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The theory and the flow model are tested numerically by computations covering three
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List of Symbols

NOTE: In scalar notations, the superscripts used in
vectors and matrices are replaced by subscripts, e.g.,
FNI*, and FNI, and vice versa.

Abbreviations
CONI 1-3 computation method of ZNI, FNI and CNI,

respectively
FH1-FH3 forest holdings 1-3

Determinants

|H|  Hessian determinant

Functions

B. budget constraint

B, production possibility boundary

f unspecified function (to be defined later)

Fy function of the natural growth rate of
a resource stock
fw probability density function of Weibull

Fw cumulative distribution function of Weibull
tv value growth

g constraint

h rate of removal (harvesting)

I indifference curve

I; indifference curve of the additive model

Is indifference curve of the multiplicative model
L Lagrangian function

RM; Resource Model 1
RM, Resource Model 2

U utility function

\% stumpage value of the growing stock,
V=V(FgP)

LII,

IILIV  compound utility functions

Matrices

a second-order relative importances

C silvicultural costs (logging costs excluded)

D diameters

I felling income

n® number of schedules per period and compart-
ment

N number of stems

pB prices of timber assortments at the beginning
of the period

Pt prices of timber assortments at the end of the
period

Q contribution of schedules to each objective

R removal percentages

S contribution of current schedule to each
objective

u second-order partial utility functions

\4 volumes of timber assortments

VB volumes of timber assortments at the begin-
ning of the period

VE volumes of timber assortments at the end of

the period

Operators and denotations

max  maximum element of a set, max {xj,....x;}
Max  maximization

XA value of x after a change

Ax change in the value of x

X" optimal value of x

x*,x*; optimal values of x yielded by functions I
and I1

X0 initial value of x

Ordered pairs

A aspiration point
E; production optimum
Ey! production optimum produced by function I
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E,'  production optimum produced by function I

Piu-x pointof an indifference curve with utility equal
to x

Pic left corner of an indifference curve

Pre right corner of an indifference curve

Pr tangency point

Scalars

a,b,c  parameters of the Weibull function

A age of the growing stock, years
Ap asymptote of the height function
CNI  final net income, sum of FNI

d diameter of a tree, cm

dsep growth forecast for 5 years, peatlands

dsgv  growth forecast for 5 years, uplands

der®  basic growth

dz,/dz,™* maximum gradient of indifference curves
of the multiplicative model

dz>/dz;™" minimum gradient of indifference curves
of the multiplicative model

D basal area median diameter, cm

DD number of degree days

| D | maxmaximal single deviation from a point of
an objective trajectory

FC final capital

FNI  final net income, compounded sum of NI

g basal area of a tree, m”

gmax  basal area of the largest tree, m?

G basal area, m*/ha

Gy basal area of trees larger than the subject tree,
m*/ha

h height of a tree, m

i interest rate, discrete time

i interest rate, borrowing

i interest rate, lending

IC initial capital

ITI income trajectory index

ITI.  income trajectory index, even temporal
distribution

k undefined constant

ne number of compartments

Ny number of management plans

np number of management periods

nr number of stems per hectare

N length of the planning horizon

NI net income, general expression

NI average net income

p number of objectives

Pd mortality forecast for a tree for the next five
years

P management period

| length of the last management period

If rate of value growth of forest

i average rate of value growth of forest

RNI  relative net income

ROC return on capital

SAD sum of absolute deviations

SAD,.« maximum sum of absolute deviations

SD sum of deviations expressed by SSD, SUD or
SAD

SDax maximum of SSD, SUD or SAD

SSD  sum of squared relative deviations

SSD,,, maximum sum of squared relative deviations

SUD  sum of unsigned relative deviations

SUDy.x  maximum sum of unsigned relative devia-
tions

t time

T management period

Tg beginning of the planning horizon

Te end of the planning horizon

TNI  periodical net income

U utility

\Y stumpage value of the growing stock

X decision variable

Xs stock size

z objective variable

ZNI  net income, intertemporal sum with 0 % inter-
est rate

~

Lagrangian multiplier

Sets
N+ positive integers
Vectors
relative importances
¢ slopes of partial utility functions
C temporal consumption
d- lower limits of diameter classes
d' upper limits of diameter classes
E extreme values in trajectory comparisons

FC final capital

FNI  compounded net income per period

FNI?  aspiration levels of FNI

GFOFNLgradients of indifference curves between FC
and FNI (functions LIT)
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GS

i

IC

I’

n

nS

NI
NIA
NI?
NI!
P

rF
RNI
RNI?
ROC
TT
TVE

llmin

umax

U

goal level of the basal area

interest rates

initial capital

felling income from treatment years
number of stems

number of schedules per compartment

net income per period

aspiration levels of net income per period
net income per period, reference values

net income per period, values after a change
prices

rates of value growth

relative net income (desired trajectory)
relative net income (alternative trajectory)
return on capital

treatment years

stumpage value of the thinned growing stock
at the end of the period

partial utility functions

minimum values of partial utilities
maximum values of partial utilities

utility values of functions I-IV

utility values (currently nonoptimal schedules
for one compartment)

Zmax
Zmin

ZUmIlX

Zumln

stumpage values at the end of the planning
period

stumpage values in the treatment year

value growth

maximum temporal consumption

decision variables

temporal income

objective variables

aspiration levels

chosen levels of objective variables
maximum values of objective variables
minimum values of objective variables
utility-maximizing levels of objective
variables

lowest acceptable values of objective
variables (reservation levels)

estimated parameters of basal area growth
models

estimated parameters of basal area growth
models

shape parameters of the height function
parameters of the asymptote of the height func-
tion

parameters of the mortality function

1 Introduction

1.1 Aspiration-Based Planning

A plan is a predetermined course of action. Vari-
ous plans are the outcomes of a procedure which
involves essentially the same steps as any rational
choice or decision. According to Banfield (1973),
a rational decision has three underlying elements
that are also characteristic of planning processes:

(1) All the alternative courses of action are listed.

(2) All the consequences of all the possible courses of
action are identified.

(3) The course of action with the preferred set of
consequences is chosen.

Maximization of utility is assumed to be the
ultimate goal of rational decision-makers. This
assumption is taken as the starting-point in eval-
uating consequences and alternative plans. Such
evaluation, however, calls for the formation of a
utility function. A utility function is a mathemat-
ical transformation that associates a utility with
each alternative so that all alternatives may be
ranked (Cohon 1978). Utility functions, thus,
capture the preferences of the decision-maker.
The estimation of the utility functions presup-
poses that these preferences are known, i.e., they
have to be inquired. On the basis of this informa-
tion, compound (multiattribute) utility functions
can be used to provide the overall utility pro-
duced by the examined objective variables (e.g.
Keeney and Raiffa 1976, Starr and Zeleny 1977,
von Winterfeldt and Edwards 1988).

For computational convenience, the utility func-
tions of the decision-maker are usually expressed
in a mathematical form. However, it is often dif-
ficult, if not impossible, to find a mathematical
presentation for these functions (Halme 1992).
Estimation procedures tend to be laborious at the
least (Tell 1976) and, in addition, these methods
have to cope with the possible inconsistencies of
the decision-maker (e.g. von Winterfeldt and Ed-
wards 1988).

The principle of satisficing decision-making
(e.g. Simon 1979, Wierzbicki 1980a) —also called
“bounded rationality” — states that the decision-
maker does not strictly optimize when making
decisions (e.g. Lilly 1994). This is due to difficul-
ties in the optimization operations, uncertainty of
the decision environment, and complexity of the
decision situation. Instead, so-called aspiration
levels are used to evaluate the various outcomes
of decisions. Aspiration levels represent those
values of the objectives that can be accepted as
reasonable or satisfactory by the decision-maker.
(Lewandowski and Wierzbicki 1989)

The theory behind satisficing decision-making
is based on the observation that every decision is
actually a compromise (Simon 1979). If the de-
cision-maker recognizes this, it is possible to ap-
ply an approach involving the determination of
desirable levels of the objectives to find a com-
promise solution (e.g. Davis and Olson 1985). This
process seems to be justifiable because of the pur-
posive behavior of the decision-maker originat-
ing from his/her learning ability (Simon 1979,
Honkapohja 1993). In this sense, a distinction can
be made between an “economic man” who max-
imizes, and an “administrative man” who satis-
fices (Davis and Olson 1985), i.e., tries to meet a
certain aspiration level (e.g. Keltikangas 1971).

Inits full extent, the conceptualization of bound-
ed rationality comprises the following items (Wall
1993):

(1) Decision-making is dominated by the effects of
complexity on the limited abilities of humans to
process large amounts of information.

(2) New solutions are synthetized by modifying the
current solution (local search).

(3) Alternatives are considered one at a time, not
simultaneously (sequential search).

(4) The search for a new and better solution is under-
taken only when deemed necessary, i.e., when
goals are not being met.

(5) A satisficing mode is utilized: the first solution
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that is good enough is implemented.

(6) Goals are stated in terms of aspirations, which are
formed by adaptation and learning from experi-
ence.

(7) Search strategies are developed on the basis of
learning and adaptation through experience.

(8) The attention paid by the decision-maker to the
environment is the result of learning and adapta-
tion driven by experience.

The concept of utility maximization can be in-
terpreted using the mathematical framework of
satisficing decision-making (Wierzbicki 1986).
By virtue of this interpretation, it is assumed that
the decision-maker has a nonstationary utility
function that changes in time due to learning.
Intuitive and tentative utility maximization de-
termines the aspiration level (Lewandowski and
Wierzbicki 1989).

Microeconomic theory assumes that utility func-
tions are continuous, increasing, strictly quasicon-
cave and twice differentiable (Malinvaud 1985).
A strictly quasiconcave utility function has a bell-
shaped form (Fig. 1a) and it implies a diminish-
ing marginal rate of substitution between objec-
tives (e.g. Henderson and Quandt 1985). Kallio et
al. (1985a) have presented an outline of utility
functions based on aspiration levels (Fig. 1b). This
kind of function form is typical, e.g., in business
management where the implementation of a
project requires a certain amount of liquid assets.

" (a)

Aspiration levels as suggestions of tentative
utility maximization result in an iterative proce-
dure to find the final form of a utility function.
This approach is consistent with the category of
the interactive estimation process mentioned by
Tell (1976). The iterative method can also be ap-
plied to the determination of scaling factors in
multicriteria utility models (Malakooti et al. 1994).

In its simplest form, the aspiration-based meth-
od presupposes knowledge about the aspiration
(desired) level and the reservation (minimum)
level based on an inquiry (Halme 1992). The iter-
ative estimation process, based on successive for-
mulations and presentations of solutions to the
decision-maker, is particularly promising, since
there is nothing to guarantee that a once-and-for-
all estimation of a utility function yields a satis-
factory result. Besides, aspiration levels are often
seen as more intuitive than the weights of objec-
tives thereby providing a natural representation
of preferences in multicriteria decision problems
(Vetschera 1994).

Due to the consecutive formulations and exam-
ination of solutions, the aspiration-based, itera-
tive estimation method immediately yields infor-
mation about the sensitivity of the solutions. In
addition, the decision-maker has direct contact to
the computation model for observing the effect of
any changes in the aspiration levels. This method,
which comprises formulating, solving and learn-
ing phases, is of substantial importance in busi-
ness management (Jadskeldinen 1971). The itera-

U

(b)

V4

Figure 1. Strictly quasiconcave (a) and aspiration-based (b) utility functions (Kallio et al. 1985a).
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tive method also contributes to a general under-
standing of the characteristics of an efficient so-
lution (Vetschera 1994). This aspect is especially
important if the decision-maker is unaware of
whether the found solution is the most preferred
(Halme 1992).

1.2 Core of Timber Management Planning

Timber production still seems to be one of the
most important elements in forest management.
According to Thalainen (1992), about 54 percent
of forest owners (71 percent of farmers) regard
timber production as the primary objective of
forest ownership. This percentage clearly ex-
ceeds the importance of the other objectives dealt
with in that study. The result seems to imply that
even though environmental factors are given in-
creasing emphasis (Pukkala 1992, Kangas et al.
1992, Ovaskainen and Kuuluvainen 1994), for-
est owners are still dependent on the income
flow from timber production.

Timber management has solid points of contact
to profitability in forestry. As this topic was a fre-
quent subject of debate in Finland in the 1980s, a
specific project was established to find out the
consequences of forest treatment methods under
different economic circumstances (Mykkédnen
1988a, Mykkinen 1988b, Simula 1988). The is-
sue of profitability has also been studied by sev-
eral authors in the past (e.g. Kilkki 1968a, Kilkki
1968b, Hamaildinen 1973, Hamaildinen 1982,
Ringbom 1985), and new projects with different
leading ideas have been launched (Harvennush-
akkuiden... 1992, Kinnunen et al. 1993, Simula
1994). The continuous interest in the profitability
of forestry indicates the importance of this sub-
ject.

Sustained yield, on the other hand, is common-
ly considered as the main thread in forest man-
agement (e.g. Kilkki 1989, Hianninen and Karp-
pinen 1991). Actually this concept has two pri-
mary objectives: conservation of the forest re-
source stock and determination of timber flow.
Both of these are closely related to security (Jacob-
sson 1986, Ovaskainen and Kuuluvainen 1994).
The aspiration to regulate timber flows usually
originates from money needs related to, e.g., real
investments and consumption (e.g. Archer et al.

1983, Karppinen and Hanninen 1986, Tikkanen
and Vehkamiki 1987, Jirveldinen 1988).

Economic theory presumes that consumption
decisions and timber production decisions are
independent (separable) in circumstances of a
perfect capital market (Hirshleifer 1970). This
being the case, the decision-maker can borrow
and lend unlimited amounts of money with a
known interest rate. In practice, the capital mar-
ket is imperfect for at least the following reasons.
First, only limited amounts can be borrowed. Sec-
ond, the marginal cost of borrowing increases.
Third, the interest rate for borrowing differs from
that of lending. (Nautiyal 1988)

Capital-theoretic studies of forest management,
in fact, show evidence of market imperfections.
According to Kilkki (1968a), forest owners fail to
follow the cutting policy based on present value
maximization because of liquidity constraints (for
theoretic analysis, see Ollongvist and Kajanus
1992). This is why forest owners tend to be “in-
come-oriented” instead of “investment-oriented”
(Ollikainen 1984). It follows that the decision-
maker has to set a certain minimum level for the
felling income. In reality, liquidity constraints
along with nontimber benefits result in consump-
tion and felling decisions being made simultane-
ously (Ovaskainen and Kuuluvainen 1994). Un-
like what is stated in the separation theorem (Dix-
it 1976), the preferences of the decision-maker do
affect the short-term timber supply (Kuuluvainen
1989).

Timber management planning deals primarily
with the regulation of timber flows over time. For
most forest owners, timber flows as such are
meaningless; monetary elements are incorporat-
ed through the timber and the capital market to
yield the desired economic outcome. The inclu-
sion of forest dynamics in the economics of the
decision-maker calls for the use of planning mod-
els. Economic planning models combine the pre-
diction of future events and the estimation of eco-
nomic characteristics to trace the consequences
of different management strategies. A utility
model is one which takes into account the prefer-
ences of the decision-maker.

Empirical studies have shown that the planning
model referred to in this context implies the fol-
lowing assumptions:

11



Acta Forestalia Fennica 245

1994

(1) The decision-maker wants to guarantee a certain
income level.

(2) The decision-maker wants to control exogenously
the size of the forest resource stock.

(3) The decision-maker wants to allow for a predeter-
mined intertemporal consumption pattern when
making cutting decisions.

(4) Cutting order is determined by profitability crite-
ria.

The underlying purpose of a model that fulfills
these conditions is to achieve the appropriate
management of a forest resource stock and tim-
ber flows, representing the consumption of the
stock.

The first two points pertain to the realm of the
economics of renewable resources (e.g. Clark
1976, Neher 1990): a resource stock can either be
consumed or conserved. This approach can be
depicted by resource models with a differential
equation form (Conrad and Clark 1987)

dx
d—j=Fg(xs)-h<r) (1)

which implies, e.g.,
M0>Folxs) = D<o 2)

resulting in reduction of the stock size. The im-
plications of this general model will be used as a
guideline throughout the timber management part
of this study.

The last two points are related to the timing of
treatments as well as to income flows. The third
point assumes that the decision-maker has an ex-
ogenously determined consumption schedule
based on preferences, whereas the fourth one
searches for an endogenous treatment order, i.e.,
one based on the optimal use of resources.

