of attainment for which the weight is
deemed to have converged and is left unchanged,

i.e. betweerU andL. The goal functions are 4 Objective Function Compo-
evaluated at the current schedue, nents

: Objective function components can generally be
3 Algorlthm categorized as pertaining to periodic or spatial

- . ... issues. Flow components are commonly used
The method for obtaining solutions to objective b y

. . . and are clearly periodic, whereas a component to
function (1) is the Metropolis et al. (1953) algo yp P

ithm. Th ific aloorith ded i “control maximum blocksize is spatial. There
rithm. The specific algorithm recommended is might also be a need for space-time components.

For example, a component that controls habitat
'output over time could depend on assignment of
schedules within neighboring blocks of pixels.
Rather than dwell on theoretical discussion
about components, some generic examples of
periodic and spatial components are developed.
The handful of example components developed
below are sufficient to solve a rather sophisticat-
ed scheduling problem and are subsequently used
in the example application. However, it should
be clear that components to serve many other
purposes could be developed by following the
, ) same recipe.
(5)Repeat (3) and (4) until the weights have con- tq \etropolis algorithm requires only the
verged or you deem the problem infeasible. 5046 in the objective function component,

. AC;(i), that would occur if a single polygon’'s
After the weights have converged, step 3 of th?egime is changed from it's current valugto a

Metropolis algorithm can be repeated to gener'roposed valuez. For some components, it is

a:e dmfany fez(ijs_ti_ble sch?dulets tnaé ck?u[[(; be ke)z_v Yz sier and clearer to pres&(ix?) and for others
ated for conditions not controlled by the objecq "o onnc i)

tive function. If the weights won’t converge the
problem is infeasible as currently stated, and the
limiting goals must be made less restrictive. The
user will normally understand their problem well
enough to know which goal is limiting, other-
wise some trial and error is required to change

(1) Choose an objective function in the form of (1)
and an adjustment factor Ca<x 1.

(2) Initialize X by choosingx; for each polygon at
random, lew?, = 1 forj = 1,..J, and set = 0,

(3) Increment and for polygorn from 1 toN:
a) PerturlX" into Z by choosing regimk{1,... K}
at random for polygon Hold all polygons other
thani at their current regimes.
b) Letp* = min {1, exp[E(X") —E(2)]}
c) Replaceq by k with probabilityp*.

(4) Evaluate the goal functiogsg,...,g; and adjust the
weights,w;" accordingly.
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5 Periodic Components 6 Spatial and Non-periodic
_ _ Components
A typical flow component can be written as fol-

lows: Spatial issues are the driving force behind the

T h )
o a2 need for new harvest scheduling algorithms. Pos-

G (X)= tZl(yt W) IF @ sibly the most important spatial issue is the con-

- gol of clearcut blocksize. A component for this

wherey; represents the total output of some goo urpose can be written as:

at timet from all polygons,y; is the target

output for timet, there ardl’ time periods in the Ty = N - _ )
schedule, ané is a scaling factor= serves to G (XD = Z | (minSize < Block; < maxSize) (5)

scaleC; so that similar weights are eﬁceCtIVewherel(.) = 0 when the size of the block contain-

rega_rdless of the units thatis measured in. ing polygoni is between minSize and maxSize,
SettingF equal to the mean sum of the square ndI() = 1 otherwise. The algorithm for com-

of target values SErves as a good sgalin_g faCtorH?Jting blocksize and the constants minSize and
Most cases. The detalils of com_putﬂs@j(l) for maxSize must be defined by the user. For this
this component can be determined by the pr “omponentAC;(i) = 0 when the proposal regime

grammer. The issue of how to provide a argqhads to a spatial configuration that is equal to

Vallfl;iésc(gﬁﬂcusﬁggtaeelgévs. associated goals an{{z current configuration, otherwia€(i) = 1 if
P 9 ’ proposal is better than the current regime, or

goal functions are suggested for flow compo—ACj(i) = _1 if the current regime is better.

