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Terms and Symbols

BA Basal area, m%/hectare
Base-line New forest inventory in which no
inventory information from any previous in-

ventories is utilized. In this work
a new stand level forest inventory
including new stand delineation
and assessment of stand attributes
by visiting every stand.

Change classes according to the treatment instruc-
tions valid during the study period

I Untreated (Unt.) No man-made changes or cata-
strophic forest damages, small
changes caused by normal growth
and possibly by seasonal variation.

11 Moderate changes:
Uncommercial thinning
(UnC. thinn.)
Generally the class consists of
treatments of young stands which
do not yield commercial timber.
The aim of the treatment is to re-
move poor quality and unhealthy
trees and to achieve around 2000
trees/hectare in deciduous domi-
nated stands and 2000-3000 trees/
hectare in conifer dominated
stands. The class includes all sil-
vicultural treatments which aim to
improve a stand, such as cleaning
asapling stand, release cutting and
thinning in a sapling stand. Cut-
tings to improve a young stand by
favouring suitable tree species are
also included in this class.

Commercial thinning (C. thinn.)
1-3 thinnings during the rotation
aimed at increasing both profit and
timber quality. Normally, about 30
% of the basal area is removed.

Preparatory cut (Prep. cut)
Thinning of a dense mature stand
following a preference to delay
treatments aiming at regeneration.
Around 20-30 % of the basal area
is removed.

Hold over removal (HOR)
Removing the over storey after
natural regeneration; drain is 10—
50 trees /hectare.

Draining (Drain.)

Improving the growth conditions
of a stand by digging new ditches
or cleaning existing ditches in or-
der to decrease soil moisture.

III Drastic changes

Treatments aiming at regeneration
* Regeneration cut for natural
regeneration (Reg. cut N. or re-
generation cut.)

Natural regeneration, only 10-50
seed trees per hectare remain after
cut.

* Clear cut

All tree stories are removed. Re-
movals vary between 150 and 300
cubic metres per hectare (m3/hec-
tare) on the study area.

Soil preparation (Soil prep.)
Harrowing, plowing or scarifying
after treatments aiming at regen-
eration. Harrowing was mainly
used in the study area.

Continuous Updating a forest information data

updating base immediately after the treat-
ments and by growth models in
untreated areas.

D Stand mean diameter at breast
height (1.3 m).
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Ax
DN

Forest stand

Forest holding

FPS

Generic training
data

Inventory unit

Leverage point

M

Change of variable x

Digital number registered by
remote sensing sensor.

The spatial delimitation used in
forest inventory and management
planning. This is normally about
1-2 hectares in private forest and
larger in company and state forest
holdings in Finland. It is based on
the need for similar future treat-
ments, and it is subjectively based
on the homogeneity of tree spe-
cies composition, age class and soil
type within a stand.

Aggregation of several forest
stands normally under single own-
ership which together form an en-
tity for planning forest activities.

Forest and Park Service, the or-
ganization responsible for the man-
agement of state owned forests in
Finland.

Training data which can be used
for nonparametric classification of
several image pairs and/or differ-
ent geographic locations.

The smallest areal delimitation
from which the attribute data are
recorded and for which the final
results of the inventory are calcu-
lated in base-line inventory.

Qutlier (see below) in X direction.

Mineral soil.

Management planning levels

Me

Observation unit

Outlier

P
Rapid change

Re-lineation

RMSE
Sd

Treatment
information

Treatment unit

Operational = 0-1 year
Tactical = 1-5 years
Strategic = > 5 years.
Mean.

The areal delimitation which is
monitored by satellite data in a
change detection procedure.

An exceptional observation in Y
direction which has an erroneous-
ly strong influence in the data set.

Peat land.

Forest changes due to silvicultural
activities or damages, which take
place during a couple of weeks.
Normal growth or seasonal varia-
tions are not considered to be
changes in the sense of this study.

Correction of the areal delimita-
tion of a forest stand because cut-
ting has not followed boundaries
lineated in base-line inventory or
because of occurrence of a forest
damage.

Root mean square error.
Standard deviation.

Record including location and type
of man-made treatments imple-
mented during the study period.

The areal delimitation where the
same silvicultural treatment or cut-
ting activity is implemented on the
same point of time.