1.3 Overview of Previous Studies

Modern forest management planning in Finland
is largely based on the ideas of Kilkki (1968a).
The essence of the approach is to use numerical
simulation with mathematical optimization to find
the most feasible management plan. This funda-
mental work was further developed by Pokila
(1973), Kilkki and Pokala (1975) and Kilkki et
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al. (1975). Stem-level operations were combined
to the framework of simulation and optimization
in the MELA cutting budget (Kilkki 1985). The
basic methodology has been complemented by,
e.g., profitability comparisons (Mykkinen 1988b)
and multiobjective optimization (Pukkala 1988,
Kangas and Pukkala 1992, Lappi 1992, Pukkala
and Kangas 1993). The standpoint of the entire
farm enterprise as a simultaneously optimizing
unit is dealt with in the work of Hyttinen (1992)
and of Hamadldinen and Kuula (1992).

Traditionally, an even flow of net income has
been one of the most decisive criteria in evaluat-
ing utility produced by forest management (e.g.
Jacobsson 1986, Kilkki 1989, Hinninen and Karp-
pinen 1991). In addition to temporal distribution
of income, net income level and interest rate have
been the most important grounds for decision-
making (Kangas 1992). This implies that produc-
tion and consumption optima have not been con-
sidered as separable as the theory of the perfect
capital market assumes. There is a need to consid-
er consumption and production decisions simul-
taneously.

Profitability and sustained yield have often been
considered complementary goals in forest man-
agement (Kilkki 1968a, Jacobsson 1986). A man-
agement alternative consistent with these goals is
characterized by a high present value and an even
and sustained yield of net income over time (Jacob-
sson 1986). Jonsson et al. (1993) state that a treat-
ment option which generates a high degree of util-
ity is a compromise between high net present val-
ue and a reasonable temporal distribution of net
income.

If sustained yield is regarded as a constraint of
the original model, methods of traditional mathe-
matical optimization can be applied to find a fea-
sible solution. Examples of establishing flow con-
straints have been presented in linear program-
ming (Dykstra 1984) and goal programming
(Buongiorno and Gilles 1987). Hof et al. (1986)
applied a MAXMIN approach to maximize the
minimum harvest during any time period in the
planning horizon.

Theoretically, the management of intertempo-
ral timber flows pertains to the category of trajec-
tory optimization (Wierzbicki 1982). The task of
trajectory optimization is to find a multiperiod
path that most closely matches a goal trajectory
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(Steuer 1986). Trajectory optimization has appli-
cations, e.g., in forest sector modeling (Kallio and
Soismaa 1982, Kallio et al. 1985b), generation of
energy supply strategies (Grauer et al. 1982), and
macroeconomic modeling (Wierzbicki 1982).
Until recently, little attention has been paid to
the utility theoretic formulation of forest manage-
ment problems. In the model of Lappi and Siito-
nen (1985), the utility function was based on the
maximization of even consumption. Kilkki et al.
(1986) presented an application that involved the
use of shadow prices in the derivation of the util-
ity model of the decision-maker. Jacobsson (1986)
chose a multiplicative, nonlinear utility model,
because the use of a linear additive model results
in an uneven temporal distribution of income. The
utility model comprises parameters for interest
rate and importance of sustained yield. By choos-
ing the most appropriate net income trajectory,
the decision-maker implicitly determines the val-
ues of these parameters. The values of the sus-
tained-yield parameter may vary between 0 and
1: small values stress the evenness requirement,
while values close to 1 refer to present values.
Contemporary utility-oriented studies of forest
management incorporate preference estimation
into numeric simulation and optimization. Kan-
gas et al. (1992) applied the Analytic Hierarchy
Process (Saaty 1980) to the formulation of a util-
ity model for multiple-use planning. Pukkala and
Kangas (1993), in turn, introduced a procedure in
which utility was maximized by means of heuris-
tic optimization. The additive utility function con-
sists of partial utility functions estimated by means
of the Analytic Hierarchy Process. In general util-
ity-theoretic studies, interactive methods seem to
be arousing increasing interest: examples are giv-
en by Corner (1994) and Malakooti et al. (1994).
Applications of satisficing decision-making
have been implemented by reference point opti-
mization (Wierzbicki 1980b) in several studies
(e.g. Kallio et al. 1980, Kindler et al. 1980, Grau-
eretal. 1982, Kallio and Soismaa 1982, Lewand-
owski and Grauer 1982). Although utility func-
tions are usually mentioned in the context of aspi-
ration levels (e.g. Korhonen and Laakso 1986),
there are no studies which combine the aspira-
tion-level approach and the microeconomic util-
ity theory. The main reason for this lack of re-
search may be attributable to the different roles

assigned to preference representations. In utility-
based examinations, the decision-maker is as-
sumed to have a consistent system of preferences,
whereas interactive procedures aim at forming
preferences by means of learning (Vetschera
1994). The concept of bounded rationality, on the
other hand, is a basis of the current research at-
tempting to explain adaptive economic behavior
(Lant 1992, Evans and Honkapohja 1993, Honka-
pohja 1993, Marinon 1993, Board 1994) to form
decision-making models (Wall 1993, Norman and
Shimer 1994).

1.4 Need for Analytical and Numerical
Methods

The standpoint of microeconomic utility theory
has attracted only limited attention in recent stud-
ies on forest management planning. This is un-
fortunate because an examination of the analyti-
cal background is a key element in understand-
ing numerically produced results. On the other
hand, aspiration levels have traditionally had only
loose connections to utility theory. Therefore,
the first part of the present study is devoted to
developing a general framework of aspiration-
based utility functions.

Because the aspiration-level method of form-
ing utility functions differs from traditional eco-
nomic theory, the derivation of theoretic funda-
mentals will be given particular stress. This ap-
proach results in a somewhat mathematical pres-
entation. The chosen standpoint has definite ad-
vantages, however, since the derivation of an an-
alytical framework contributes to a general un-
derstanding of the choices of the decision-maker.

Models for regulating timber or income flows
are customary in theoretic examples of mathe-
matical programming (e.g. Dykstra 1984, Buon-
giorno and Gilles 1987). Contemporary forest
planning models are characterized by the lack of
a flexible incorporation of intertemporal decision-
making. The aspiration-level approach, however,
seems to be particularly appropriate for this pur-
pose. This is because the method has an inherent
feature which allows for certain minimum and
desired levels of objectives. Consideration of the
desired income trajectories is, therefore, given
special emphasis in the present study.
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The focus in the model presented in this study
is on income, since monetary variables are as-
sumed to be of primary importance to the deci-
sion-maker. Despite this aspect, the outcome is
termed “a model for timber flow management”:
the amount of timber to be cut is an essential de-
cision variable, with income generation being one
of the objectives.

1.5 Purpose of the Study
The study has three main aims:

(1) To apply the aspiration-level approach to utility
functions and to derive mathematical rules char-
acterizing the choices of the decision-maker.

(2) Based on the derived theoretic framework, to for-
mulate a deterministic planning model for the eco-
nomics of timber flow management.

(3) To test the planning model on nonindustrial forest
holdings.

14

The derivation of the theoretic basis will consist
of the conceptualization and development of nec-
essary inquiry and computation routines. The
mathematical rules will be derived mainly by
means of differential calculus to facilitate ana-
lytical examination.

The approach to model formulation will be gen-
eral and oriented to natural resource economics.
The forest resource stock is described by means
of management units called compartments. The
utility model will be composed on the basis of a
few alternative formulations. Since the utility
model consists of multiple objectives, a multiob-
jective optimization algorithm has to be included
in the model.

Formulation of the model will be based on the-
oretic considerations. The inquiry about the pref-
erences of the decision-maker and other practical
tests fall beyond the scope of this study. The use
of numerical computations is, therefore, restrict-
ed to testing the consistency of the theoretic frame-
work and the model.

2 Derivation of the Utility-Theoretic Basis

2.1 Scope of the Analysis

Before aspiration levels can be applied to utility
models, a general theoretic framework has to be
worked out. The following steps can be distin-
guished in the process:

(1) Specification of function forms for compound util-
ity functions.

(2) Determination of the shape of partial utility func-
tions.

(3) Development of the inquiry and computation tech-
nique for determining the partial utility functions.

(4) Indifference curve analysis to characterize the
choices of the decision-maker.

(5) Outline of solution methods.

Partial utilities are combined via compound util-
ity functions to produce total utility. For achiev-
ing this, there are several function forms availa-
ble (e.g. Tell 1976, von Winterfeldt and Ed-
wards 1988). A decision must, therefore, be made
as to what function forms to include in the exam-
ination.

The second point deals with defining an exact
mathematical formulation of partial utility func-
tions. This is closely related to the inquiry of the
decision-maker’s preferences and to the compu-
tation of partial utilities (3).

Points (4) and (5) attempt to outline the choices
of the decision-maker from the standpoint of in-
difference curves and utility surfaces. This sec-
tion is of particular interest because it combines
production possibilities with aspiration-based util-
ity functions. The final item involves the intro-
duction of two tentative solution procedures.

2.2 Compound Utility Functions
2.2.1 Function Forms

A utility-theoretic basis will be derived here for
two forms of compound utility functions: the
additive and the multiplicative. These two forms
seem to be the most widely used (e.g. Tell 1976,
Jacobsson 1986, Kilkki et al. 1986, von Winter-
feldt and Edwards 1988, Kangas 1992). In addi-
tion, these models are mathematically managea-
ble, and although their utilization has sometimes
been compared in the context of forest manage-
ment economics (Jacobsson 1986), it has not
involved any fundamental microeconomic anal-
ysis.
The additive function can be written

P

U= aui(z) (3)
and the multiplicative one
P
U=]Ju)e (4)
i=1
If
P
ai=1 5)

=1

the multiplicative function is linearly homoge-
nous. This can be seen by multiplication of j

P
U=nu,(jz,)w

=1
P
Eu, P
s U= Ji=t 1_[,,[(:1 Yai

i=1

(6)

This is

P P
U=j| |ui(z)a if Yai=1 (7
Ll 2
Function (4) can be made separable by taking
logarithms, that is
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P
In(U)= a; In(u;(z; 8
W) 21 (ui(2:) ®
In (3) and (4), the objective variables z are as-
sumed to be utility-independent (Keeney and
Raiffa 1976).

2.2.2 Relative Importances

The weight coefficients a determine the relative
importances of the objectives. Equal weights in-
dicate that the objectives are equally important. If
some coefficient equals 0, the corresponding par-
tial utility has no effect on total utility. By utiliz-
ing this feature, it is possible to eliminate objec-
tive variables from the compound utility model.

Before the utility function can be applied, the
relative importances of the objectives have to be
defined. Several different methods exist to deter-
mine the weights (Tell 1976, von Winterfeldt and
Edwards 1988). They can also be evaluated di-
rectly (Render and Stair 1992). Direct evaluation
is relevant if the only choices are 1 (included) and
0 (not included).

Problems related to the estimation of relative
importances fall beyond the scope of this study. It
is, therefore, assumed that the decision-maker is
able to define the relative importances without
difficulty. It is assumed that

p
Ea, =1 9)

z‘i‘m'“ zf\ Z

2.3 Partial Utility Functions

Functions (3) and (4) only determine techniques
for computing total utility. This is because the
content of partial utility functions remains unde-
fined. To obtain computational capabilities, par-
tial utility functions have to be determined for
each objective variable.

The first aim of this study was to apply the as-
piration-level approach to utility models. Aspira-
tion levels —originating from satisficing decision-
making (Simon 1979, Wierzbicki 1980a) — will,
therefore, be used in defining the partial utility
functions of single objectives.

Aspiration levels have been defined as reflect-
ing those values of objectives that the decision-
maker accepts as reasonable or satisfactory. On
the other hand, aspiration levels also indicate when
to stop optimizing (Lewandowski and Wierzbicki
1989). By this definition, it is assumed that

O<ui(zi)<l,zi<z?

ui(z)=1, z; = z¢ (10)

if uPt =0 and u™* =1 Vi=

In other words, the aspiration level is interpreted
as showing the point where maximum partial
utility is reached. It is further assumed that the
segment between u™" and u™ is linear. This
definition constitutes a piecewisely linear partial
utility curve (Fig. 2a; for mathematical implica-
tions, see Kannai 1992).

duj /dz;
(b)
CRi g g L L LYY
O : ] 1
Zlilmln ZA z;

Figure 2. Piecewisely linear utility function (a) and corresponding marginal utility function (b).
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By virtue of (10), the range of partial utility is
restricted to between 0 and 1. This solution elim-
inates the differences of the measuring scale, i.e.,
partial utilities are made commensurate. In addi-
tion, scaling guarantees that the utility function is
not weighted due to differing measurement units
of the variables. Scaling of utility values is a nor-
mal practice, although it does not render the val-
ues produced by distinct utility functions compa-
rable (Kangas 1992).

The aspiration-based method of composing
partial utility functions may be interpreted from
the standpoint of marginal utility (Fig. 2b). The
increasing segment of the partial utility curve
yields

—=c , Z¢MIn <z <2 (11)

where ¢; is a positive constant. The horizontal
plane segments of the partial utility curve pro-
duce

du;

-~ 0, 28 sz; sz v zMin < z; < Z¥min (12)
2

i.e., additional units of the objective variable do
not increase utility. Hence, marginal utility is a
piecewisely decreasing function of total utility.

The determination of partial utility functions
consists of three steps.

(1) The decision-maker is asked to specify an aspira-
tion level between the minimum and maximum of
each objective.

(2) The decision-maker is asked to define the lowest
acceptable value of each objective (reservation
level).

(3) Partial utility curves are computed according to
formulas (13)—(16).

u‘mu\ =y (Zlumm ) (13)

umax_umin

e g S min o A _ ,max

Cim—t—— /M <z 7 (14)
Z; -z

uj = ulmin +(‘,(Z, _z,umm) ) zIumm =z < z',‘\
-0 , Zi< z‘umin (15)
=1 , 28 sz sz or " =2

= =1 Vi=le, P (16)

uj

Aspiration-
based

Strictly
quasiconcave

Zj
Figure 3. Aspiration-based utility function seen as a

piecewisely linear approximation of a strictly qua-
siconcave function.

The purpose of this three-step procedure is to
form a piecewisely linear approximation of a
strictly quasiconcave utility function (Fig. 3).

The range of partial utility functions is closely
related to the scaling of functions. By virtue of
(14), the steepness of the partial utility functions
is affected both by the lowest acceptable value
and the aspiration level of an objective. If the low-
estacceptable value is raised or the aspiration level
reduced, the partial utility function becomes steep-
er. In the opposite case, the partial utility function
becomes slanting.

Compared to the basic assumptions, the aspira-
tion-based partial utility functions are continuous
and increasing. The differentiability condition is
not met because the first derivative is undefined
at the points determined by the aspiration and res-
ervation levels. Partial utility functions are (non-
strictly) quasiconcave.

2.4 Indifference Curves

2.4.1 Relationships Between Utility
Functions and Indifference Curves

An indifference curve is the locus of the combi-
nations of two objectives that yields a constant
utility level. For more than two variables, indif-
ference surfaces and hypersurfaces are analogous

17
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concepts. The optimal choice of the decision-
maker is at the point where the indifference curve
is tangent to the linear budget constraint. In forest
management, a concave production possibility
boundary constitutes the resource use constraint.

If utility functions are smooth, increasing, and
strictly quasiconcave, the corresponding indiffer-
ence curves are strictly convex (Chiang 1984).
Strictly convex indifference curves are a prereq-
uisite for the existence of a unique solution if the
budget constraint is linear. This is because, if an
indifference curve contains linear segments, the
curve coincides with a portion of the budget line.
Indifference curves of this type imply that the
corresponding utility functions are explicitly qua-
siconcave. The definition of explicit quasiconcav-
ity rules out any horizontal plane segments on the
surface; nonhorizontal plane segments are al-
lowed.

The same reasoning applies to the production
possibility boundary. If the boundary contains lin-
ear portions, unique solutions are guaranteed only
by strictly quasiconcave partial utility functions.

2.4.2 Restrictions of the Analysis

The utility functions used in this study contain
both horizontal and nonhorizontal plane seg-
ments. To outline the shape of corresponding
indifference curves, formulas defining the fea-
tures of indifference curves are indispensable.