1=1

nents: Cobos(y, - §;) .0 An appropriate goal function is:
t)=1-ming—2—217t=1...T (3
au) H Y +0 ]H L ®) g =1- N | (minSize < Block; < maxSize) ©)
and A . 5 N
g2(t)=1- min[b‘bsﬁ(yt ~ V) 1@ t=2..,T (4 which gives the proportion of polygons that are
Ye-1+0 contained within conforming blocks. Now upper

where d is a small positive number to preventand lower bounds to force absolute conformance
dividing by 0. Goal 1g;(t), controls deviations to the blocksize limits would bd = 1 and. = 1.
from the target values, and goabgi), controls The weight is increased for the blocksize com-
year-to-year deviations. As an example, onponent whenever any blocks are non-conform-
might set the limits for both goals to H¢:= .9 ing, which is basically the approach used in Van
andL = .8. Therefore, if both goals are abdve Deusen (1996). Lockwood and Moore used a
at the end of a Metropolis iteration, the compomethod that progressively discourages blocksiz-
nent weight\{) in equation (1) is decreased. Ifes as they get larger and also discourages block-
either goal is belowL then the weight is in- sizes below a certain limit. Lockwood and
creased. This ensures that both goals are attainddore’s component could be used here as well,
at least to the lower limit standard and avoidbut the algorithm would automatically seek the
any unresolvable conflicts between the 2 goalsippropriate weight based on user specified goals.
The goals are also constrained to be between QA second non-periodic component that is quite
and 1, with 0 implying no attainment and 1 meandseful could be termed a suitability component.
ing full attainment. Van Deusen (1996) presented a biological compo-
Numerous methods could be used to detenent that is closely related, and Lockwood and
mine the target value fog. For example, Van Moore’s component for penalizing harvest of
Deusen (1996) suggested smoothing equatiostands with low volume per area ratio is similar in
and Lockwood and Moore (1993) used predespirit. Begin by considering a suitability index to
fined values. Also, the absolute value of deviarank polygon’s relative suitability for each man-
tions rather than squared deviations could bagement option, sa,...Sk. The effect of chang-
used as the basis for the periodic component. ing polygon i's regime for this component is
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AC; (1) = -1(sx >52) + (S, > Sx) (7) would be completely random. AQ - 0 the
distribution is concentrated over the estimate of
whereACi(i) = 1 when the proposal schedule isX that minimizes the objective function. The
more desirable than the current sched(&(i) cooling schedule idea is analogous to cooling
= -1 when it is less desirable, an@i(i) = 0 metals slowly so that they form a good crystal-

when they are equal. line structure. Besag (1986) points out that SA
The suggested goal function is can reach the optimal solution, but can not detect
1 N when it has done so.
9, :NZ (S = S4) ®) The optimal solution from a harvest schedul-
i=1

ing perspective is the solution that maximizes
which gives the proportion of polygons currentsome quantity subject to a number of constraints.
ly managed under an option that is at least d&s such, the objective function presented here
rank d, where d is specified by the user. and elsewhere (Lockwood and Moore 1993, Van
Asymptotically, this biases polygon assignment®eusen 1996) will not yield the desired optimal
toward the more suitable options. Reasonabkolution when SA is applied in the traditional
upper and lower limits might b& = .8 and way. However, SA can be applied by increasing
L =.7. As usual, the weight is increasedg kL  the weight on one objective function component
and decreased ¢ > U. while holding the other weights constant. This
The goal function for this component can alsavill bias MA toward solutions that emphasize
be modified to facilitate maximizin§s,. For the selected component while still enforcing the
examples, might be the net present value (NPV)‘constraints” imposed by the components whose
that results from assigning regiméo polygoni.  weights remain fixed. This is demonstrated in

In this case, the goal function should be: the example application by creating a suitability
N component (equation 7) where the ranking is

ZSX based on NPV and using goal function (9). While

gj :i,jl— (9) holding other component weights fixed, the
231 weight on the NPV component can be slowly