I Introduction

1.1 The Need for a New Forest Informa-
tion Updating Scheme

Forest inventories are experiencing rapid chang-
es following the need to decrease the costs of the
collection and maintenance of information re-
quired for planning the management of natural
resources. These changes affect all levels of in-
formation needed in forest management planning
from the operational level to tactical and strate-
gic planning (Kangas et al. 1992). In Finland,
forests are primarily used for timber production
(Metsitilastollinen... 1994). Similarly, most of the
current forest inventory and management plan-
ning routines have been developed for optimis-
ing timber production. However, new inventory
and planning methods should make it possible to
detect areas which may have more value for rec-
reation or as habitat reservations, for example.
These new needs should be taken into the con-
sideration in management planning. This places
considerable demands on forest inventories and
management planning in large forested areas such
as Finland and Sweden. It should therefore be
possible to gather and maintain the necessary in-
formation at a level which enables effective and
economic timber production, while recognising
all other possible values. This means that new at-
tributes have to be measured in addition to the
traditional variables used for timber production
planning, and all the information have to be up-
dated often enough to enable required manage-
ment decisions. New inventory routines will have
to be developed for these purposes. This aim is
difficult to achieve when inventory costs need to
be decreased in same time. In this study, the prob-
lem of updating stand level forest information is
studied by combining satellite remote sensing
with limited field inspections.

The mapping scale used for operational plan-
ning in traditional stand level forest inventories
has usually been 1:10 000-1:20 000 (Osara 1948,

Poso 1983, Nalli and Hyttinen 1992). Aerial pho-
tographs have been used for stand delineation
purposes. Ocular field inventories combined with
some basal area measurements and height meas-
urements have been used for inventorying attribute
data (Laasasenaho and Pdivinen 1986). The de-
lineation of the stands has been based on the needs
of treatment planning and stands have been de-
fined on the basis of future treatments. This has
resulted in stands of 1-2 hectares on private for-
estholdings and larger stands on larger forest hold-
ings. Traditionally, this information has been up-
dated by repeating the base-line inventory at 10—
20 year intervals (Korhonen 1990). When con-
sidering the new demands of multiple use forest
planning, the use of coarser scales or less inten-
sive updating can be considered to be too inaccu-
rate for operational planning. On the other hand,
it must be possible to economically gather and
update information on large areas at tactical and
strategic planning levels. All this information has
to be at least as accurate as the traditional stand
level information used for timber production plan-
ning (Laasasenaho and Pidivinen 1986) and up to
date to ensure a balanced and sustainable use of
natural resources (Kangas et al. 1992).

Updating forest resources data seems to be one
of the most essential issues of the management
planning of natural resources. All the information
required for decision making should be updated
often enough, no matter which scale is being con-
sidered. This includes both spatial information and
attribute information. The present updating sched-
ule of the stand level information appears not al-
ways fulfil these requirements. Concerning spa-
tial information, re-lineation is needed due to dif-
ferences between inventory units and treatment
units or due to forest damages. Similarly, updat-
ing attribute data is necessary due to normal growth
and man-made or natural changes affecting the
attributes registered. On large scales, such as stand
level forest inventories where a great deal of the
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necessary information is collected in the field, the
demands of cost efficiency create the need to de-
crease the amount of field work needed for updat-
ing. This is because the field work is usually the
most expensive phase of an inventory (Ojanen
1978). A considerable amount of field work is
required if updating is executed by repeating the
base-line inventories. Korhonen (1990) describes
three possibilities for updating this kind of stand
information:

1) Every stand is re-inventoried every time up to
date information is needed.

2) The stands are inventoried once and the informa-
tion is updated by growth models and by remeas-
uring stands after every cutting activity.

3) Continuous updating by combining 1 and 2. This
means updating by growth models and on the
basis of treatment information as long as the er-
rors in the data can be kept at a reasonable level.
After this, a new base-line inventory is necessary.

If the amount of repetitive field work in updating
can be reduced by employing satellite remote
sensing, which is an economic source of repetitive
information, the considerable savings may be cre-
ated without risking the quality of the information
(Varjo 1993, 1996). Satellite remote sensing has
many benefits as a source of material for updating
forest information. Satellite images provide infor-
mation about the location of interesting patterns
and the spectral variations on different channels
correlate with the attribute information needed in
forest management (e.g. Saatsi 1985, Hopkins et
al. 1988). It can also be assumed that the satellite
material could, in the best case, fulfil a great deal
of the information needs for updating. The large
area coverage and thus the low areal costs are also
important benefits.