The derivation of indifference curves will be
based on an examination of two objective varia-
bles denoted by z, and z,, respectively. The rea-
sons for this restriction are solely illustrative. It
follows that the reduced forms of functions (3)
and (4), i.e.

U=au(z1)+axuz(z2) (17)
U=u1(21 )”] u3(23)”1 (18)

are used in the analysis.

If more than two variables are incorporated into
the examination, isoutility levels appear as sur-
faces or hypersurfaces. To depict the production
possibilities, the concept of the production possi-
bility boundary is analogous even in multidimen-
sional cases.
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One notational aspect has to be taken into con-
sideration. The positively sloped segment of a
partial utility function u; on z; is characterized by

1
() )

For notational conciseness it is assumed that

0 = u =z, (20)
4

It follows that in formulas containing z;*
U=f(z2,..) = f(zA-zvmin ) (21)

in cases of nonzero values of the lowest accepta-
ble value of the objective.

2.4.3 Aspiration-Based Indifference Curves

If aspiration levels are used in partial utility func-
tions (Fig. 4a,b), the indifference curves are com-
posed of a vertical, a horizontal and a negatively
sloped portion (Fig. 4c,d). The corners corre-
spond to the aspiration levels. As utility increas-
es, i.e., the indifference curves are located at
higher positions, the negatively sloped segments
shorten. At the point determined by the aspira-
tion levels (referred to as the aspiration point),
an indifference curve has a rectangular form.
The negatively sloped part of an difference curve
is composed of the nonhorizontal segments of the
partial utility functions. Let us first examine the
additive model. In this area, total utility is

U =ajc1z1 +arcrz> (22)
Alterations in objectives affect total utility

AU = ayc1Az) + ay¢c,Az> (23)
To have a constant utility level,

AU=0 (24)
This means that

a>c2Azy = —ajc1 Az (25)
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Hence, the slope of an indifference curve is

A (26)
AZ} ancr
For infinitesimal changes
s . . WU | oz
i Do dm 46 @dlics oy
Az—0 Az,  dz ac; a>dlU | dz»

which is a weighted form of the general case

(123 A au/ 1721 (78)

dz aU | 9z,

The corner points can be determined as follows.

Assume that
Az =0 (30)

It follows that

Bt AU (31)
azc»

For changes in z, (left corner),

Rt (32)
ac

In a difference form, the corner points are thus

AU
First consider changes in z, (right corner). Hence, ~ Prc =(z.22 - - (33)
let us write )
AU
AU = (l]ClAll + a;c;A:; (29) PL( = Z{‘ -—.Z‘-_:\ ) (34)
a|
u u
| l et ] 2 |
| (a) (b)
\
1
|
0, [ARRN; 0
zj\ 7] z/_w,\ V)
77 72
' () (d)
%) A Z‘é :
‘ Additive Multiplicative
1
|
z{ z, 2 2]

Figure 4. Partial utility functions of z, and z, (a,b) and three indifference curves (c,d).

19



Acta Forestalia Fennica 245

1994

A nondifference form can be derived by solving
z, and z, from (17). Because in the right corner
7, =27

gl A
Heh o (Z,A,ﬂ_ﬂ) (35)

axc;
and in the left corner z, = z,*

o= 20> -,A
P = (MZ_ Z:A) (36)

acy

where U (<1) denotes the utility of the indiffer-
ence curve. In a function form, the linear indif-
ference curve can be written

A

ac U-ascrz

pymap = [ U —acaz (37)
ac ac

To derive the slope of the multiplicative model,
let us first write the logarithmic transformation

InU = a; In(u;(z1)) +ax In(uz(22)) (38)

in the form

InU =a;In(c;)+a;In(z;)+az In(ca)+ax In(z2)  (39)

By differentiating both sides with respect to z,

Lolf &

U (92] Z] (40)
U _a
ﬁZ] 2]

and z,

22d an

U (922 22 (41)
U an

<> =
(?Z: Z2

Thus, the slope of an indifference curve is

dz __az (42)

dZ] azy

which is independent of the slopes of the partial
utility functions.
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For the multiplicative form, the corner points
can be solved from (39) to give

> = exp( In(U)-a;In(c;)-aiIn(z,)-ax In(cz)) (43)

az

5y exp( In(U)-aIn(¢c1)—azIn(z2) - az ln(cz)) (44)

a

The corner points are

Prec = (Zf‘,exp( In(U)-ajIn(c;)-a; In(z{') - a2 In(cz )))

az

(45)

sl (exp( In(U) -a; In(c; )-;12 In(z4 ) - a; In(ca )),zg)
1

(46)

2.4.4 Relationships Between the Additive and
the Multiplicative Form

The indifference curves span the entire objective
space. Therefore, an indifference curve originat-
ing from the multiplicative model has to be tan-
gent to an indifference curve of the additive form.
This point is characterized by

— = (47)
aea  axz

It follows that

=2 (48)

2

By setting

aic1z) + axcazs = 121" ¢z, (49)

and replacing z, by (48) on both sides

(ay +ar)a1z = 1z (50)

Because of (9), a, + a,= 1, which means

az = ¢z (51)
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which is identically true. It follows that the tan-
gent has the same utility as the linear indiffer-
ence curve (Fig. 5). As U, a,, a,, ¢, and c, are
known, the tangency point can be solved from

U- asCr2»

aci (52)

1
2

<1l

Z =
C2

Substitution of z, by the lower equation in the
upper one yields

U—a;c:(c—lz,)

)

NE— (53)
acy

By arranging the terms, the tangency point P

can be written

(@) +ax)c; ¢

Pr(:..::)=(———U i z,) (54)

Because a, +a,=1

U & ) (55)

Pr(zi,22) = (— z)
G €

The indifference curves of the multiplicative
model are strictly convex below the aspiration
levels. This is because

d:Z: a1z,

- = >0 Vay>0ra,>0A2>0n2 >0(56)
dz;  axz}

In summary, the following statements character-
ize the relationships of the indifference curves:

(1) Piecewisely linear partial utility curves give rise
to strictly convex indifference curves, if the multi-
attribute model is multiplicative.

(2) The indifference curves of the multiplicative model
are tangent to the indifference curves of the addi-
tive model at the same utility level.

2

Ule, z{x Zy

Figure 5. Indifference curves of additive and multi-
plicative models corresponding to the same utility
level.

2.4.5 Characterization of the Optimal Choice
2.4.5.1 Location of the Aspiration Point

An aspiration point may lie inside, outside or
exactly on the production possibility boundary.
The uniqueness of the solution of utility maxi-
mization is closely related to the location of the
aspiration point. Accordingly, three different sit-
uations can be distinguished (Fig. 6).

(1) The aspiration point lies exactly on the production
possibility boundary. The solution is unique.

(2) The aspiration point lies inside the production
possibility boundary. The solution is nonunique.
The number of solutions is determined by the
possible combinations found on the boundary.

(3) The aspiration point lies outside the production
possibility boundary. If the production possibility
boundary is strictly concave, the solution is unique.
Otherwise, for the additive form, the solution is
nonunique in case of a tangency solution and
unique in case of a corner solution, i.e., when a
corner of an indifference curve touches the bounda-
ry. For the multiplicative model. the concavity of
the boundary is a sufficient condition to guarantee
the uniqueness of the solution.
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Z

Figure 6. Indifference curves with different locations
of aspiration points.

In the first situation, the aspiration levels isolate
a variation range that is actually a single point on
the production possibility boundary. In other
words, alterations in the levels of objective vari-
ables are not needed to attain maximal utility,
ie.

Z6mx — 24 and zgman = 24 (57)

In the second situation, the aspiration levels are
too low. Consequently, each point on the bound-
ary fulfills the initial conditions and produces
maximal utility. For these points,

ZiM x 28 and EmeX s 4 (58)

In the third situation, the aspiration levels are too
high. It follows that maximal attainable utility is
reached at a point for which

z;lmax < ZiA

and z§m¥ < z4 (59)
Alterations in relative importances a, and a, af-
fect the slope of the indifference curves. For
example, if a, increases, the negatively sloped
part becomes steeper. In the opposite case, i.e., if
a, increases, the slope decreases.

In the third situation and from the viewpoint of
the additive form, production possibility bounda-
ries that fail to meet the condition of strict con-
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cavity are disadvantageous. This is a serious prob-
lem if the boundary is linear. Then, in principle,
the slope of the indifference curves being suita-
ble, the entire boundary may represent a set of
optimal solutions.

2.4.5.2 Additive Form

Let us examine more closely the effects of aspi-
ration levels and relative importances. For the
additive model, the effects can be observed by
studying the slope and its elements

de_ acy

(60)

dz acs

If an aspiration level increases (Fig. 7a), the
slope of the corresponding partial utility func-
tion decreases. Consequently, the indifference
curves become slanting (Fig. 7b). For example,
for z, this means

2t B

(61)

P . ( dz, J bode
= ZI = Cl <C = <
le d:l
A linear partial utility function is a special case
in which the aspiration level equals the maxi-
mum value of the objective.
The effects of a decrease in an aspiration level
can be observed by reverse reasoning. For z,,

#rezt = ctoa =

A
dlg) . dZ: (()2)

dz; dz,
If the aspiration level is equal to the minimum of
the objective (Fig. 7c), the corresponding indif-
ference curve forms a rectangle at point (z,m",z,).
The indifference curves are horizontal to this
point (Fig. 7d). As a result, utility is completely
determined by the other variable.

The effects of relative importances a, and a,
can be summarized as follows:

if a=0, a,=0 = L4 =0 (63)
|

: dz;

if aj=0, a=0 = ——=x (64)
dZ]
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Figure 7. Relationship between aspiration levels and corresponding indifference curves.

Vi)

if ay=, ax=0 = <0 (65)
4

In (63), the indifference curves are horizontal,
whereas in (64) they are vertical. Formula (65)
describes a situation in which the indifference
curves are negatively sloped.

Because the slopes of indifference curves are
affected both by relative importances and aspira-
tions levels, the combined effects of these factors
need to be studied. For this examination, it is use-
ful to make a distinction between two cases.

First, if the aspiration levels determine a point
inside the production possibility boundary or ex-
actly on the boundary, the solution is dependent
only on the location of the aspiration point. In
other words, alterations in relative importances
do not affect the solution (Fig. 8a).

Second, if the aspiration point lies outside the
production possibility boundary, both relative
importances and aspiration levels affect the solu-
tion. For z,, the effects can be summarized

A

aibel] Ao (d::] ) dz; = zp<z (66)
(i:l d.’.l
i\ _dz
#hezp = (l':) S8 P >z (67)
le d:l

The effects caused by alterations in relative im-
portances are, in fact, logical. For example, if the
level of either objective is too low, a better result
can be attained by assigning a greater weight to
that objective or, as in this case, by decreasing
the weight of the other objective. The effects of

[§9]
[o5]
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Figure 8. Aspiration points and effects of changes in aspiration levels and relative importances.

changes in aspiration levels, on the other hand,
are unexpected: a decrease in the aspiration level
results in an increase in the value of that objec-
tive.

These results seem to imply that if unrealisti-
cally high aspiration levels are used, the solutions
cannot be fully predicted by means of aspiration
levels. This is because in such a situation the so-
lution can be determined not only by the tangency
of an indifference curve, but also by the touch of
a corner of the curve (Fig. 8b).

2.4.5.3 Multiplicative Form

The rules of the multiplicative model are similar
to those of the additive model, except that the
slope of an indifference curve is not affected by
the slopes of partial utility curves. The slope of
an indifference curve

dz __az (68)

dz, axz;

changes continuously along the curve, being af-
fected by relative importances. As z, increases

24

(or z, decreases), the slope increases, and vice
versa.

Changes in relative importances turn the indif-
ference curves so that, for example,

A
de) dZ: (69)

ap >a; = ( >

dZ[ dZ]
The bound values 0 and 1 of relative importanc-
es give rise to either vertical or horizontal indif-
ference curves.

In the additive model, aspiration levels affect
both the slope of the indifference curves and their
valid domain. In the multiplicative model, the
slope of the curves is not directly affected by the
slopes of partial utility functions. Instead, aspira-
tion levels determine only the domain of the neg-
atively-sloped (strictly convex) part of the indif-
ference curves (Fig. 9). This can be seen from the
definitions of the minimumi and maximum of the
slope of an indifference curve corresponding to
total utility U
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Figure 9. Indifference curves of the multiplicative
model in the case of two different aspiration points.

min

&
S

oo (@) -aiIn(c) -y In(zf )-azln(C:)) (70)
a ¥ az

a» s B

(71)

a z4

" In(U)-ayIn(c;)-a>In(z4) - a> In(ca)
exp L2 )

a,

In the multiplicative model, the probability of
corner solutions is small compared to the addi-
tive model. This is because alterations in aspira-
tion levels have no effect on the slope of the
indifference curves. On the other hand, the shape
of the curves favors tangency solutions.

2.5 Utility Maximization
2.5.1 Analytical Method
The problem of utility maximization is that of

typical constrained optimization. In a general
form, this problem can be expressed as

Max U=U(zn,...,zp)

Z1,...2p € Bp

(72)

Hence, the optimization problem is to locate the
point on the production possibility boundary with
the highest total utility.

In three-dimensional space, total utility can be
depicted by a surface. In the additive model, this
surface contains plane segments that are either
nonhorizontal or horizontal (Fig. 10a—). Analo-
gously, in n-dimensional space, utility forms a
hypersurface with similar features. Nonhorizon-
tal plane segments are a direct consequence of the
linear, positively sloped parts of the partial utility
functions. Horizontal plane segments, in turn, are
caused by the existence of aspiration levels.

For the multiplicative model, the segments bend.
Only the area restricted by aspiration levels is a
plane segment (Fig. 10d).

In the case of the additive model, the surface
constituted by partial utility functions is (nonstrict-
ly) concave. For the multiplicative model, with
aspiration levels equal to single-objective maxi-
ma, the utility surface is strictly concave. Formal-
ly, this can be proved as follows. The partial de-
rivatives of (18) are

L

a4 & (73)
dU b tlgU

oz b4

and the second partial derivatives and cross par-
tials are

PU U
9z} z?
32U _avU (74)
dz3 22
92 92U
J-U _ ¢ U -0
. ]t:L r7:3 21
Because
Py eymo) (75)
hr :1'
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(©)

%)
Zl -

and the Hessian determinant

(92U 72U —01U

- 0
|H| - oz} 0210z | | 2}
a2U U |~ 0 -a,U
0220z, 923 23 (76)

aja,U?

=—5>>0 (21=0,22=0)

142

the function is strictly concave.
The problem (72) can be solved by the ordinary
Lagrange multiplier method. For the additive

26

(b)

(d)

7
Figure 10. Utility surfaces of the additive model (a—) and the multiplicative model (d) with respect to a
production possibility boundary.

model, the increasing part of the objective (utili-
ty) function is in the form

U=acizi+...+a,c,z, (77)
subject to the constraint

g(z1,...,2p) =B, (78)
It follows that the Lagrangian function is

L =a‘c1zl+...+a,,c,,z,,+)»(B,, -g(z1h..y z,,)) (79)
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for which the first-order condition consists of
the following p+1 simultaneous equations:

dL

(?—A=B,,-g(21,...,2,,)=()

JdL ag

—=aic)-A—=

Jz) i dz) (80)
L

_( =apcp—A o8 =0

az, Zp

The same method can be applied to the multipli-
cative form.

The uniqueness of the solutions corresponds
directly to the aspects revealed by the indiffer-
ence curves. In the first situation, the aspiration
point lies exactly on the production possibility
boundary. The solution is unique, because utility
increases up to that point, and the production pos-
sibility boundary contains no other points with
equal utility. In other words, the optimal point is
situated exactly at the corner of the horizontal
plane segment of the utility surface (Fig. 10a,d).

If the aspiration point lies inside the production
possibility boundary, multiple solutions are pos-
sible. This is because the total differential is zero
for each point on the horizontal plane segment
(Fig. 10b), i.e.

oU U
dz) +
r)v

Z| ﬁ:g Z] Z2

W, 0

dU = dz> = 21+ dz»=0 (81)

Hence, each of these points are stationary. The
number of solutions is determined by the fea-
tures of the production possibility boundary.

If the aspiration point lies outside the produc-
tion possibility boundary, the horizontal plane
segment is never reached (Fig. 10c). For the solu-
tion point

. U
dU = ((;U dzy +~ U dzy =0 (82)

2 Z3

because the value of the total differential chang-
es as a result of infinitesimal changes in z, or z,.
The uniqueness of the solution is guaranteed
only if the production possibility boundary bends

so that equal utility levels are not attainable at
different combinations of z, and z..