= increased by increasing the target goal to find

wheres; represents the highest ranking regimesolutions with ever larger NPV that also meet
for polygoni. Thereforeg; gives the ratio of the the other component goals. This is simply a form
total achieved by the current schedule relative tof SA that is directed toward finding the desired
the completely unconstrained schedule. optimal solution. This approach to SA is imple-
mented in the example application by increasing
) ) the goal slowly and interactively as the algo-
7 Optlmal Solution rithm runs. The weight on the associated compo-
nent then increases until the goal is attained or
After the weights have converged, the proposeather components can no longer attain their goals,
algorithm will continue to run and produce vari-which indicates infeasibility.
ations on previous solutions that will each be The proposed algorithm also makes it easy to
feasible. However, the user might want to find &olve harvest scheduling problems where maxi-
schedule that is near optimal in some sense. Simization over a single quantity is not the objec-
ulated annealing depends on constructing a “codiive. There are government agencies and compa-
ing schedule” with a paramete€}, such that step nies that don't seek to maximize NPV as their
3b of the Metropolis algorithm involves evaluat-scheduling objective. For example, some com-
ing expE(X) —E(2)]*R. AsQ - «, the posterior panies want to focus on cutting their stands as
distribution (Geman and Geman 1984) repreclose as possible to the time of maximum mean
sented by exp(.) becomes uniform over the spa@anual increment (Pers. commun.: Steve Prisley,
of all possible management schedules, whicWestvaco Corporation). This can be accom-
means that the objective function would have nplished with objective function component (7)
influence and the schedules being generatethd goal function (8).
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8 Convergence of the Algorithm ing problem is irreducible. Problems involving
adjacency constraints are particularly trouble-
The issue of when and if the proposed managseme in this respect. In particular, a large poly-
ment scheduling algorithm has converged is corgon could prevent its neighbors from being cut if
sidered here. The discussion refers to the M#heir combined area exceeds a blocksize limit.
stage and the adaptive determination of objed-o prevent this type of restriction on irreducibil-
tive function weights. First, use of MA implies ity, each polygon should have a do-nothing op-
that concern lies with convergence in distribution.
tion rather than convergence to an optimal solu-
tion. MCMC theory (Geman and Geman 1984, . .
Besag et al. 1986) assures us that MA will cor® Example Application
verge so that it generates samples from the target
distribution after enough iterations have passedhe example uses a basic harvest scheduling
The target distribution of interest here is thelata set consisting of 419 loblolly pine stands
distribution that generates feasible schedulesfrom the southeastern US. However, this algo-
one of which is the so called optimal solutionrithm can handle much larger problems. The size
However, it may not be clear when the algorithnof the stands ranges from 2 to 200 acres (1 ha =
has converged, just as it is unclear when SA h&47 ac) with a mean of around 30 acres. Stands
found the optimal solution. Slowly changinghave from 0 to 9 neighbors and are generally
weights after each iteration is very similar to thgsoung plantations (< 25 years old). Management
cooling schedule concept from SA. Given enoughegimes (options) 1 through 15 are to clearcut
time, MA is known to converge (Geman andhe stand in years 1 through 15 and option 16 is
Geman 1984) at each new setting of the cooling do nothing with the stand during the 15 year
schedule parameter. Therefore, the algorithm wipflanning period. The objective function contains
converge for different objective function com-2 flow components, a blocksize component, and
ponent weights for a feasible problem, and the suitability component as outlined above. The
example application supports this contention. first flow component controls the flow of tons of
As the algorithm proceeds, it makes sense wood, and the second controls the amount of
monitor output summaries to aid in determiningarea clearcut each year. The suitability compo-
when convergence has occurred. Meaningfulent biases results toward assigning regimes that
summaries would include graphs of flow vs. yearield the highest possible NPV. The adjustment
average blocksize vs. year, and minimum angarameter for component weights is a = 0.9. For
maximum blocksize vs. year. Also, monitoringa-values closer to 1, the algorithm converges
the weights as they are adjusted each iterationnsore slowly, whereaa-values closer to 0 pro-
helpful. After convergence, the summary graphduce more rapid weight changes. Settng0.8
and the weights should remain relatively coneaused convergence problems in some cases, but
stant from one iteration to the next. Determining = 0.9 seems to work for a wide range of prob-
whether the algorithm has truly converged iems.
distribution is not as relevant for this application The green-up window for blocks is set to 2
as for the usual statistical applications of MCMCyears, so a stand cut in the year 2000 would be
Practically, if the summary statistics and weightgreened-up starting in 2003. The blocksize goal
have converged, the algorithm has converged.was to keep all blocks less than size 180 and
Formal proofs related to convergence in distrigreater than 20. Area was measured in acres.
bution of MA rely on the concept of irreducibili- Flow was measured in tons per year.
ty (York 1992). Simply stated, the scheduling Flow was allowed to deviate within 15 to 25
problem is irreducible if for any statesandx’  percent from year-to-year as well as around the
such thaP(X =x) > 0 andP(X =x") > 0, there is target. A model was used to set a target flow that
a positive probability that can be reached from increased by a specified rate, which for this ex-
x in a finite number of transitions. However, itample was 2 percent per annum. Year O flow
may be difficult to prove that any given schedulwas specifically set to 140 000 tons and the goal