As a result of the need to decrease inventory
and updating costs many holders of large forest
areas, such as Finnish Forest and Park Service
(FPS), have started to use the third possibility,
continuous updating, (see previous classes by
Korhonen (1990)) for updating forest data instead
of repeating base-line inventories. The forest data
base is updated after the implementation of treat-
ments and normal growth is predicted by growth
models once a year. However, this new approach
to updating has created new problems; updating

should not reduce too much the quality of the orig-
inal information. This means ensuring that all man-
made activities and any possible natural changes
which are severe enough to affect management
planning are correctly updated. Controlling the
updated information also includes monitoring all
the changes in the forest canopy and ensuring that
they are correctly updated. Possible bias in the
original attribute measurements, or possible bias
caused by growth models, can be corrected by
applying control field inventories (Laasasenaho
and Pdivinen 1986). Updating errors due to dras-
tic changes in the case of non-updated treatments
or severe forest damages, can be correct only by
methods which cover the whole area in question.
So far, the accuracy of satellite image based base-
line inventories have been too coarse for updating
stand information (Piivinen et al. 1993). How-
ever, promising methods for satellite image base-
line inventories have been presented by Hagner
(1990). When new satellites with about 5 m reso-
lution become available this may create new pos-
sibilities for updating and controlling attribute
information by applying satellite images to base-
line inventories (Hyppinen 1994). The Global
Positioning System (GPS) may also provide a new
and accurate tool for controlling re-lineations
(Bergstrom and Olsson 1993, Hyppinen et al.
1996).

At present, it seems possible to reduce the costs
of maintaining the quality of continuously updat-
ed forest information by combining traditional
field inventories with remotely sensed informa-
tion (Tomppo 1990, Varjo 1996). Satellite imag-
es provide useful material for monitoring large
areas both repetitively and economically. This ca-
pability is also necessary for controlling possible
updating errors and forest damages (Varjo 1996).
Updating errors may exist because of human er-
rors or gaps in the information flow. Further, for-
est damages such as wind breaks are not neces-
sarily noticed and updated in continuous updat-
ing procedure without control. Field inventoried
data provide accurate but expensive sources of
information; it is not economically feasible to
achieve required updating intensity by repeating
complete field inventories (Varjo 1995). If the
advantages of satellite remote sensing and field
inventories can be combined with information
concerning forest growth, the forest data base

Vario, J. Change Detection and Controlling Forest Information Using Multi-temporal Landsat TM Imagery

would go along way to fulfil the information needs
of forest management. However, this idea requires
that the detection of rapid changes in the forest is
solved in a cost efficient way. Updating of forest
data by growth models and simulation has been
possible when there are few tree species and soil
type combinations, see Siitonen (1990) for a Finn-
ish example. The resultant accuracy seems to al-
low 15-30 year updates without the need for new
field inventories (Siitonen 1990, Mikeld and
Salminen 1991, Kangas 1997). So far, operation-
al updating applications have not been possible
because the accuracy required for change detec-
tion has not been achieved. However, promising
results have been reported on the use of multi-
temporal satellite images for detecting forest
changes (Hame 1987, 1988, Olsson and Ericsson
1992, Varjo 1993, Collins and Woodcock 1994,
Olsson 1994a).

If changes can be detected from satellite im-
agery the accuracy of continuously updated at-
tribute information can be then assured by restrict-
ing field inventories.to suspect stands (Varjo
1993). In addition, promising results have been
presented for controlling the delineation errors by
satellite imagery (Olsson 1994a). The use of re-
motely sensed material for updating depends on
whether changes in the forest can in fact be mon-
itored by remote sensing (Singh 1989). The use of
satellite imagery for detecting forest changes, such
as natural damages or human actions, has received
attention (Hame 1991, Olsson 1994a, Lambert et
al. 1995) and methods to control the quality of
continuously updated forest information by re-
mote sensing have been proposed (Hime 1991,
Varjo 1995, 1996). Itis natural to start this kind of
work from the large scale operational level, such
as stand level inventory, in order to determine the
limits of remotely sensed change detection. It is
necessary to examine whether the image data
available can fulfil the control needs at the oper-
ative level. The same experiences, if acceptable,
can later be utilised for smaller scales and differ-
ent resolution levels.