2.5.2 Outline of an Iterative Solution
Procedure

If the decision-maker is not satisfied with the
solution found by, e.g., the analytical method
presented above, an iterative procedure has to be
applied. The term is used here to refer to succes-
sive specification of aspiration levels and rela-
tive importances as well as successive examina-
tion of the solutions.

The outline for an iterative procedure compris-
es the following steps. A similar procedure for
reference point optimization has been presented
by Wierzbicki (1980b).

(1) The minima and maxima of the objective varia-
bles are presented to the decision-maker.

(2) The decision-maker is asked to specify a vector of
aspiration levels and a vector of reservation lev-
els.

(3) The computed solution is presented to the deci-
sion-maker along with the location of the aspira-
tion point.

(4) If the decision-maker is satisfied with the solu-
tion, stop. Otherwise, define a new set of aspira-
tion and/or reservation levels and compute a new
solution (Fig. 11).

2]
Figure 11. Examples of aspiration points and solu-
tions obtained by the iterative procedure.
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If the decision-maker is willing to scan the pro-
duction possibility boundary, this can be imple-
mented either by changing the relative impor-
tances (weighting method) or aspiration levels
(aspiration-level method). The scanning proce-
dure can be used for sensitivity analysis or to
give an overview of the problem to be solved.

28

The chain of formulations and solutions is con-
tinued until a satisfactory solution is obtained.
In practice, the iterative procedure requires the
use of a numerical optimization method. This is
because the utility function in many cases is mul-
tidimensional and the production possibility
boundary may not be depictable in a function form.

3 A Model for Timber Flow Management

3.1 Overview

The planning model is based on an examination
of a forest economic unit divided into subareas
called compartments. The idea of the model is to
find a treatment schedule for each stand com-
partment that is optimal in terms of the objec-
tives defined for the whole forest holding (Fig.
12). Compartments are assumed to be nondivisi-
ble management units.

The starting-point of the model is an alternative
set describing the production possibilities of the
resource stock. In numeric computation, this in-
formation is generated through simulation (see
Appendix for details). The aim of the simulation
model is to create a finite number of feasible
management schedules for each compartment over
a predetermined planning horizon.

The preferences of the decision-maker are ex-
pressed through the utility model. The model in-
cludes only such objective variables as are related
to the regulation of timber flow to reach a satis-
factory economic result. The fundamental idea in
the formulation of the partial utility functions is
the use of aspiration levels determined by the
decision-maker.

RESOURCES  DECISION-MAKER

y |
Compartments

i()bjccli\'cs‘

v LT
Alternative scl‘ Utility functions|

| U ) | A
‘n : ;i?)mimi/.uliunk_—] |
I |

Solution —

Figure 12. Structure of the planning model.

Problems defined by the utility model and re-
stricted by the production possibilities will be
solved by optimization. This procedure is used to
find the solution which maximizes the utility to
the decision-maker.

3.2 Planning Horizon

In terms of dynamic optimization, the planning
model presented in this study is based on the
concept referred to as a fixed-time-horizon prob-
lem or a vertical-terminal-line problem (Chiang
1992). The finite planning horizon is divided
into parts called management periods. It is as-
sumed that

NEN+ , PEN* (83)

implying that the shortest management period is
one year. From an operational standpoint, the
management period shows the time gap between
successive forest treatments.

Formally, the following rules characterize the
planning horizon.

T;_=TB+]V—1 , N>0 (84)
N N :

n,,=F+6' R Ps? or P=N (85)

TI =Tg+(i-)xP , i=1..n, (86)

P,, =N-(n,-1)xP (87)

0=0, if remainder(N/P)=0 (88)
1, if remainder(N/P)>0

This equation system has three exogenous varia-

bles: Ty, N and P. Formula (84) simply states

that the planning horizon is a closed interval
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Table 1. Number of management plans as a function
of number of compartments and treatment sched-

ules.
Number of Treatment schedules/compartment
compartments 3 5 10
3 243 3125 1x10°
10 59049 9.8 x 10° 1 x 10"
30 2.1 x 10 9.3 x 10* 1 x 10%

[Ty, Tg] from the beginning of Ty to the end of
Te. Because there are several possibilities to com-
bine variables N and P, the correction term (88)
in formula (85) is necessary when the length of
the planning horizon is not evenly divisible by
the length of the management period. In such
cases, the last period is always shorter than the
others (87).

The determination of the planning horizon and
management period originates from the need for
discretization. It is difficult to apply infinite time
horizons as well as continuous time examinations
to forest management planning. It follows that
finiteness and some level of discretization are
necessary. Accuracy in this respect has an effect,
e.g., on profitability because of discrepancies
between the optimal and possible timing of treat-
ments. On the other hand, as the number of possi-
ble management plans is determined by

= [ ik

the alternative set grows rapidly as management
periods shorten, giving rise to schedules with
different timing (Table 1).

Calculations here are based on a planning hori-
zon of ten years with management periods of one
year. The examination of different time horizons
and discretization degrees falls beyond the scope
of this study. Despite this limitation, formulas will
be presented in a general form allowing for flex-
ible time horizons.
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3.3 Ingredients of the Model

3.3.1 Concepts of Exploitation and
Conservation

The utility model to be presented here is an
extension of the resource model introduced in
Section 1.2. By definition, a resource stock can
either be conserved or consumed. In the case of
renewable resources, the stock possesses capaci-
ty for growth. If consumption exceeds the natu-
ral growth rate, the size of the stock will de-
crease.

With concepts of resource economics as a guide-
line, felling income was chosen to represent con-
sumption, i.e., exploitation of the resource stock.
This characteristic can be measured against the
rate of value growth of forest. Thus, the following
relationships are analogous to the general resource
model (1):

II[, "I‘ AV

Y, -%vg, = 2 .¢ 90
21 zl T (90)
np np AV
;y,>2vc, = ?<o (91)
"[’ "[y AV

Yi<MYVG, = —>0 92
2Fis3 i 42)

These identities correspond to a stable, a de-
creasing and an increasing value of the resource
stock, respectively. Net income, i.e., felling in-
come subtracted by silvicultural costs, is used in
the computations to incorporate related costs.

From the standpoint of business management,
net income represents profit: the difference be-
tween revenues and costs. The classical objective
of a firm is to maximize this difference (e.g. Ne-
her 1990).

The resource model is extended by introducing
an additional variable to describe the size of the
resource stock. A variable of this kind can be jus-
tified by the need to stabilize resource use. This is
in line with the principles of sustained yield man-
agement. The approach differs slightly from that
of general resource economics: instead of differ-
ential comparisons, it enables static examinations
between distinct points in time.
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In this sense, the stumpage value of the grow-
ing stock at the end of the planning horizon was
chosen to describe the size of the resource stock.
The computation of this variable — referred to as
“final capital” — has the general form

FC=PEVE (93)

which can be compared with “initial capital”

IC =PEVE (94)

This computation method omits the time after
the end of the planning horizon, i.e., the future
production potential of the land. This approach
was chosen for the following reasons. First, the
reliability of long forecasts is weak because of
uncertain growth conditions and economic cir-
cumstances. Second, human time horizons tend
to be short, emphasizing current and near-future
events (e.g. Keltikangas 1971). Third, the land is
assumed to be occupied by timber production
pursued by a single owner, meaning that there is
no need to include the opportunity cost of the
land in the computations.

3.3.2 Intertemporal Choices

According to the capital-theoretic approach (e.g.
Solow 1963, Hirshleifer 1970), the optimal size
of the capital stock is determined by the equiva-
lence of the interest rate and the marginal pro-
ductivity of the capital stock. The production
schedule is dependent on the applied interest
rate. Incorporation of the intertemporal prefer-
ences of the decision-maker to this solution indi-
cates what consumption level to follow. With
aspiration levels, however, things are different.
The aspiration level approach calls for an inter-
pretation with respect to traditional economic
theory.

If consumption level and stock size are decided
exogenously, the above marginal rule is no long-
er applicable. On the contrary, it is consumption
and stock size which determine productivity and
return on capital. As the possibility to choose the
aspiration levels of objectives is a fundamental
precondition in this model, a variable controlling
the return on capital (ROC) is included. The pur-
pose of this variable is to enable the inclusion of

the return requirement for net income and the
whole capital stock as well. On the other hand,
ROC measures the profitability of forest manage-
ment activities and is directly dependent on the
timing of treatments per compartment.

In this context, the return on capital is deter-
mined by
roc<{yENFC ) oo (95)
W )

to measure the overall profitability derived from
timber growing and treatments depicted by com-
pounded net income. The return on capital equals
the internal rate of return, which is a frequently
used variable in profitability evaluations.

If interest rate or return on capital alone are used
to constitute an income distribution, the temporal
flow of income tends to be uneven. This is a harm-
less feature in circumstances of a perfect capital
market. An additional requirement is that the de-
cision-maker accepts the state of the forest result-
ing from capital-theoretic decision-making.

Exogenous determination of desired income
trajectories is based on the assumption that pro-
duction and consumption optima are not strictly
separable (e.g. Ollikainen 1984, Ovaskainen and
Kuuluvainen 1994). This results in a need to con-
trol cutting schedules, e.g., on the basis of con-
sumption decisions. Such behavior may be due to
a difference in the interest rates for borrowing
and lending, on one hand, or to an unwillingness
to borrow, on the other. In any case, the nonsep-
arability assumption implies that the decision-
maker is subject to liquidity constraints affecting
decisions in forest management.

If the borrowing (ig) and lending (i, ) rates dif-
fer, the budget line contains a kink. It is usually
assumed that iy > i, (Maddala and Miller 1989).
In the case of liquidity constraints, it may be more
profitable to use forest resources as a financing
source for consumption (Fig. 13). The advantage
depends on the marginal productivity of the stock.

If the decision-maker is unwilling or unable to
borrow, the financing needs exceeding the income
determined endogenously have to be covered by
additional cuttings. In the case of diminishing
returns on production — giving rise to a strictly
coi cave production possibility boundary — this
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Figure 13. Effect of different interest rates on a pro-
duction decision, provided that liquidity constraints
prevail.

measure results in decreased maximum consump-
tion possibilities for each time period (Fig. 14).
This is because a lower budget line has to accept-
ed due to the exogenously determined production
schedule.

Assuming that the decision-maker can choose
freely between lending and consumption, the lend-
ing rate represents the corresponding opportunity
cost. This restriction — which excludes borrowing
— is definitely a simplifying assumption. A real
situation may involve a mixture of consumption,
lending and borrowing. Aspiration levels of fell-
ing income, however, have their clearest inter-
pretation in the consumption-saving framework.

3.3.3 Formulation and Computation

The utility model related to timber management
economics has two variations referred to as RM,
and RM,, respectively. The formulation of the
models is drawn from the assumptions intro-
duced in Section 1.2.

Resource Model 1 (RM,):

U =U(NI,FC,ROC,ITI) (96)

32

Exogenously determined
combination

c,=Y, Ci=Y[T CLY,

Figure 14. Effects of an exogenously determined pro-
duction schedule in the case of no lending or
borrowing possibilities.

Temporal income distribution can be presented
either as a trajectory index (ITI) or as absolute
values of income per period. The latter method
is described by Resource Model 2 (RM,):

U =U((NI,,...,NI,, ),FC,ROC) (97)

"
The values of the objective variables have to be
computed for each management plan. There are
several computation methods especially for de-
termining net income levels and income trajec-
tories. These are referred to as CONI (computa-
tion of net income), and three of them are pre-
sented below.

CONI 1: No time discounting or compounding
of income in each period. The total net income is
a sum

s
ne "

ZNI= Ny (1i - Ci) (98)

J=1k=1

corresponding to the zero value of the interest
rate.
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CONI 2: No time discounting or compounding
of income in each period. The total net income is
a compounded sum

s
ne "

NI =Y EJ(I,‘. - Ci)(1+i) =Tt (99)

j=1 k=1

corresponding to the “Stalinist decision-maker”
(Intriligator 1971): all income is saved to in-
crease future consumption possibilities.

CONI 3: Time compounding for income per pe-
riod. The total net income is a sum

CNI =Y FNI, (100)

j=1

The first computation method is easiest to un-
derstand. It has the weakness of involving an
implicitly determined interest rate that may con-
flict with the time-preference of the decision-
maker and the actual discount rate. Moreover,
the lack of a time-discounting element hampers
the application of the capital-theoretic approach
to the timing of treatments.

The second method takes economic timing into
account. In addition, it has a clear interpretation
of income per period. A drawback is that specify-
ing an even compounded income trajectory, e.g.,
actually means a declining income distribution in
the case of i > 0. The third method involves inter-
est compounding at the level of each year.

Corresponding computation procedures can be
presented for time discounting. Though not in-
cluded here, discounting is not regarded as less
appropriate. On the contrary, exogenous determi-
nation of income trajectories can be assumed to
originate from needs related to consumption rath-
er than to investment. This aspect implies that
discounting would be even more appropriate than
compounding. The presented methods stress the
lending-oriented standpoint of the model: saving
is seen as the best alternative use of realizable
capital. Besides, both discounting and compound-
ing convey the time-preference through financial
losses in case of a deviation from the optimum.

The calculation of ROC has the formulation

/ rn( "} V )
SUEC + St - o iy
j=1 k=1

ROC =| y
w Ic,

-1|x100

(101)

If the interest rate is not constant over time,

interest is compounded by using the recursive
function

FIVIT( =FNITI_I(1+iTr)P (102)

to replace the compounded net income in (101).

If time discounting or compounding is includ-
ed in NI, the terms NI and ROC contain a capital-
theoretic timing element. A comparison of the
essential elements of FNI and ROC

NIQ+i)N +FC

FNI =NI(1+i)¥ ROC =
IC

(103)

gives a reason for the following statements:

(1) The maximization of FNI as the only objective
corresponds to the maximization of net present
value.

(2) If ROC is maximized, treatments with a valuable
final state are emphasized.

(3) If the final state is not valuated, the treatment
sequences obtained through the maximization of
FNI or ROC are equal.

The economic timing of treatments based on
FNI or ROC determines the production opti-
mum. If the consumption bundle has to equal the
production bundle and the latter deviates from
the optimum, it is necessary to specify the de-
sired income trajectories. In RM,, an additional
variable ITI takes this into account. This varia-
ble allows a direct definition of the curvature of
income flow. For RM,, the shape variable is
unnecessary because of the implicit determina-
tion of income flow. On the other hand, ROC is
indispensable for RM, to enable the economic
timing of the treatments.

|8}
|95}
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3.3.4 Consideration of Income Trajectories

Model RM, has a variable for controlling the
temporal distribution of income. This objective
was included because of difficulties to regulate
the dynamics of income flow only by means of
income level or interest rate. For RM, this prob-
lem does not exist, because the net income tra-
jectory is specified by the income levels of suc-
cessive time periods.

In RM,, the desired income trajectory and in-
come distributions produced by different manage-
ment plans are compared by means of a specified
algorithm. The idea of this algorithm is to calcu-
late the values of the variables describing the de-
viations between preferred and feasible income
trajectories.

Phase 1: Characterization of the desirable net
income trajectory

(1) The decision-maker is asked to outline a desirable
net income trajectory (Fig. 15a).

(2) The values corresponding to the points of the ob-
jective trajectory are scaled between 0 and 1. As a
result, a vector of relative net income is formed

RNI =[RNIy,..., RNI,, | (104)

(3) The maximum deviation from the objective tra-
jectory is calculated from

SSDpmax = EP(E,- — RNI;)? (105)

i=1
in which E is determined by

Ei =0, if RNI;=0.5
iy} (106)
=1, if RNI;<0.5 , i=1,...n,
Phase 2: Comparison of the objective trajecto-
ry and a feasible trajectory

(1) A feasible trajectory of net income is calculated
by summing up the compartmental values of net
income occurring in successive management peri-
ods.

(2) Values determining the feasible trajectory are
scaled between 0 and 1. A vector corresponding to
that of (104) is formed, ie., RNI* =
[RNI?,...,RNI%, .

34

(3) The discrepancy between the objective trajectory
and a feasible trajectory is described by the sum of
the squared deviations

"Iy
SSD = E(RNI,.” ~ RNI; )? (107)

=1

From a set of feasible trajectories (Fig. 15b—d),
the most appropriate temporal distribution of net
income can be found by choosing the vector of
relative income RNI* such that (107) is mini-
mized.