212



Van Deusen Multiple Solution Harvest Scheduling
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Fig. 1. Actual flow (solid line) and target flow (dashedFig. 2. Actual area clearcut each year (solid line) and
line) for iterations 1, 50, 100, and 200 of the targetarea (dashed line) at designated iterations of

Metropolis algorithm. the Metropolis algorithm.
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Fig. 3. Maximum blocksize by year at designated iteraFig. 4. Minimum blocksize by year at designated itera-
tions of the Metropolis algorithm (dash line =  tions of the Metropolis algorithm (dash line = 20).
180).

was to be within 5 to 15 percent of this startingaind blocksize goals. The maximum unconstrained
target. The flow model for clearcut area set a flallPV was defined as the amount that would be
trend as the target, and allowed clearcut area &hieved if all stands were assigned to the maxi-
deviate by 15 to 25 percent from the target anchum NPV regime.
from one year to the next. The target models are The results for iterations 1, 50, 100 and 200
smoothing functions that depend on the data, b(ffigs 1-4) show how the algorithm proceeded.
predetermined targets could be used as well. Flow of wood (Fig. 1) converged fairly rapidly
The suitability index was based on net presernd showed little change after 100 iterations.
value (NPV). The regime that gave the mosThe actual flow (solid line) deviated within the
NPV was ranked the highest and the lowest NPXequired limits relative to the target value (dashed
regime was ranked the lowest. The goal was tine). Clearcut area (Fig. 2) remained relatively
attain a percentage of the maximum uncoreconstant over the planning period. Maximum
strained NPV while still maintaining the flow blocksize (Fig. 3) for any particular year was
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often above 500 acres for the first few iterationsalgorithm can be run several times, starting from
After 50 iterations, the weight on maximumdifferent random initial solutions, to give some
blocksize was sufficient to keep blocksizes unassurance that the globally best solution has been
der the 180 maximum size limit (dash line). Min-attained.
imum blocksize (Fig. 4) is also below 20 (dash This approach differs from linear program-
line) for the first few iterations. However, by ming (LP), which has historically been the pre-
iteration 100 the minimum and maximum block-valent method for deriving non-spatial harvest
sizes were within the specified limits. The comschedules. Published applications of LP to spa-
puter program ran at the rate of about 100 Metrdial harvest scheduling (e.g. Weintraub et al. 1994,
polis iterations per minute on a 270 MHZ com-Carroll et al. 1995) first produce a non-spatial
puter with all components in the objective funcsolution that is massaged by a heuristic algo-
tion. rithm in a second phase to meet spatial con-
The suitability component plays a key role instraints. However, the second phase result will
this example. With no other constraints, the suitaot have the optimal properties of the first phase
ability component would lead to assigning the_P solution.
maximum NPV regime to each stand. Without The algorithm proposed here incorporates what
the suitability component included, there wouldare usually considered to be constraints directly
be no requirement for the algorithm to attain anjnto the objective function. For example, even
economic goal. The only requirements would bélow is controlled by an objective function com-
for flow to be relatively smooth and blocksizesponent with other components controlling finan-
to be between 20 and 180. With all componentsial objectives and blocksize. This leads to a
in the objective function, 78 percent of the ununiform method for handling objective function
constrained NPV can be attained easily. At abouwteights for any type of component. It also makes
79 percent of NPV, the upper blocksize limit cart possible to add components as the algorithm
no longer be held. The problem was also ruproceeds without disrupting progress. A compo-
with all components except the blocksize comnent is added with a relatively small weight so
ponent to investigate its cost. Without blocksizehat it will have little influence. The weight is
restrictions, 92 percent of the unconstrained NPglowly increased until the component’s associat-
can be attained, where unconstrained NPV isd goals are obtained. This may also reveal that
$560 000 for this problem. The clearcut areather components can no longer attain their goals
begins to trend upward toward the end of thand that the new component causes the problem
planning horizon at 94 percent of unconstrainetb become infeasible. Likewise, a component
NPV, which indicates an unsustainable harvestan be removed by slowly decreasing its weight
level, i.e. an infeasible schedule. without disrupting the algorithms progress.
The proposed algorithm functions best when a
. . . new objective function component is added only
10 Discussion and Conclusions after the existing component weights have con-
verged. This avoids the situation where weights
An algorithm has been presented that can pren 2 or more components change in tandem and
duce feasible land management schedules whitee in fact competing for the same resources.
simultaneously handling adjacency constraintg:urther research is needed to develop a method
The algorithm proceeds iteratively until the usewhereby multiple components can be simultane-
specified goals are obtained for each componentisly entered into the objective function without
in the objective function. The method can genersuch weight adjustment conflicts being an issue.
ate many feasible schedules that have the charBlocksize computation is required repeatedly
acteristics specified by the user by repeated apy this algorithm, which must be done efficient-
plication of the Metropolis algorithm. However, ly to minimize overall processing time. The more
it is also possible to converge on a locally optigeneral spatial capabilities of this method have
mal solution by slowly increasing the weight onnot been completely demonstrated or tested.
a particular objective function component. TheHowever, a procedure has been outlined where-