1.2 Remote Sensing Material for Monitor-
ing Rapid Changes in Forests

1.2.1 Important Characteristics of the
Remote Sensing Material

Before the adoption of remote sensing aided up-
dating methods, the best combinations of differ-
ent materials and methods have to be defined for
each case and scale. The balanced combinations
of various methods with different materials have
to be studied and the technical limitations of the
materials have to be understood. At least three
different factors have to be considered when eval-
uating different remote sensing materials for
monitoring natural resources. Each factor is re-
lated to the properties of the sensors (Mather
1987): 1) spatial resolution affects the size of the
smallest separable object; 2) spectral resolution
determines the range of the wave lengths which
can be analysed and thus affects separability of
different phenomena by means of their spectral
properties; and 3) radiometric resolution deter-
mines the accuracy of the observations within a
given channel and thus influences how small
changes in intensities that can be separated.

At the operational level, where the accuracy
requirement is highest concerning spatial resolu-
tion, only high resolution space-borne sensors such
as Landsat TM, SPOT HRV, satellite photographs
or airborne sensors can be considered. Based on
theoretical studies using semivariograms, it seems
that the best spatial resolution for monitoring a
forest canopy is about 4-5 m (Hyppinen 1996).
However, the ability to detect changes is affected
by a combination of all the characteristics of the
material in question. Limiting factors with satel-
lite or aerial photographs are the control of the
image geometry (Holopainen and Lukkarinen
1994) and the partly analogical production of the
images. In addition, the spectral resolution of
analogical materials is usually lower compared to
the Landsat TM sensor, for example. Airborne
imaging spectrometers improve spectral and spa-
tial resolution but so far they have mainly been
used for research purposes (Mikisara et al. 1993)
and only a few application oriented results have
been published. Technology and methodology
development in this field may result in new po-



Acta Forestalia Fennica 258

1997

tential tools for change detection. Promising re-
sults for detecting changes based for example on
the blue shift have been reported from laboratory
experiments (Rock et al. 1988, Hoque and Hut-
zler 1992). However, the sensors available do not
provide sufficient spectral and radiometric accu-
racy to detect this kind of changes in practice. So
far, adequate results concerning forest change
detection in the boreal forest zone have mainly
been based on Landsat TM and SPOT HRV data
(Hame 1991, Olsson 1994a, 1994b, Varjo 1996).
When considering the radiometric accuracy these
data are comparable. However, the lower spectral
resolution of the SPOT sensor compared to that
of Landsat TM has often reduced the advantages
of better spatial resolution (Hime 1991).

In addition to the properties of different sen-
sors, the amount and availability of remote sens-
ing data may also create problems. On many oc-
casions, the sheer amount of remotely sensed data
needed to cover a given area can be a limiting
factor. Even at the operational level, as in the case
of the Landsat and SPOT sensors, the smallest
image element, the pixel, can be too small to be
used for repetitive monitoring purposes. The
amount of data required to cover large entities,
such as Europe, is certainly one of the limiting
factors. Rapidly improving computing capacity
may partly solve this problem. However, the spa-
tial accuracy of the remote sensing materials is
improving in same time. In addition, under some
circumstances, the availability of the images may
be a constraint when considering monitoring sys-
tems (Kontoes and Stakenborg 1990). These prob-
lems are caused by weather conditions. For ex-
ample, cloud cover may prevent repetitive acqui-
sition, especially with sensors monitoring the vis-
ible and near infra red wavelengths of the electro-
magnetic spectrum. Radars are not as sensitive to
atmospheric disturbances, such as clouds, as op-
tical imagery. However, radar has not been found
to significantly improve forest mapping results
compared to optical imagery (Koch et al. 1995).
One reason may be that radar is very sensitive to
the soil and canopy moisture variation (Tomppo
etal. 1994). As one possible alternative, the com-
bination of radar and optical imagery for change

detecting purposes has been proposed (Guerre
1995).