An alternative formulation makes use of un-
signed deviations instead of squared ones. The
maximum deviation then is

Il,)
SUDuax = Y |E: = RNI| (108)

i=1

Since unsigned values of the deviations are used,
the discrepancy between the objective trajectory
and a feasible trajectory is described by the sum
of the deviations

SUD = "2p|RNI," - RNI| (109)

=1

The squaring of the deviations should result in
smaller single deviations than those obtained from
the minimization of the unsigned deviations. Ex-
amination of other differences is left to the nu-
merical analysis to be presented later in the study.

The goal of an even income distribution requires
a linear objective trajectory with a constant rela-
tive net income level. Consequently, the maxi-
mum sum of squared deviations is always np(0—
1)> = np (by virtue of (105)).

A comparison of absolute deviations can be
made in the case of an even objective trajectory.
In this procedure, the average net income is com-
puted from

NI ==L — (110)

Intertemporal deviations from the average net
income are expressed as

Wkkﬁnen, R. Aspiration-Based Utility Functions in a Planning Model...
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Figure 15. Objective trajectory of relative net income (a) and three feasible trajectories (b—d). Assumption:
np=10.
SAD=§(W—NI,) (111) ]T]=(M)x100 (113)

i=1

The vector of absolute net income is sorted in an
ascending order. The maximum deviation is then

e n,.~1 0
SADpax = (NI, = NI)? + 2(0— NI)? (112)

i=1

The use of nonlinear objective trajectories makes
it possible to exclude management periods from
the planning horizon. This is because this kind
of definition results in a solution involving no
cuttings in the periods with a relative income
equal to zero.

Deviations as such are not used as a basis for
the ITT objective. Instead, to obtain an increasing
utility function, ITI is expressed as a percentage

This transformation makes ITI a decreasing func-
tion of the summed deviations.

3.3.5 Production Possibility Boundaries
3.3.5.1 Theoretic Assumptions

The concept of the production possibility bound-
ary is an important analytic tool in forest man-
agement and economics. The notion is especial-
ly useful in examining the characteristics of a
forest resource stock. The theory underlying pro-
duction possibility boundaries is closely related
to the concepts of joint production (Gregory 1987)
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and rival products (Nautiyal 1988), and more
fundamentally to the general theory of produc-
tion functions (e.g. Baumol 1965). In multiob-
jective programming, the theory of noninferior
sets (Cohon 1978) has an analogous content.

Theoretically, production possibility bounda-
ries are often assumed to be concave (Nautiyal
1988) and graphic illustrations frequently contain
the implication of strict concavity (e.g. Kilkki
1985). Strict concavity originates from the law of
diminishing returns: an intensified use of inputs
results in a marginally decreasing yield.

The concept of the “production possibility
boundary” will be used here to depict the nonin-
ferior sets of the multiobjective optimization prob-
lem. This procedure differs somewhat from the
convention of forest economics: the boundary is
usually derived directly from production func-
tions. Despite this difference, production func-
tions are always the ultimate basis of the noninfe-
rior sets of this study.

3.3.5.2 Final Net Income and Final Capital

In RM,, the objectives NI and FC are strong
competitors and, therefore, suitable to be pre-
sented by a production possibility boundary. The
requirement of an increase in final capital leads
to an inclined net income, and vice versa, that is

NIy >NI = FCy<FC if NILFCEB, (114)

The magnitudes of these alterations depend on
growth, applied treatments and timber prices, as
well as on the opportunity cost, if NI includes
compounding.

Let us examine the production possibility
boundary of FNI and FC. Because FNI involves
compounding, an increased interest rate results in
a more slanting production possibility boundary.
If the interest rate is multiplied by a constant k
(>1), the difference in compounded net income is

AFNI = FNI(1+ ki)™ = FNI(1+i)¥ (115)

To simplify notation, let us write

14i=6 (116)

and introduce an additional constant c.
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Now

AFNI = FNI(a8)¥ - FNION
< AFNI = aVFNIOVN - FNION (117)
< AFNI =(aV -1)FNION

Because
O=1+i A ab=1+ki

1+ ki (118)
a=
1+1i

—

the difference can be written in the form

1+ki\Y )
)

AFN1=(/ —\ 1y FNI(1+0)Y (119)
\\1+1 )

In summary, if FC is held at a constant level FC,,
the change in opportunity cost i to ki shifts the
production possibility boundary from FNI, to

N

1+ ki
1+

S’

FNI, +(( - 1) FNIy(1+i)¥ (120)

The above has two interpretations. First, an in-
creased interest rate results in a higher com-
pounded income with a constant final capital
(income effect of interest rate). On the other
hand, if a certain net income level is aspired, an
increased interest rate leads to a higher final
capital.

An alternative way to express the above analy-
sis is to separate the compound rate from the pro-
duction possibility boundary. This being the case,
the budget line has a slope equal to the average
rate of return on realized capital.

3.3.5.3 Final Net Income, Final Capital and
Return on Capital

The interactions between the objectives FNI, FC
and ROC can be studied by outlining the bound-
ary in three-dimensional space. To avoid prob-
lems related to illustration, the following analy-
sis is based solely on analytic reasoning without
graphical examination.
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To begin with, it is useful to distinguish be-
tween three situations:

is7F (121)
- (122)
P<75 (123)

In (121), the interest rate exceeds the average
value growth rate of forest. Thus, an increasing
net income results in an increasing return on
capital, because every monetary unit yields a
higher return on average when invested instead
of when preserved as forest capital. Formally
stated this means that

NI(1+i)>V(1+rp) (124)

Consequently,

i>rp and FNIy>FNI = ROC, > ROC (125)

If the interest rate is approximately equal to the
value growth rate (122), alterations in net in-
come have no major effects on return on capital,
that is

i=rr and FNIy>FNI = ROC, = ROC (126)

If the interest rate falls below the value growth
rate (123), an increasing net income leads to a
decreased return on capital, because it would be
more profitable to preserve the forest capital in-
stead of consuming it.

i<rr and FNIy >FNI = ROC, <ROC (127)

Two additional aspects have to be taken into
account. First, because cuttings affect the rate of
value growth of forest, the above rules are only
generalizations. Alterations in value growth may
make extremely intensive cutting regimes disad-
vantageous. The exact effects at different net
income levels can be figured out only by numer-
ical computation. Second, according to (114),
increased income usually results in a decreased
value of the growing stock when movements
along the boundary are examined. Again, the
effects on ROC depend on the interest rate and
the shape of the value growth functions.

3.3.5.4 Return on Capital and Temporal
Distribution of Income

When used in forest management planning, re-
turn on capital measures the combined profita-
bility of forest growing and further investments.
This objective is useful in determining economi-
cal cutting schedules, because both timing and
final capital are considered simultaneously.

Temporal income distribution produced by the
application of ROC depends on the opportunity
cost and the growth potential of forest. If the in-
terest rate is high, immediate cuttings become
profitable. A low interest rate leads to delayed
cuttings. If the decision-maker is willing to con-
trol the income flow by other means, losses de-
pend on the desired flow shape.

In RM,, the objective ITI allows the direct con-
trol of income flow. In general, any attempt to
change the income flow dictated by ROC means
losses in profitability. This applies even when the
desired income flow corresponds perfectly to that
determined by ROC. This is because the latter
includes information about the treatment sequence
of the compartments — an aspect not included in
ITI.

3.3.5.5 Periodical Net Income

To study the periodical net income in RM,, pro-
duction possibility boundaries can be examined
by a pairwise analysis. Let us consider a case of
two successive management periods.

The slope and location of the boundaries are
affected by growth, treatments, and timber pric-
es, as well as by interest rate in the case of CONI
3. These are exactly the same variables that affect
the boundaries of NI and FC. From this view-
point, FC can be interpreted as being a hypothet-
ical felling income.

Changes in timber prices shift the boundary if
the changes are equal for each management peri-
od. This is because it is possible to earn a higher
felling income with equal fellings regardless of
the net income level. In the case of intertemporal
changes, i.e., price fluctuations over time, the slope
and location of the boundary change. Alterations
in interest rate cause changes of the latter type if
compounding is included (CONI 3): slope and
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location are different after the changes.
Movements along the production possibility
boundary mean changes in felling times. If NI°
denotes income at the original point and NI' at a
point after the movement, these choices can be
characterized by
Nl =NI% +NI? + fy (128)
In other words, delayed cuttings cause an in-
come increase in the second period equal to the
reduction in the first period added by the value
increase (Fig. 16). Value growth is affected by
prices: a constant change over time has no ef-
fects, whereas price fluctuations may result in
notable changes in value growth percentages.

3.4 Utility Model
3.4.1 Compound Utility Functions

The analysis of the resource economic utility
model is based on an examination of four differ-
ent function forms.

Function I

U= aN,uN,(N1)+aFch((FC)

(129)
+arocUroc (ROC) + ayryugr (ITI)

Function II

U = un; (NN upe (FC)FC upoe (ROC )aROC yyry (ITI)@T
(130)

Function III
n,’
U= 2 aiu;i(NI; )+ apcurc (FC)+ aroctroc (ROC)
= (131)

Function IV
np
U= (nu,(Nl,- )w) urc (FC)FC upoe (ROC )aroc (132)
i=1
Functions III and IV can alternatively be written
in a more hierarchical form. For III this means

U= arnurni (TNI) + apcurpc (FC) + agocuroc (ROC)
np
urny (TNI) = 2 arnriuni (NI;)

i=1

(133)
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Bj (increasing prices)

i

NI NI NI,

Figure 16. Production possibility boundaries of two
successive management periods.

and for IV

U = upyny (TNI)*™ upe (FC)FC upoe (ROC )aroc

5 (134)
urny (TNI) = l_[uTN”'(Nl' )aINii

=1

Functions II and IV can be made separable by
taking logarithms, that is, for II

ln(U) =an In(un; (NI))+ apc In(upc (FC))

(135)
+agoc In(uroc (ROC)) + ayry In(upr (IT1))
and for IV
"IV
U= Ea,- In(u; (NI;)) + ape In(upc (FC)) (136)

i=1

+agoc In(uroc (ROC))

The inclusion of four different function forms
has the following purposes:

(1) To find out the differences between additive (I,I1I)
and multiplicative (II,IV) functions.

(2) To compare the presentation of income flow by a
distinct variable (I-IT) with that of an implicit
trajectory determination (I11-1V).

The second purpose originates from a funda-
mental difference between functions I-1I and I11-
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Figure 17. Desired income trajectory (a), corresponding aspiration point (b) and one of the solutions (c).

IV: in the latter functions, the absolute level of
net income and the income trajectory are deter-
mined simultaneously. The decision-maker spec-
ifies the desired net income trajectory in mone-
tary units, and NI is computed from

np

NI = ENI,

=1

(137)

Furthermore, FC can be interpreted as the in-
come of the period np+1.

In the above compound utility functions, the
term NI has a general interpretation. In other
words, the computation method —e.g., whether it
includes compounding or not (CONI 1.,...,CONI
3) — is not specified.

3.4.2 Partial Utility Functions

Partial utility functions are formed according to
the rules introduced in Section 2.3. For functions
[ and IT this means the specification of four aspi-
ration and reservation levels. Functions III and
IV require the setting of np + 2 levels.

The fundamental difference between functions
[-II and III-1V is in the presentation of income
trajectories. Itis, therefore, useful to examine more
closely a few theoretic aspects concerning the
choices of the decision-maker with respect to in-
tertemporal preferences. This need is based on
the theoretic conclusion that, in principle, the

method of TNI (III-1V) may fail to yield solu-
tions consistent with a desired trajectory. The
possibility of this failure depends on the location
of the aspiration point. The resulting income flow
may be substantially different from the desired
(Fig. 17). The verification of this intuitively de-
rived hypothesis is left to the numerical analysis
to be presented later in the study.

3.4.3 Maximization of Utility

The utility maxima for functions I-IV can be
obtained by any appropriate method. As is cus-
tomary in problem solving, one single method is
rarely superior. Simplicity of implementation and
suitability for describing the actual problem can
be regarded as the most crucial criteria for selec-
tion.

Linear programming is a widely used method
in solving management problems. Linearity re-
quirements, inability to guarantee results for non-
divisible compartments, and difficulties in deal-
ing with trajectory variables were found problem-
atic in this study. Goal programming — a branch
of linear programming — has inherently more or
less the same problems. This method is, however,
appropriate for function II1, which can be consid-
ered a classic goal programming problem.

In order to produce integer solutions, a direct
search algorithm by Kilkki et al. (1986) was cho-
sen (see also Pukkala and Kangas 1993). In addi-
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tion to being computationally simple, this meth-
od allows the original forms of the utility func-
tions to be retained. The method also has the ad-
vantage of being capable of solving all the func-
tions I-1V without modifications.

The algorithm was modified such that a prede-
termined treatment schedule for each stand com-
partment was chosen for the first overall solution.
The reason for this modification was stabiliza-
tion: the original algorithm yields different local
solutions in successive optimizations with equal
premises. The global optimum can be solved with
repeated optimizations. In the study of Kilkki et
al. (1986), even the worst local optima were above
99 % of the global optima in the case of linear
partial utility functions.

Direct search contains the following steps:

(1) Select a predetermined starting-point S € Q.
@) r=1

U =U(S)
(3) Compute total utility from

ne ne
UA = max U; = U(ul(erj + 251,» )""’uP(QP'/ ¥ ES/,, )) 3 j= l,A.A,nr‘k (138)

i=r i=r
Replace the previous schedule in Sy,...,S; by the optimal one.
@r=r+1
if r < ng, return to 3
(5) If Upy > U, return to 2
Otherwise deliver S as a local optimum.
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4 Numerical Testing of the Model

4.1 Purpose and Basic Data

Chapter 2 involved the presentation of several
properties of aspiration-based utility functions,
choices of the decision-maker, and differences
between the function forms. Rules and formulas
derived mainly through analytic mathematics can
be checked by simulating different production
possibility sets, economic circumstances, and
objectives of the decision-maker. This testing
will be completed here by means of the model
introduced in Chapter 3.

The numerical testing has the following aims:

(1) Based on a numerical analysis of the choices of
the decision-maker, to compare the solutions yield-
ed by the additive and the multiplicative model.

(2) To compare the different methods to allow for
income trajectories.

(3) To examine the differences and economic trade-
offs between exogenously and endogenously de-
termined income trajectories.

Numerical tests are based on an examination of
three randomly chosen nonindustrial forest hold-
ings (FH1, FH2 and FH3) situated in eastern
Finland (Table 2). The description of the forest
resource stock is based on data measured by a
standwise inventory. A high percentage of old
forest is characteristic of FH1 and FH3, whereas

the age distribution for FH2 is more even (Fig.
18).

Table 2. Basic data on forest holdings used in numer-

ical analysis.
FHI FH2 FH3
Number of compartments 34 53 52
Area, ha 32.4 67.1 53.4
Volume, m* 4662 7603 5861

Management schedules 281 286 360

A planning horizon of ten years with a manage-
ment period of one year was used in the computa-
tions. The average prices and silvicultural costs
of the statistics of the Finnish Forest Research
Institute (Aarne 1994) were applied to valuate the
management schedules (Table 3).

4.2 Choices of the Decision-Maker

By definition, the optimal choice of the deci-
sion-maker is determined by the tangency of an
indifference curve and the production possibility
boundary. Consequently, the curvatures of the
production possibility boundary and indifference
curves play a key role in the search for a solution
to the forest management planning problem.
Economic theory usually presumes the produc-
tion possibility boundaries to be strictly concave.
This condition does not necessarily hold in nu-
merical analysis (e.g. Nautiyal 1988). The same
conclusion is also evident from the computations
of the present numerical study (Figs. 19-22). An
examination of the graphical illustrations does not
support the concavity of the boundaries; rather,
the curves are at most (nonstrictly) quasiconcave.

Table 3. Initial capital and bound values of objective
variables (i = 3.5%). Bound values have been
computed from alternatives involving compart-
mental minima and maxima.