214



Van Deusen Multiple Solution Harvest Scheduling

by additional spatial components can be designed life and timber in managed forest ecosystems.
to meet other spatial objectives. This spatial ma- Forest Science 39(4): 816-834.
nipulation capability could be beneficial for cre-—— , Bevers, M., Joyce, L. & Kent, B. 1994. An
ating desirable habitat configurations on the land- integer programming approach for spatially and
scape. Additional flow terms might be added as temporally optimizing wildlife populations. For-
well. For example, a component that gets it's est Science 40(1): 177-191.
data from values that are computed as the simiamnick, M.S. & Walters, K.R. 1993. Spatial and
lation proceeds could compute a habitat suitabil- temporal allocation of stratum-based harvest sched-
ity index (HSI) to keep cumulative HSI relative-  ules. Canadian Journal of Forest Research 23:
ly constant over time. The algorithm presented 402-413
here provides a flexible approach that can incogones, J.G., Meneghin, B.J. & Kirby, M.W. 1991.
porate economic and environmental goals. Formulating adjacency constraints in linear opti-
mization models for scheduling projects in tacti-
cal planning. Forest Science 37: 1283-1297.
Lockwood, C. & Moore, T. 1993. Harvest scheduling
References with spatial constraints: a simulated annealing ap-
proach. Canadian Journal of Forest Research 23:
Besag, J. 1986. On the statistical analysis of dirty 468-478.
pictures. J. R. Statist. Soc. B 48(3): 259-302. Mayer, D.G., Belward, J.A. & Burrage, K. 1998. Tabu
Bettinger, P., Sessions, J. & Boston, K. 1997. Using search not an optimal choice for models of agri-
tabu search to schedule timber harvests subject to cultural systems. Agricultural Systems 58(2):
spatial wildlife goals for big game. Ecological 243-151.
Modeling 94: 111-123. Meneghin, B.J., Kirby, M.W. & Jones, J.G. 1988. An
— , Sessions, J.& Johnson, K.N. 1998. Ensuring the algorithm for writing adjacency constraints effi-
compatibility of aquatic and commodity produc-  ciently in linear programming models. In: Kent,
tion goals in eastern Oregon with a tabu search B.M. & Davis, L. (tech. coords.) Proc., the 1988
procedure. Forest Science 44(1): 96-112. symp on systems analysis in forest resources.
Carroll, B., Landrum, V. & Lisa Pious, L. 1995. Tim- USDA For. Ser. Gen. Tech Rep. RM-161. p. 46—
ber harvest scheduling with adjacency constraints: 53.
Using ARC/INFO to make FORPLAN realistic. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Tell-