10

1.2.2 Observation Units in Forest Change
Detection Based on Satellite Remote
Sensing

One of the major problems concerning the appli-
cation of remote sensing to forest change detec-
tion is the effect of the size of the observation
unit. It is a problem which is closely related to
the problem of the quantity of data which can be
processed. The smallest originally recorded unit
which can be observed by remote sensing is the
pixel, and this is determined by the physical prop-
erties of a given sensor. In the case of nature re-
source monitoring satellites, the pixel size varies
from the 5 x 5 m? of the IRS 1C panchromatic to
the 825 x 825 m? of the Nimbus-7 CZCS sensor.
In Finnish forest conditions, such areas will al-
most always contain several trees. The intensi-
ties registered by satellite sensors have also to be
related to sample plots or forest stands. In addi-
tion to the original pixels, other remote sensing
derived observation units can be formed by ag-
gregating or dividing pixels.

Stand and forest holding are logical pixel ag-
gregates for forest applications. However, for
purposes of operative change detection, the forest
holding is far too coarse a unit to be considered as
the observation unit. If the subjectivity related to
the definition of a forest stand (Poso et al. 1987,
Poso 1994) is accepted, a stand can be considered
a suitable observation unit when stand maps are
available. The advantages of the forest stand as an
observation unit are the good accuracy of base-
line stand level data from field surveys (Laasa-
senaho and Pdivinen 1986, Pidivinen 1995), espe-
cially in combination with remote sensing data,
and that the implementation of forest treatments,
at least to some extent, follows stand boundaries.
Consequently, stand boundaries can be used as
prior information creating observation units for
change detection. It is obvious that the separabil-
ity of man-made changes should improve if ob-
servation units contain information concerning the
location of possible changes (Varjo 1993). The
disadvantages of the forest stand as an observa-
tion unit are the subjective definition and the lin-
eation of the stands which may result in the need
to change stand boundaries (Poso 1994). Togeth-
er with partial treatments these factors may in-
crease the within-stand variation considerably in
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terms of both forest characteristics and spectral
response (Poso and Waite 1995).

Artificial observation units can be considered
in addition to stands. This is the only possibility if
old field information, such as stand delineation, is
not available. In this case, the pixel aggregates
have to be formed either on the basis of image
intensities, or artificially. Automatic segmenta-
tion methods based on intensity information have
been developed for substituting base-line inven-
tory stand delineation and about 80 % accuracies
have been reported compared to base-line deline-
ations (Hame et al. 1988). However, in such cases
the problems of increased within-stand variation
can be even worse than in stand delineation. This
is due to the mismatch between spectral segments
and forest stand attributes. Another possibility is
to use a completely artificial observation unit such
as a quadrant, the sides of which are a multiple of
acertain number of pixels, e.g. 2 X 2 pixels. In this
case, the observation unit should be so small that
all the necessary areal entities, such as a single
clear cut, can be composed by combining obser-
vation units to avoid the need for re-lineation af-
ter the change detection. The smallest forest stands
in Finland are about half hectare in size and can
be very narrow in form. New demands related to
multiple use and biodiversity seem to result in
even smaller stand sizes and a wider variety of
stand shapes. In this case, an areal unit not larger
than 2 x 2 pixels with Landsat TM (see Hame
1991) or 3 x 3 with SPOT XS can be considered.
The use of a single pixel as the observation unit
would probably be the best solution when consid-
ering delineation of forest changes. Another pos-
sibility might be a multi-resolution approach
where stand or segments and pixels could be used
hierarchically.

There are several disadvantages in pixel-level
analyses, specially when using multi-temporal
data (Mather 1987, Hiame 1991). One important
point is that registration and rectification errors,
i.e. mismatch when overlaying pixels from dif-
ferent acquisitions, increase noise. In a combina-
tion with mixed pixels this can easily confuse the
detection of real changes by causing several small
false changes in the results. These problems could
be partly reduced by interpolation to create sub-
pixels for decreasing the original pixel size. How-
ever, even the use of Landsat TM at the pixel lev-

el may result in too much data for large area appli-
cations in change detection when multi-temporal
data are considered. This is not necessarily a prob-
lem in remote sensing aided base-line inventories
because a sampling based approach can be con-
sidered (Poso and Waite 1995). However, the
whole area under control has to be monitored when
developing the quality control method for contin-
uous updating. Otherwise single, non-updated
treatments or forest damages would be detected
only if they happen to be included in the sample.
Compared to problems with mixed pixels, the
opposite effect in this context is the reduction of
the heterogeneity of spectral classes as the resolu-
tion becomes coarser (Markhamn and Townsh-
end 1981). Altogether, noise at the pixel level can
easily obliterate spectrally small changes such as
those created by silvicultural management activ-
ities, and result in false changes being detected
(e.g. Peng 1987). This easily leads to the decision
that the results of pixel-level change detection have
to be reinterpreted by area tresholding or post clas-
sification, for example, in order to detect real
changes (e.g. Wilkinson et al. 1995).