FH1 FH2 FH3
IC, FIM 659099 1019065 795804
FNIi.. FIM 0 -5052 0

FNI.. FIM 658687 833311 635643
FC,.. FIM 198794 700217 511720
FC,.. FIM 857988 1573102 1134380
ROC,.. % 1.87 3.87 2.99
ROC,... % 3.24 4.75 4.18
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Figure 18. Age distributions of stand compartments in forest holdings.
Scanning of the boundary revealed only approx- U = agrocuroc (ROC) + arpupn (ITI) (1) (141)
imately linear segments. The interpretation of lin- _ ) !
earity depends on the numerical accuracy applied U = #rkoc (ROC)™0Cup (IT%1t (1) (142)

in the computations. It follows that the existence
of nonhorizontal plane portions is possible, giv-
ing rise to the nonstrict quasiconcavity of the
curves.

The linear or convex segments of quasiconcave
boundaries are problematic especially from the
standpoint of additive aspiration-based functions.
This is because explicitly quasiconcave partial
utility functions give rise to linearity in indiffer-
ence curves. Multiplicative forms, on the other
hand, can yield unique solutions on quasiconcave
boundaries insofar as the convex segments do not
coincide with convex indifference curves.

To examine the solving procedure more close-
ly, a few numerical solutions with different premis-
es are presented below. Only those situations in
which the aspiration point exceeds the produc-
tion possibility boundary are selected for study.
This is because solutions derived from low aspi-
ration points mainly characterize the search algo-
rithm, not the features of the utility functions. If
the aspiration points are beyond the boundary, the
solution is affected by either relative importances
or slopes of the partial utility functions, or both.
This examination applies the reduced forms of
functions I and 11, i.e.

U=amum(FN1)+a,.(upc(FC) ([) (139)
U = upni (FNI)FN upe (FC)ere (IT) (140)
and
42

For the analysis of FNI and FC, a production
possibility boundary with an interest rate of 3.5
% (Fig. 19a) acts as an equality constraint in
optimization. The lowest acceptable values of
each objective are always zero. The first solution
involves setting the aspiration levels equal to
single-objective maxima (see Table 3 for de-
tails). The slopes of the partial utility functions
are computed from (14) and the slopes of the
indifference curves from (26) and (42) (Table 4).

The solution produced by the additive functions
differs substantially from that produced by the
multiplicative form (Table 5, row 1). The resultis
self-explanatory (Fig. 19c—d): the strictly convex
indifference curve of the multiplicative function
bends strongly towards the approximately linear
production possibility boundary. The tangency
point is at the center of the boundary. In contrast,
the linear indifference curve of the additive func-
tion has a slope such that the tangency point is
located near the maximum net income.

By using the utility values presented in Table 4,
the solutions can be checked analytically. Let us
examine FH1 more closely. By virtue of (55), the
strictly convex indifference curve is tangent to
the linear one at the point

23
FNI - U y 0.6

——————— = 409868
CENI 1.52x10-¢

(143)

FC =™ FNf =
CFC

1.3 x 409868 = 532828
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Figure 19. Production possibility boundaries of FH1 with different interest rates (a) and solutions produced by
functions I and II when aspiration levels equal single-objective maxima (b—d).

This point is not attainable because of its loca-
tion beyond the production possibility boundary.
Consequently, the solution offered by the multi-
plicative function has to produce a lower utility
level. The numerically computed value of the
multiplicative form supports this observation.
The indifference curve corresponding to the
utility value 0.601 passes through the point

Priu-0601 (FNILFC) = (605054, 243173) (144)
where FC has been computed from formula (37).
The difference in FC is 281 653 FIM - 243 173
FIM = 38 480 FIM when compared to the opti-
mum point of the additive model.

If the aspiration level of FNI is decreased, the
solution of I remains unchanged. For FH1, func-

Table 4. Slopes of partial utility functions, indiffer-
ence curves and utility values of solutions.
Assumptions:
apy = @pc= 0.5, FNI = FNI,,,, FCy=FCpy

FH1 FH2 FH3
Ceni 1.52x 10 1.20x 10 1.57x10°
Cre 1.17x 10 636 x 107 8.81 x 1077
G -1.30 -1.89 -1.78
Gyfermt —FC/FNI —FC/FNI —FC/FNI
U, 0.623 0.728 0.735
Uy 0.601 0.689 0.699
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Table 5. Values of parameters, aspiration levels of FNI and FC, and corresponding solutions yielded by

functions I and IL.

aFNI afpC FNIa FCa

FNI* FC* FNI* FC*

050 050  FNI,, FCoa FH1
FH2

FH3

0.95FNI,  FCp FH1
FH2

FH3

045 055  FNl,, FC FH1
FH2

FH3

030 070  FNI,, FCu FH1
FH2

FH3

0.76FNI,,, 0.76FC,, FHI
FH2

FH3

0.50 0.50

0.50 0.50

605054 281653 439055 465050
827679 727721 713148 873600
629869 544114 573982 613889
615400 262196 439055 465050
791386 766736 713148 873600
603650 576128 573982 613889
518418 383639 394926 510619
827679 727721 664859 929839
624807 552407 512337 682316

2399 857275 279046 620791
47625 1542695 457705 1157143
45344 1115500 373148 824274
500502 398444 487619 417471
632230 946126 631763 961051
483362 666753 480533 703615

tion I yields a solution with a higher net income
(Table 5, row 2), because the slope of the corre-
sponding partial utility function becomes steeper.
This has no effect on II, but in I, the indifference
curves become steeper forcing the tangency point
towards a higher compounded net income. For
FH2 and FH3, the corresponding increase in FNI,
results in a corner solution.

Changes in relative importances result in dif-
ferent solutions, the additive model being more
sensitive to alterations (Table 5, rows 3 and 4).
This is a direct consequence of the linearity of the
indifference curves: a small change in the slope
of a linear indifference curve can cause a consid-
erable shift of the tangency point.

Corner solutions are common when function I
is applied (Table 5, row 5, Fig. 20). When the
indifference curves contain corners, the probabil-
ity of a corner solution is high if the production
possibility boundary is not strictly concave. The
multiplicative model with equal premises yields
a solution in which the convex part of the indif-
ference curve is tangent to the boundary.

In the case of ROC and ITI of an even income
trajectory, the production possibility boundaries
are steeper than those of FNI and FC, although
not necessarily strictly concave (Fig. 21). The
results show that if the return requirement is low,
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Figure 20. Example of a corner solution of I and
corresponding solution of II.

the boundaries are flat. It follows that an increase
in ROC can be required without causing a sub-
stantial degradation in the evenness of income
flow. The curves have a sharp edge at the point at
which ROC exceeds 3.20 % (FH1) and 4.10 %
(FH3). In that area, already a marginal increase in
ROC has a considerable effect on evenness. For

Mykknen, R.

Aspiration-Based Utility Functions in a Planning Model...

Table 6. Values of parameters, aspiration levels of ROC and ITI, and corresponding solutions yielded by

functions I and II.

arocC armi ROCA ITIa ROC M ROC ImI
0.50 0.50 ROC,,.. ITI, .. FH1 2.96 84.3 2.96 84.3
FH2 4.46 87.6 438 93.4
FH3 3.68 97.2 3.72 96.7
0.70 0.30 ROC,,. ITL, . FHI 2.99 80.8 2.97 83.8
FH2 4.54 87.2 441 89.2
FH3 3.79 92.2 3.79 92.2
0.90 0.10 ROC,,... ITl,.. FH1 3.18 58.2 3.12 66.0
FH2 4.62 81.4 4.61 83.6
FH3 4.04 68.9 3.98 77.8
0.97 0.03 ROC,,.. ITI, .. FH1 3.24 24.0 3.19 51.8
FH2 4.74 39.2 4.70 56.8
FH3 4.18 12.1 4.08 51.7
Income trajectory index  (a)  FHI Income trajectory index (b)  FH2 Income trajectory index  (¢) FH3

100 100 7

90 +

60

50 +

257 277 297 3.17 447 457
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Figure 21. Solutions to problems including ROC and ITI, when ROC, = ROC,, and ITI, = ITI,,.,.

all three forest holdings, the steeper curvature
implies that the differences between the two func-
tion forms remain smaller than what was observed
in the examination of FNI and FC.

The first solution comprises equal relative im-
portances as well as aspiration levels that are equal
to single-objective maxima (Table 6, row 1). In
the case of FH1, functions I and II end up in the
same solution. This point is presented by the sharp
corner in the production possibility boundary (Fig.
21a). For FH2 and FH3 the solutions yielded by |

and I are different. When the relative importanc-
es are changed to yield higher values of ROC, the
effects are smaller for function II (Table 6, rows
2 and 3). Especially after the sharp edge, the dif-
ferences between the functions are considerable
(Table 6, row 4).

The production possibility boundaries of peri-
odical net income (function IV) were computed
for a hypothetical case of two management peri-
ods (Fig. 22). These curves are approximately lin-
ear for all cases.
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Figure 22. Production possibility boundaries of two management periods and solutions of the multiplicative
model to problems involving single-objective maxima as aspiration levels (a—), as well as production
possibility boundaries with respect to two price levels (d).

4.3 Optimizing Income Trajectories
4.3.1 Methods to Control Income Flow

Functions I and II include an objective variable
ITI to control the income flow directly. This
variable allows trajectory optimization, i.e., the
use of procedures to search for an implementa-
ble income distribution that matches the desired
one. For functions III and IV, strict income tra-
jectory optimization is not possible, because the
shape of the income flow is not regarded as
crucial. Only shortages are disadvantageous. This
raises a theoretic suspicion concerning the effi-
ciency of the latter method, above all because of
the difficulty to manage the production possibil-
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ity surface composed of incomes per several man-
agement periods.

If models I or I1 are applied, alternative income
trajectories can be ranked by summing up either
squared or unsigned deviations from the objec-
tive trajectory. Total deviation is used to measure
the overall discrepancy between the desired and a
feasible trajectory.

The numerical analysis of income trajectory
optimization contains two parts. A comparison is
first made of the trajectory optimization methods
of functions I and I1, followed by an evaluation of
the efficiency of the method of periodical net in-
come (functions Il and IV). The results are com-
pared to find out the differences between the
methods.
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Table 7. Results of trajectory optimizations with sum-
ming of squared deviations (SSD) and summing
of unsigned deviations (SUD). The figures are
averages of optima from five test computations.
| D | x denotes the maximal single deviation from
the objective trajectory.

Optimization criterion
SSD

SUD
| D | max FH1 0.201 0.381
FH2 0.300 0.508
FH3 0.104 0.169
SSD FH1 0.336 0.352
FH2 0.470 1.226
FH3 0.047 0.123
SUD FH1 1.129 0.860
FH2 1.376 1.765
FH3 0.455 0.674
Iterations FH1 65 94
FH2 66 78
FH3 108 126

4.3.2 Comparison of Methods Using the
Income Trajectory Index

To compare the methods containing the objec-
tive ITI, five deliberate income trajectories were
formed. The purpose was to generate trajectories
with different shapes. An even income trajectory
was also included.

The results were computed consecutively with
two algorithms. In the first computation, the sum
of the squared deviations (referred to as SSD) was
used as an optimization criterion. In the second
computation, unsigned deviations (referred to as
SUD) were used instead of squared ones. As a
general conclusion, it appears that optimization
based on SSD is more efficient. This statement
holds regardless of whether efficiency is meas-
ured by maximal single deviations, number of it-
erations, SSD, or SUD (Table 7). As assumed, the
algorithm based on the minimization of SSD usu-
ally resulted in trajectories with smaller maximal
single deviations. This seems to imply that squar-
ing efficiently eliminates alternative trajectories
with sharp peaks.

The differences between the methods incorpo-
rating SSD and SUD are evident, although the

importance of the discrepancies may be negligi-
ble. Nevertheless, if smooth trajectories are pre-
ferred, the procedure applying SSD seems to be a
relevant choice. This is because the optimal solu-
tion is always a compromise: a trajectory with a
small SUD may contain a single high peak. In
practical formulations, the net income level is
usually restricted by other competing objectives,
so that unconstrained trajectory optimization is
rarely possible.

4.3.3 Methods Using Periodical Net Income

The performance of functions III and IV in in-
come trajectory optimization were evaluated with
the same five objective trajectories as in the pre-
vious section. This time, however, the objective
trajectories were expressed in monetary units
describing the aspiration levels of periodical net
incomes (TNI). Results were computed for three
total net income levels.

Let us first compare the results (Table 8) with
those produced by optimization based on ITI (Ta-
ble 7). Regardless of the income level, the optimi-
zation of TNI yields more fluctuating income dis-
tributions than strict trajectory optimization. The
values of maximal deviations, SSD and SUD ex-
ceed those of optimization based on SSD and SUD.
The number of function evaluations (iterations)
is smaller in TNI, which is in accordance with the
low values of the test variables.

If the level of final net income is low, trajecto-
ries tend to deviate considerably from the desired
ones. As FNI is raised, fluctuations decrease. Al-
though the final net income of 350 000 FIM was
intended to represent an approximation of the
production possibility boundary of FH1 and FH3,
the results show a substantial discrepancy at that
point. Deviations — whether they are measured by
maximal single deviation, SSD or SUD —seem to
increase if the aspiration levels define an unat-
tainable point, i.e., if the net income level is high.
Measured by SSD of ITI, the results (Fig. 23)
show the multiplicative model to be insensitive to
increases in unattainable aspiration levels. The
number of iterations is strongly dependent on the
specified net income level, although it varies also
according to the desired shape of the income flow.

This particular experimentation justifies only
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Table 8. Results of optimization of periodical net income with functions Il and IV. | D | mex denotes the maximal

single deviation from the objective trajectory.

FNI=100 000 FNI=350 000 FNI=600 000
111 v 111 v 11 v
| D | max FH1 0.832 0.839 0.541 0.515 0.739 0519
FH2 0.885 0.885 0.627 0.589 0.531 0.479
FH3 0.832 0.874 0.574 0.601 0.333 0.303
SSD FH1 3.282 3.341 0.897 0.784 0.951 0.724
FH2 4.350 4.350 1.932 1.705 1.109 0.856
FH3 4.354 4.272 1.629 1.544 0.395 0.210
SUD FH1 4.781 4.848 2.355 2.140 2.083 1.973
FH2 5.663 5.663 3.615 3.478 2.455 2.305
FH3 5.574 5.555 3.355 3.203 1.522 1.035
Iterations FH1 15 14 41 39 58 55
FH2 8 8 30 28 49 47
FH3 27 28 56 48 82 87
. ,jum of squared deviations (a) FH1 . jum of squared deviations (b) FH2 Sum of squared deyiations (¢) FH3
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Figure 23. Sum of squared deviations from an even income trajectory presented as a function of aspired yearly

net income levels.

cautious interpretations about the differences be-
tween the additive and multiplicative models. The
figures seem to imply that the multiplicative model
results in smaller fluctuations, especially if the
aspiration levels are high. In addition, the multi-
plicative model is likely to converge more effi-
ciently than the additive one. Definite conclusions
would, however, require more comprehensive test
data.
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4.4 Endogenous vs. Exogenous Determina-
tion of Income Trajectories

4.4.1 Profitability Maximization

The maximization of profitability means finding
a management plan in which treatments are im-
plemented so that the total return on capital reach-
es its highest value. This approach takes into
account both the returns from felling incomes
via opportunity cost as well as the rate of value
growth of forest. Profitability maximization
equals profit maximization, if final capital is
regarded as hypothetical income.
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Figure 24. Income trajectories as a result of optimization based on maximization of ROC.

Table 9. Values of objective variables in maximiza-
tion of ROC when different interest rates are ap-
plied.

i1=35% 1=-2.0% i=7.0%

CNI, FIM  FH1 363424 103602 623103
FH2 309534 146276 668598
FH3 386914 67055 790063

FC,FIM  FHI1 543517 759042 400600
FH2 1310860 1439164 1079083
FH3 811129 1081344 578091

ROC, %  FHI 3.24 273 4.50
FH2 4.75 452 5.54
FH3 4.18 3.74 5.57

To formulate a problem of profitability maxi-
mization, the partial utility function of ROC was
defined such that the maximum value of ROC
produces maximum utility. The lowest accepta-
ble value of ROC was set at zero.

The results — which are equal for functions I-
IV — show that most of the cuttings occur in the
first year (Fig. 24, i1=3.5%). The net income level
of this management plan means that approximately
half of the potential cutting possibilities should
be used. This regime results in a declined value of
the forest capital of FH1 (Table 9).