IN: 1995 ESRI User Conference Proceedings. er, A. & Teller, E. 1953. Equation of state calcula-
Carter, D., Vogiatzis, M., Moss, C. & Arvanitas, L. tions by fast computing machines. J. Chem. Phys-
1997. Ecosystem management or infeasible guide- ics 21: 1087-1091.
lines? Implications of adjacency restrictions forMurray, A.T. & Church, R.L. 1995. Heuristic solution
wildlife habitat and timber production. Canadian  approaches to operational forest planning prob-
Journal of Forest Research 27: 1302-1310. lems. OR Spektrum 17: 193—-203.
Geman, S. & Geman, D. 1984. Stochastic relaxatio®sman, |. H. 1993. Metastrategy simulated annealing
Gibbs distribution, and the Bayesian restoration and tabu search algorithms for the vehicle routing
of images. IEEE Trans. Patt. Anal. Mach. Intell.  problem. Annals of Ops. Res. 41.
PAMI-6: 721-741. Snyder, S. & ReVelle, C. 1996. Temporal and spatial
Glover, F. & Laguna, M. 1993. Tabu search. In: Mod-  harvesting of irregular systems of parcels. Cana-
ern heuristic techniques for combinatorial prob-  dian Journal of Forest Research 26: 1079-1088.
lems. Ed. Collin Reeves. Halsted Press. New Yorklarp, P. & Helles, F. 1997. Spatial optimization by
Hof, G.H. & Raphael, M.G. 1993. Some mathemati- simulated annealing and linear programming.
cal programming approaches for optimizing tim-  Scandinavian Journal of Forest Research 12: 390—
ber age-class distributions to meet multispecies 402.
wildlife population objectives. Canadian JournalTorres-Rojo, J.M. & Brodie, J.D. 1990. Adjacency
of Forest Research 23: 828-834. constraints in harvest scheduling: an aggregation
— & Joyce, L.A. 1993. A mixed integer linear pro- heuristic. Canadian Journal of Forest Research
gramming approach for spatially optimizing wild- 20: 978-986.

215



Silva Fennica 33(3) research articles

Van Deusen, P. 1996. Habitat and harvest scheduling
using bayesian statistical concepts. Canadian Jour-
nal of Forest Research 26: 1375-1383.

Weintraub, A., Barahona, F. & Epstein, R. 1994. A
column generation algorithm for solving general
forest planning problems with adjacency con-
straints. Forest Science 40(1): 142-161.

York, J. 1992. Use of the Gibb’'s sampler in expert
systems. Atrtificial Intelligence 56: 115-130.

Yoshimoto, A. & Brodie, J. D. 1994. Comparative
analysis of algorithms to generate adjacency con-
straints. Canadian Journal of Forest Research 24:
1277-1288.

Total of 25 references

216