The decision as to which observation unit should
be used depends on the phenomena being moni-
tored. Olsson (1989, 1993, 1994a) tested relative
radiometric calibration at both pixel and stand
levels and Varjo (1993, 1995, 1996) applied the
stand level approach to avoid problems at the pix-
el level in both radiometric calibration and change
detection. If no field information is available con-
cerning the real delineation of the phenomena in
question, then the maximum size of the observa-
tion unit will depend on the accuracy of the delin-
eation which is considered acceptable for con-
trolling the quality of the spatial forest informa-
tion. If field information about the stand delinea-
tion is available, then the within-stand variation
has to be considered. To this end, Hime (1991)
used a combination of pixel and stand level change
classifications. He first used pixel level change
discrimination and then interpreted the results for
the stand level based on a within-stand mode class.
He proposed the use of 2 x 2 Landsat TM pixel
windows for change detection (Hdme 1991). Varjo
(1993, 1995, 1996) based stand level change de-
tection on the assumption that at least part of the
man-made changes follow the stand delineation.
The problem with this approach is that the chang-
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ing market demand for timber can affect the short-
term cutting schedule and thus the stand delinea-
tion may be changed as a result of the delineation
of treatments. This can be expected to mainly af-
fect those treatments which are producing the larg-
est amount of commercial timber, such as treat-
ments aiming at regeneration. The delineation of
the other treatments is determined more by the
silvicultural stage of the forest and they do not
often result in a need to change the treatment de-
lineation. Stand delineation can therefore be used
as spatial information in change detection because
a great deal of drastic treatments, as well as most
moderate treatments which are difficult to detect
from satellite imagery, can be assumed to follow
the stand delineation. However, a method is re-
quired for relineating those drastic changes which
do not necessarily follow the stand delineation.

1.3 Methods for Forest Change Detection
Using Multi-temporal Data

The first issue to be considered when analysing
rapid changes in the forest canopy using multi-
temporal remote sensing data, is the spectral
change caused by these changes and the factors
which affect the separability of the changes. Re-
mote sensing data are useless if the changes in
the forest do not alter the intensities detected by
the sensor, or the disturbing factors obliterate the
change. The need to detect the obliterating fac-
tors as a separate phase depends on the analysis
selected and the number of image pairs used. If
only one image pair is analyzed, there may be no
need for separating changes of interest from oth-
er changes (e.g. Hime 1991). It may be assumed
that the linear radiometric calibrations could be
implicitly included into the change detection pro-
cedure (Hame 1991). However, in some cases
even the linear radiometric calibration has im-
proved the change detection when it has been used
for making the earlier image radiometrically com-
parable with the later one in difference image
analysis by applying relative calibration (Varjo
and Folving 1997). The change detection prob-
lem may be more easily understood, for example
concerning feature selection, if the effect obliter-
ating changes can be decreased.

Several image pairs are required if remote sensed
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data are to be used for monitoring changes over
large areas. If the radiometric calibration is omit-
ted it has to be assumed in the case of supervised
approach that the training data can be collected
separately for every image pair employed, or that
the image pairs are comparable enough without
calibration (Varjo 1996). If different image pairs
used are not radiometrically comparable, it is nec-
essary to employ radiometric calibration which
permits the use of generic training data for sever-
al image pairs. In addition, in the case where the
selected image analysis neglects the calibration,
the acquisitions used should be radiometrically
similar with each other in order to make the dif-
ference images easily understandable. In the case
of unsupervised change classification, uncalibrat-
ed data have not given encouraging results com-
pared to change detection using radiometrically
calibrated data (Varjo and Folving 1997).