The maximization of ROC leads to an uneven
distribution of income. The temporal peak in the
cuttings depends on the applied interest rate of

the alternative investments. Lower interest rates
generally result in delayed cuttings, while high
interest rates lead to immediate cuttings. In this
respect, two additional tests were carried out to
find out whether the results of the model match
the capital-theoretic basis.

In the first test, the interest rate was set at —=2.0
%. This usually means conditions of high infla-
tion provided that only financial investments are
considered. As expected, the timing of the cut-
tings changes so that the emphasis is on the last
years of the planning period (Fig. 24), and at the
same time, both the total return on capital and the
net income decline (Table 9). For some of the
over-dense stand compartments of FH1 and FH3
(peaks in the first years), it is profitable to thin the
growing stock despite the disadvantageous eco-
nomic circumstances. This is because the accel-
erated growth caused by thinning compensates
for the financial loss produced by the negative
interest rate.

In the second test, the interest rate was set at 7.0
%. This clearly exceeds the return on capital of
timber growing (value growth percentage) for all
three forest holdings. It follows that the interest
rate of 7.0 % should yield solutions favoring early
cuttings. As expected, the solutions are charac-
terized by a high level of FNI, a considerable in-
crease in return on capital (Table 9), and immedi-
ate cuttings (Fig. 24).

49



Acta Forestalia Fennica 245

1994

Table 10. Values of objective variables in sustained yield formulation with different objectives.

FCa = ICITIA = ITImax
I 11 I

v

CNIa = 0.451C FCA = IC ITIA = [Tlmax
I 11 111 v

CNL FIM  FHI1

FC, FIM FH1

ITI FH1 95.9 87.3 82.1
FH2 90.3 86.1 75.1
FH3 71.2 80.8 88.1

220760 284968 241955 260415
FH2 533714 482214 563089 557265
FH3 367604 395879 368289 405043
653528 590815 633003 605752
FH2 1045178 1085619 1019259 1017848
FH3 787282 762940 783824 744463

268579 324980 293948 308616
533714 544341 557580 559796
367877 395879 367210 405043
599727 549992 570229 560441
1045178 1025833 1021242 1021652
786870 762940 785193 744463

84.9 86.1 82.9 91.8 90.1
92.6 90.3 90.9 75.1 75.1
85.3 7.2 80.8 86.8 85.3

4.4.2 A Sustained Yield Formulation

As an example of the exogenous determination
of income flow, the formulation of a sustained
yield model is presented below. The term “sus-
tained yield” here refers to a situation in which
the primary goals are the conservation of forest
capital and evenness of temporal income distri-
bution. To stress the aspects of the exogenous
determination of income trajectories, return on
capital is not dealt with as an objective in these
calculations.

For function 1, the sustained yield problem in-
volves the formulation

Max U = apcupc(FC)+ayrum (ITI)

RNI, = RNI, = ... =RNI (145)
For function III, the formulation is
Max  agnjugni (TNI) + apcurpc (FC)

urni (TNI) = §HTNI,‘MTNI.'(FN1,) (146)

i=1

FNI{ = FNI3 = ... =FNI}y =k

where k represents the chosen yearly net income
level. The multiplicative forms (II and IV) in-
clude the same variables.

Because a maximum evenness of income dis-
tribution is required, the corresponding partial
utility function is linear. The partial utility func-
tion of final capital, in turn, is piecewisely linear:
the aspiration level is set equal to initial capital.
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To solve (145), the relative importances ayc and
a;p are set at 0.5. For (146) it is assumed that

=ap=0.1

10 (147)
= amv+arc=1A ) ami =1
-

arny = aFc =0.5 A ang=apn= ...

The relevant value for the constant k was deter-
mined as follows.

(1) The production possibility boundary was approxi-
mated with the weighting technique.
(2) The parameter k was computed by setting

FC=IC (148)

and searching for the corresponding CNI from the
boundary. After that
CNI

k== 149
= (149)

to obtain the values for the vector FNIL.

All the functions yield an even income distribu-
tion without considerable intertemporal devia-
tions. This applies also to functions IIT and IV,
which do not strictly optimize the trajectories.
The final capital varies falling below the initial
capital in all the solutions of FH1 and FH3 (Ta-
ble 10).

Additional requirements can be incorporated
alongside ITI and FC. A typical one is the aspira-
tion to guarantee a certain net income level. If the
aspiration level of compounded net income is set
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Figure 25. Relationships between final net income and return on capital when different interest rates are applied.

Table 11. Values of ROC in case of maximization of
either ROC or ITI..

U = U(ROC) U = U(ITIe)
ROCA = ROCpax ITIA = ITImax
ROC 3 ROC Difference
FH1 3.24 2.57 0.67
FH2 4.75 4.30 0.45
FH3 4.18 . 3.60 0.58

equal to 0.45IC, for which FNI; = 0.045IC for all
i=1,...,10, losses have to be accepted for FH1 and
FH3 compared to the initial capital. For FH2, this
income level along with other requirements falls
short of the production possibilities: the values of
CNI in the solutions exceed the required level
(Table 10).

4.4.3 Profitability and Evenness

Tradeoffs between profitability (production op-
timum) and evenness (exogenously determined
income pattern) can be compared by computing
plans for both objectives separately. The differ-
ence in profitability between these two approach-
es can be detected by subtracting the correspond-
ing values of ROC from each other. The results
(Table 11) imply that there is a strong conflict
between these two objectives. It follows that the
inclusion of both variables with maximum aspi-
ration levels inevitably results in a compromise
solution.

If the opportunity cost exceeds the average val-
ue growth percent of forest, management plans
with abundant cuttings become more profitable
(Fig. 25). Therefore, if evenness is required re-
gardless of the net income level, then losses in
profitability have to be accepted.
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5 Discussion

5.1 Main Results

From a methodological standpoint, the present
study concentrates on two primary topics. The
first is the derivation of a theory of aspiration-
based utility models. This approach is character-
ized by aspiration levels defined as those values
which the decision-maker accepts as reasonable
or satisfactory. Because the application of aspi-
ration levels differs from the conventional utility
theory, the main emphasis in this analysis was
on the development of a mathematical frame-
work describing the choice situation of the deci-
sion-maker. The rules for characterizing the
choice situation were derived mainly by differ-
ential calculus.

The second major topic involves the formula-
tion of a planning model for timber flow manage-
ment: a model based on the derived theory of as-
piration-based utility functions. The notions of
natural resource economics were used in model
formulation. Special attention was paid to the
examination of income trajectories resulting ei-
ther from exogenous determination or capital-the-
oretic optima.

The formulation of the utility model was based
onastudy of four different compound utility func-
tions. The function forms were chosen to repre-
sent the most frequently applied models: the ad-
ditive (I, III) and the multiplicative (II, IV). An
additional combination was formed by altering
the structure of the utility model (I-1I vs. ITII-1V).
Aspiration levels were interpreted as the determi-
nants of the culmination points of the partial util-
ity functions for each objective.

A direct search algorithm was incorporated into
the model to facilitate utility maximization in
numerical computations. Numerical analysis was
used to test the essential elements of the theoretic
framework.

The following general conclusions can be drawn
from this study:
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(1) A multiobjective optimization problem which is
based on the use of aspiration levels guarantees
feasible solutions. The uniqueness of the solution
depends on the aspiration levels.

(2) The valid part of the indifference curves is linear
(additive model) or strictly convex (multiplicative
model). Aspiration levels affect the domain of the
negatively sloped segment (multiplicative model)
and the slope of the segment (additive model).

(3) The multiplicative model gives rise to a higher
marginal rate of substitution between objective
variables. It follows that the use of the multiplica-
tive model implies stronger dependence on forest
management than the additive model.

(4) Due to the shape of the indifference curves, the
multiplicative form is more stable than the addi-
tive one. Especially in the case of approximately
linear noninferior sets, the additive model is sen-
sitive to changes in relative importances of objec-
tives. Corner solutions contribute to the stability
of the additive model.

(5) If the aspiration point has a location inside the
noninferior set, the properties of the indifference
curves have no effects on the solution.

(6) If the profile of income flow is considered crucial,
more efficient results can be obtained by includ-
ing an income trajectory variable than by using
the aspiration levels of income per period. Squar-
ing of the relative deviations from the objective
trajectory guarantees smooth trajectories without
large single deviations.

(7) The presented flow model functions consistently
in a theoretic sense. The approximation of pro-
duction possibility boundaries is possible by ap-
plying the weighting or the aspiration level tech-
nique. Numerically produced results are verifia-
ble by means of graphic and analytic solutions.
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5.2 Evaluation

5.2.1 Resource Model for Timber Flow
Economics

The approach of resource economics is a natural
starting-point in modeling the use of forest re-
sources. The general concepts of consumption
and conservation are always the same, although
the interpretation and modeling methods may
vary (e.g. Kasanen 1982, Valsta 1993).

If the terms of consumption and conservation
are described in monetary units, the problem of
time preference is inevitable. The problem arises
because the decision-maker is expected to be able
to express the time preference in the form of an
interest rate: the opportunity cost for growing
forest. The determination of the interest rate is
especially important because the opportunity cost
affects both the alternative set — provided that
monetary objectives are examined and intertem-
poral money flows include time compounding —
and the composition of the optimal solution.

Monetary variables were chosen for this model
on the grounds of the presumed financial purpos-
esof planning and decision-making. This approach
is based on the assumption that the ultimate goal
of the decision-maker is the need to control mon-
ey flows. Monetary terms are assumed to be pre-
ferred to objectives expressed, e.g., in cubic me-
ters. In this framework, timber flows act as deci-
sion variables.

The net income from treatments is described as
terminal value, i.e., the computation includes com-
pounding. The stumpage value of the remaining
growing stock describes the terminal value of
forest and is referred to as final capital. By virtue
of this interpretation, the sum of net income and
final capital can be seen as the value of forest
capital, as either invested or grown on. Profitabil-
ity examinations can be based on the computation
of the total returns yielded by this capital.

The approach of compounding can be regarded
as somewhat controversial if the felling income is
used for consumption: consumption preferences
are more naturally described by means of discount-
ing. However, both valuation methods convey the
time preference of the decision-maker. It follows
that a deviation from a capital-theoretic optimum
results in losses irrespective of which valuation

method is applied.

The stumpage value of the growing stock is
assumed to describe the value of the forest re-
source stock. Strictly speaking, this approach fails
to describe the real value of the forest. This is
because stumpage value ignores the future growth
potential of the stock. Moreover, forest land — the
value of which is excluded — is also part of the
forest resources. These deficiencies were not,
however, regarded as crucial, because the model
yields the stumpage values for the initial and the
final state, which can always be compared. None-
theless, stumpage value suffers from the problems
of statics: it includes little information on future
action possibilities.

The inclusion of the profitability term (ROC)
emphasizes the importance of the final state. This
favors management regimes that produce a high
terminal value, whether obtained through profit-
able further investments or through correctly im-
plemented cuttings. An example of the latter case
are thinnings which accelerate the growth of the
most valuable part of the growing stock.

In functions I and II, the profitability term ROC
can be used to stress the importance of the termi-
nal state. If economic timing is based on com-
pounded net income — which, in terms of results,
is the same as the method of present net value —
the final state is ignored. In functions III and IV,
ROC is the only possible way to incorporate the
economic timing of treatments. This is because
these functions are designed to reach an aspira-
tion level described as income per period: the to-
tal net income with its compound elements is only
the sum of periodical net incomes. The effects of
the different formulations can be measured, e.g..
by the sawtimber-pulpwood percentage (Fig. 26),
which can be computed from the results produced
by the model.

Simulation of forest development was used to
generate alternatives. From the viewpoint of the
utility model, the properties and structure of the
simulator need not be known, because the infor-
mation on forest development is conveyed by
means of the alternative set. This aspect also makes
it possible to apply any other relevant simulation
model for generating alternatives to facilitate nu-
merical analysis.

Functions [ and IT are based on a static exami-
nation, i.e., dynamic events are described in a static
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Figure 26. Structure of final growing stock as a result of the application of different function forms.

manner by ignoring the dynamic features of for-
est development and planning. The incorporation
of dynamics would require, e.g., the use of the
optimum control theory to solve forest manage-
ment problems (see Lyon and Sedjo 1983). Dy-
namics is, however, recognized in functions III
and IV, which allow for direct intertemporal de-
cision-making concerning income in each period.
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5.2.2 Utility Model
5.2.2.1 Compound Utility Functions

The introduction of four different compound util-
ity function forms was based on the underlying
idea of mutual comparison. The additive and
multiplicative forms were chosen because of their
clear theoretic background and frequent use in
various applications. Because the control of in-
come trajectories was regarded as an essential
ingredient, this aspect was incorporated in two
ways. The first method uses a distinct trajectory
variable, while the second one involves the si-
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multaneous determination of income trajectories
and total net income. This leads to four function
forms.

The implicit trajectory determination of func-
tions Il and IV of RM; has two clear advantages
compared to functions I and II. First, the deci-
sion-maker has one variable less to evaluate and
second, the elements of periodical net income can
be weighted. The weighting possibility enables,
¢.g., the incorporation of time preference to de-
scribe the importances of elements of periodical
net income. This method was applied by Kilkki et
al. (1986) with the exception that the utility func-
tions contained nonmonetary objectives. If I or I1
are applied, only the importance of the trajectory
as a whole can be specified. In this study, the
weighting of periodical net income was not ex-
perimented. This is a topic for further research.

A drawback of III and IV is that they fail to
produce a net income distribution having the shape
of a desired trajectory, unless the trajectory is a
close approximation of the production possibility
boundary. This is, however, not a serious prob-
lem because functions I1l and IV are based on the
idea that only shortages are disadvantageous. The
same utility is alwaysobtained after the aspira-
tion level has been achieved.

5.2.2.2 Partial Utility Functions

The cornerstone of this study is the incorpora-
tion of aspiration levels into the traditional utili-
ty theoretic framework. Aspiration levels (Wi-
erzbicki 1979, 1980a) have a specific interpreta-
tion in the realm of multiobjective optimization,
especially in goal programming. Although utili-
ty functions are frequently mentioned in the con-
text of aspiration levels (see Vetschera 1994),
those interpretations are primarily concerned with
scalarizing functions seen as a generalization of
compound utility functions (Wierzbicki 1979).
They also apply the concept of a threshold utility
function. The present study, on the other hand,
develops a synthesis of aspiration levels and the
multiattribute utility theory.

A basic assumption regarding aspiration levels
is that they determine the point which produces
the highest utility on each objective. This was
assumed to correspond with the definition of a

reasonable or satisfactory value. On the other hand,
after that particular point there is no need to opti-
mize (Lewandowski and Wierzbicki 1989). The
lower part of a partial utility function is fixed by
the lowest acceptable value of each objective.

Partial utility functions originating from these
definitions can be seen as piccewisely linear ap-
proximations of strictly quasiconcave utility func-
tions. The horizontal plane segments are charac-
terized by a zero value of marginal utility. In this
area, an increase in the quantity of an objective
variable does not increase utility. Although mar-
ginal utility equal to zero is a reality in some cases
(Lipsey and Steiner 1972), the assumption may
be debatable when monetary units are used.

A drawback arising from zero marginal utility
concerns the shape of the indifference curves:
unique solutions are not easily guaranteed and,
moreover, corners in the curves can cause sur-
prises. The nonsmoothness of functions as such
does not create difficulties. Although the differ-
entiability condition is not met, piecewise exam-
ination rules out this theoretic problem.

The applied compound utility model has a cru-
cial effect on the shape of indifference curves. In
the case of the additive form, the valid part of the
indifference curves is linear. In addition, the slope
of the partial utility functions affects both the
domain of this segment and the slope of the indif-
ference curves. The slope of the indifference
curves is further affected by relative importances.

In the case of the multiplicative form, the slope
of the indifference curves is independent of the
aspiration levels. This is due to the linearity of the
partial utility functions. In the partial differentia-
tion of the logarithmic form, the linear term drops
out, giving rise to a ratio of partial derivatives
dependent only on the absolute values of the ob-
jectives. This independence feature contributes
to the stability of the multiplicative model. If the
positively sloped segment of the partial utility
functions is nonlinear, the slopes of the corre-
sponding indifference curves are affected by the
slopes of the partial utility curves.

As is evident by virtue of the strict convexity of
the indifference curves, the multiplicative model
generates a higher marginal rate of substitution
between objectives. This means that if deviations
from the optimum occur, greater utility losses are
encountered if preferences are expressed by means
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of the multiplicative model. From the standpoint
of objectives, the multiplicative model requires a
higher compensation to attain an equivalent util-
ity level (Fig. 27).

The properties of indifference curves presented
here are also applicable to situations in which the
partial utility functions have several linear seg-
ments (Pukkala and Kangas 1993). A few addi-
tional formulas and examinations are, however,
required to create a more general mathematical
basis. This may be necessary also if an aspiration
level is given an interpretation other than that of a
partial utility maximum.

An examination of the features of indifference
curves is of substantial importance especially
when production possibility boundaries are far
from the well-behaving curves of economic theo-
ry. Considering this, the multiplicative form has
the salient feature of producing indifference curves
with strictly convex negatively sloped segments.
This shape actually implies a diminishing mar-
ginal rate of substitution, which is often a basic
assumption in utility models.

The theory of indifference curves makes it pos-
sible to solve limited forest management prob-
lems analytically in cases when the noninferior
set can be approximated. In addition, graphic and
analytical tools are useful in sensitivity analysis
and in the examination of differences between
function forms.

5.2.2.3 The Search for the Solution

In this study, the utility maxima of functions I—-
IV were sought by applying an algorithm which
enables the use of multiple objectives and non-
linear objective functions. The structure of the
algorithm also makes it possible to take trajecto-
ry variables into account. This approach has the
advantage of allowing all the studied models to
be solved with the same procedure.

Function IIT can be solved by means of goal
programming. This requires the use of one-sided
goal variables (e.g. Buongiorno and Gilles 1987).
The multiplicative forms II and IV are more dif-
ficult because they generate nonlinear objective
functions. Besides, function II has a trajectory
variable ITI which is difficult to deal with in ordi-
nary mathematical programming. Multiplicative
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Figure 27. Effects of deviations from the optimum.

functions can be changed into additive forms by
logarithmic transformations; the problem of non-
linearity remains.

The interpretation of compartments as nondi-
visible management units was another crucial fac-
tor when considering a relevant optimization
method. The use of a direct search method in prob-
lems involving discrete choices and interactivity
is strongly supported by the observations of Vet-
schera (1994). Usually this kind of procedure
combines a relatively small computational effort
with good solution quality. Solving similar prob-
lems, e.g., by means of mixed integer program-
ming results in unacceptably long computing
times.

Finding an appropriate optimization method was
not a major issue in this study. Instead, the unique-
ness of the solution was considered to be the de-
cisive aspect. Uniqueness proved to be a problem
regardless of the optimization method used.

In a theoretic sense, nonunique solutions are
not harmful. This is because the aspiration points
within the production possibility boundary reflect
a choice which the decision-maker finds accepta-
ble. If follows that the decision-maker is indiffer-
ent to points beyond the satisfactory levels of the
objectives.

Another problem is the locality and random-
ness of solutions yielded by the direct search al-
gorithm. In repeated computations, the discreti-
zation of the decision space and the nonconcavity

Mykkdnen, R.

Aspiration-Based Utility Functions in a Planning Mode...

of the noninferior sets result in different local
solutions. In the computations made in this study,
the initial solution was fixed such that a predeter-
mined schedule was chosen for a basic feasible
solution. This always yields the same solution
provided that the premises remain unchanged. A
change in the compartmentwise treatment sched-
ule to be chosen for the initial solution thus re-
sults in a different final solution.

The approach of fixed initial solutions contrib-
utes only to stabilization; the problem of local
solutions remains. To attain true global optima,
the computations of the numerical analysis should
have been repeated hundreds of times. This as-
pect has to be kept in mind when evaluating the
results of the analysis.

Reference point optimization involves finding
the point from the noninferior set nearest to the
reference point (e.g. Kallio et al. 1980). On the
other hand, in utility-theoretic optimizations, the
efficient solution has to be consistent with the
preferences of the decision-maker. This differ-
ence is the reason for not applying the approach
of reference point optimization in the present
study. For further illustration, let us examine two
cases related to different locations of the aspira-
tion point.

In the first case, the aspiration point is assumed
to lie outside the production possibility bounda-
ry. The optimum point is determined by indiffer-
ence curves and, ultimately, by aspiration levels.
Itis, thus, a solution based on the utility theory. In
the second case, the aspiration point is assumed to
lie within the production possibility boundary. In
the approach applied in this study, this nonunique
solution is predetermined and dependent on the
initial solution, though not known. A solution
consistent with partial utility functions could be
found by searching for an efficient solution in the
direction indicated by the slope of the indiffer-
ence curves.

In the latter case, the applied optimization meth-
od has the same drawback as goal programming:
it fails to guarantee noninferior solutions. Refer-
ence point optimization — as a generalization of
goal programming — has the salient feature of being
able to yield efficient solutions also for aspira-
tions points located within the noninferior set.

The solution found by the algorithm is a com-
promise between conflicting objectives. The so-

lution is partly dependent on the method by which
the partial utilities are combined, i.e., compound
utility functions. The additive model is sensitive
even to slight changes in relative importances,
especially if the aspiration levels are equal to the
single-objective maxima and the production pos-
sibility boundary is not strictly concave. The
multiplicative model produces well-predictable
results even when the production possibility
boundary is nearly linear.

Three different methods were introduced to
optimize the income trajectories in functions I and
II. Two of these are capable of dealing with non-
linear trajectories, whereas the third one is aimed
at finding candidates for a linear and constant
objective trajectory. The first two methods meas-
ure discrepancies between an objective income
trajectory and feasible trajectories by examining
relative deviations; the third one makes use of
absolute deviations. Other measurement tech-
niques were not considered because there is actu-
ally no consensus about what measure to use (Steu-
er 1986).

Trajectory optimization based on the squaring
of relative deviations was found to result in smooth
trajectories with a rapid convergation. If summing
of unsigned deviations is used, the characteristics
of the trajectories may show good correspond-
ence, but single peaks are customary. The method
of absolute deviations was not tested because of
its limited capabilities. Trajectory optimization
with a distinct variable (I-II) is usually more effi-

cient than one using periodical net income (III-
V).

5.2.3 Aspects of Income Flow Determination

The last part of the numerical analysis concen-
trated on the endogenous and exogenous deter-
mination of income flows. Tradeoffs between
these two approaches were of primary concern.
The succinct material of the analysis justifies
only limited conclusions. Therefore, the follow-
ing remarks are valid only in this context and
should be seen as supporting the findings in
respect of the capital-theoretic basis.
Maximization of profitability along with addi-
tional requirements leads to uneven income dis-
tributions. The peaks of these distributions de-
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pend on prices and interest rate. As a rule, in-
creased prices and interest rates suggest intensi-
fied cuttings. Thinnings may be profitable in over-
dense forest stands even if the opportunity cost is
negative. If evenness of income distribution is
required, losses in profitability are inevitable (see
e.g. Kilkki 1989). The losses depend on the re-
quired net income level and the interest rate.

Functions I and II enable profitability maximi-
zation with a total net income requirement. If the
net income requirement is included in III or IV,
finding the maximum profitability presupposes a
priori information about the corresponding in-
come trajectory. If evenness is required, the net
income is implicitly specified as a sum of the in-
comes per period.

The calculations in this study are based on the
assumptions of determinism: all events are as-
sumed to occur in circumstances of perfect cer-
tainty. In reality, uncertainty prevails, implying
that conclusions drawn from single computations
may be misleading. In forest management plan-
ning, uncertainty concerns both natural processes
and the economic environment. A solution to this
problem has been presented by Valsta (1992b):
the formation of scenarios to describe the stochas-
tic elements in a decision situation. The same
approach could also be applied to the model pre-
sented in this study. Subjective scenarios regard-
ing, e.g., timber prices could be formed to de-
scribe the expectations of the decision-maker.

5.3 Conclusions and Future Work
The first aim of this study was to develop a

theoretic basis concerning the application of as-
piration levels in multiattribute utility models.
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The approach is a general one, allowing the for-
mulation of models with different objective vari-
ables. Provided that applications are planned to
meet the assumptions of multiattribute models,
the aspiration-based method is applicable to any
decision problems involving utility considera-
tions. The general theory offers analytic tools to
deal with production possibility boundaries of
different shapes.

The method presented here is theoretically well-
based although all the conditions founded on mi-
croeconomic theory are not met. This offers a good
starting-point for further research as well as for
development towards applications of practical
management models. In this respect, studies meas-
uring the relevancy and simplicity of the method
in practical planning situations would be espe-
cially important.

The model resulting from the second aim of
this study can be regarded as a theoretic frame-
work of a planning model for timber flow man-
agement. In the realm of forest management plan-
ning, the standpoint of timber flow economics is
extremely limited. The model as such is, there-
fore, not intended for use in practical planning
situations. In addition, the model contains only
selected variables, meaning that the application is
not fully comprehensive even for timber flow
economics. This is, however, in accordance with
the underlying idea of modeling: an abstraction
of the real world.

Further research and practical tests should cov-
er subjects related to the inquiry of preferences
and the relevancy of the results as a basis for tim-
ber management. Sufficient research in this area
is the only method for providing information about
the applicability of the model to the ultimate goal:
producing feasible timber management plans.
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Appendix. Generating alternatives with simulation

The following forest simulation model was developed
to generate a finite number of possible management
schedules needed in numerical analysis. The model
was composed to cover the most common forest treat-
ment methods. The simulation procedure consists of
two primary elements: growth and yield functions and
generation of treatments.

If the description of the forest resource stock is
based on a standwise inventory, the diameter distribu-
tions can be predicted with the Weibull function (see,
e.g. Kilkki et al. 1989). A separate distribution is
estimated for each tree species and storey. The proba-
bility density function for the Weibull random varia-
ble x is (Rennols et al. 1985)

(.r—a\['l {_/x—a\(\ LLLL
"o ) TP ) ) AT As0)

fw(x)=

S o |n

,X<a

and the cumulative distribution function of the Weibull
is

FW(X)=1-GXP(—(X—G) ] , AsSXs® (151)
=0 , X<a

Parameters a, b and ¢ determine the shape and loca-
tion of the Weibull distribution. Estimates of these
parameters are computed from stand characteristics
by regression functions. For pine, parameter a is de-
rived from (Mykkénen 1986)

In(a) = -1.306454 +1.154433In(D) (152)

and parameter ¢ from

In(c) = 0.647888 — 0.005558G + 0.025530D (153)

Parameter b can be solved from

frm o B (154)

1
(=In(0.5))¢

For spruce, parameters a and c are solved from (Mal-
tamo 1988)
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a=-0.784428 +0.97676811In(D) (155)

c=0.642605+0.021394D - 0.007945G + 0.000980A
(156)

The models for pine are used for the other tree species
also.

The diameter range of the cumulative distribution
function is divided into a fixed number of diameter
classes. Six classes are used in this simulation model.
The stem in the center of each class is chosen to
represent the whole class. The number of stems is
calculated from (Kilkki 1984)

G
=12732.4— 157
" D? (1>7)

to give an estimate of number of stems in each diame-
ter class

n = (Fu(d,U)- Fw(d‘[‘ )) nr , i=1,..., 6 (158)

For volume calculations, the heights of the stems are
estimated with the models of Veltheim (1987).

Tree growth is simulated with the functions that
predict the alterations in the basal area and height of
the stem during periods of five years. Growth for
shorter periods is linearly interpolated. The basal area
growth models are (Ojansuu et al. 1991)

d$" = Bo(1+ BIDD)R (S, 17 +Bid) (159)

d¥ = yiy2(1+ BiDD)YP2 (dS, + Pad) (160)

Height growth is determined as a the difference be-
tween the predicted heights of a tree at two points in
time. Height is assumed to develop according to (ibid.)

h = Ap (1= e-on)li1-02) (161)

in which the asymptote A, is computed from

K4

Ay, = kil +DD)“(LJ (162)
Emax |

A deterministic estimate of tree mortality is predicted
by a logistic function (Haapala 1983)
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1
d =
I+exp(Co +&id + 566G +53G)

(163)

The volumes of different timber assortments are cal-
culated with the taper curve models of Laasasenaho
(1982), which give estimates of sawtimber, pulpwood
and wastewood (Laasasenaho and Snellman 1983).
The growth estimates for each timber assortment can
be calculated as the difference between the total vol-
umes at two points in time.

Treatment simulation is based on rules, called con-
trol variables, which originate partly from the Finnish
law (Yksityismetsilaki 1967, Yksityismetsiasetus
1991) and from silvicultural recommendations (Met-
sanhoitosuositukset 1989), but mostly from heuris-
tics. Treatment rules cover, e.g., felling methods, time
intervals between consecutive treatments, number of
plants in planting, minimum removals, and number of
trees remaining in felling for natural regeneration.

The forest treatment methods can be divided into
cuttings and silvicultural treatments. The category of
cuttings includes

— cutting of hold-overs
— thinning

— clear cutting

— shelterwood felling
— seeding felling

and that of silvicultural treatments covers

— seeding

— planting

— cleaning of sapling stands
— soil preparation

- clearing

Rotation ages are calculated by means of marginal
analysis. During simulation, marginal changes in the
stumpage value of growing stock are computed from

[vVE
pF = Te-17 "
! \‘w VT

i

-1 . i=l..n, (164)

On economic grounds, forest can be regenerated when
the rate of growth falls below the opportunity cost.
Rotations defined by this type of procedure depend
not only on interest rate, but on timber price scenarios
as well. Expectations of price increases result in long-
er rotations, and vice versa.

The profitability of thinning is used as a thinning
criterion. This variable is composed of two parts: the
value growth of the thinned growing stock and the
return on felling income if invested. Hence, a thinning
decision involves the comparison

[VE E L JT(; TE-T]
,,__TI{V, 3 TI»,-T”J‘/I +11(i+1) i el n

|—= = ,i=1..,np,
Vv, \ v,

(165)

If the return produced by thinning (right side) falls
short of the future value growth of the growing stock
(left side), the forest stand should be left to grow on.
As the growing stock becomes denser, the relative
value growth tends to decrease, making thinning more
profitable.

The thinning model presupposes that the removal
percentage, i.e., the intensity of thinning, is defined.
This figure affects not only the thinning income but
also the growth potential of the remaining growing
stock. For this reason, the structure of the model al-
lows the incorporation of several thinning rates with
different intensities for simulating, e.g., light, medium
and heavy thinnings.

The timing of thinning as described by the profita-
bility criterion depends on the interest rate and the
relative timber prices. A high interest rate results in
early thinnings. This is because the critical density of
forest is reached earlier if other investments yield
high returns. The effects of prices are more difficult to
observe because price increase expectations lead to
higher values of both unthinned and thinned growing
stock. As a rule, an increase in logwood price corre-
sponds with early thinnings.

The simulation of thinning and other corresponding
treatments is based on an iterative removal of trees
(for comparison, see e.g. Jamsd 1991, Saramiki 1992,
Valsta 1992a). The number of removed trees in each
iteration is expressed by removal percentages, which
determine the type of treatment (e.g. thinning from
below). These iteration values are defined separately
for each diameter class and tree species.

During the iterations, the variables depicting the
growing stock are tested against the control variables.
If the basal area is used as a control variable, the test
involves a comparison

o By’ "
(N; = (R, /100)N; )II(T') < GO

J=1
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in the case of six diameter classes and three tree
species.

Along with the basal area, the number of stems and
the volume of removal can be used as a stopping rule.
For each iteration, the total removal is computed from

6

Ei((R,j/IOO)N,,)V,k

3

\ (167)
i=1 j=1k=1

where k is an index of timber assortment. The struc-
ture of the removal is calculated from modifications
of (167).

Simulation proceeds in an iterative manner. The
development of the growing stock is calculated at the
end of each management period. After that, the algo-
rithm examines the structure of the growing stock and
infers the possible treatment. If no treatment alterna-
tive is valid, the simulation continues to the end of the
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next management period. If any of the treatments can
be implemented, the growing stock is manipulated
according to the rules described in the control varia-
bles. After treatment, the simulation continues in the
same way as without treatment. The simulation ceases
at the end of the planning horizon.

The above procedure describes the first round of
the simulation. In the second round, the starting-point
is the year of the first treatment (next-event incre-
menting, see Buongiorno and Gilles 1987) added by
the length of the management period. The feasible
treatment is generated by this procedure, and the re-
maining part of the planning horizon is simulated. The
rounds with shifted starting-points are repeated until
the end of the planning horizon. The number of treat-
ment schedules for an arbitrary compartment i is

(168)
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