Hime (1988) divided changes detected by re-
mote sensing into two main categories: 1) chang-
es caused by the canopy and 2) other changes.
With respect to detecting rapid changes in the
forest, there are changes in both categories which
can confuse the analysis of the actual phenome-
non of interest. Separating the spectral changes
caused by local changes in the minority of forest
stands from other possible causes of spectral
changes can be regarded as a calibration problem
(e.g. Olsson 1994a). If radiometric calibration is
selected, all the non-object related changes, such
as changes in sensor sensitivity (Olsson 1995),
changes in atmospheric conditions, as well as
variations in viewing and in solar angles (Singh
1989), are determined and corrected, as far as
possible, before change detection. In addition,
there may be changes in the object, forest, which
can disturb the analysis, such as, normal growth
(e.g. Nilson and Peterson 1994) or the seasonal
cycle. The changes of intensity caused by these
factors have also to be considered in calibration
(Olsson 1995, Varjo 1996). Further, the sensor
differences have to be considered when prepar-
ing data for change detection, if the imageries from
different sensors are considered (Hall etal. 1991).

Calibration can be considered to have two ob-
jectives: 1) to make several images or difference
images radiometrically comparable with each oth-
er, and 2) to make the phenomenon of interest
more easily separable and understandable. There
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are two principal approaches to radiometric cali-
bration, relative and absolute calibration (Olsson
1995). In absolute calibration, the image data are
scaled in units of reflectance by modelling atmos-
pheric radiative transfer, or measuring empirical-
ly the effect of disturbing factors. In relative cal-
ibration, images are usually just scaled radiomet-
rically to make them comparable without paying
attention to the specific disturbing factors. In at-
mospheric radiative transfer modelling, informa-
tion is required concerning the non-object chang-
es, such as those created by weather conditions.
Optical properties of the atmosphere may be esti-
mated on the basis of visibility. By using physical
models of the atmospheric radiative transfer, the
intensities detected on different dates or sensors
are adjusted for comparability. If necessary, the
changes due to normal growth can be predicted
(e.g. Nilson and Peterson 1994) and added in this
type of analysis.

There are several methods available for rela-
tive calibration depending on the field informa-
tion available. If no ground information is avail-
able, methods such as histogram matching or sim-
ple range scaling can be considered (e.g. Franssi-
laetal. 1981, Mather 1987). Selection of the ref-
erence data for relative calibration can be based
on spectral information or on ground information
when available (Hall et al. 1991, Olsson 1994a,
Varjo 1996). Good results have been achieved by
linear models using separate calibration data es-
pecially combined with difference image analy-
sis (Olsson 1993). It can be expected that applica-
tion of the calibration data with no changes, or
when there are only minor variations in the mean
canopy intensities will be usable in calibration
(e.g. Hall etal. 1991, Varjo 1993).

An important issue when preparing multi-tem-
poral data for change detection is the accuracy of
the calibration in relation to the intensity changes
caused by activities to be detected. According to
Hiime’s (1991) results, a clear cut causes a 0.02—
0.03 increase in red and near infrared reflectance.
A clear cut causes one of the largest spectral chang-
es among the man-made forest activities under
Finnish conditions (Saukkola 1982, Hame 1991,
Varjo 1996). When the change caused by a clear
cut is compared to the accuracy of the absolute
calibration, it becomes obvious that only this or-
der of change may be detected by comparing ab-

solute calibrated images (Olsson 1995). Calibra-
tion errors may obliterate all the other changes
(e.g. Muchoney and Haack 1994). The possibili-
ties of detecting changes after calibration seem
better when the spectral changes caused by forest
activities are compared to the accuracy of relative
calibration by statistical methods (Olsson 1994b,
1995, Varjo 1996).

According to literature reviews, a great variety
of change detection methods have been tested
(Singh 1989, Hime 1991, Varjo 1993, Olsson
1994a). A commonly used method used for im-
age classification is pixel level Maximum Likeli-
hood classification (e.g. Mather 1987, Olsson
1994a). Methods involving the comparison of
separate classifications, such as post classifica-
tion comparison, are problematic because the
number of error classes increases rapidly with the
number of classes in separate classifications (Lark
1995). There are several problems to be consid-
ered when selecting the change detection meth-
odology and none of the traditional methodolo-
gies seems suitable for updating and monitoring
purposes (Varjo 1993). Recently, the discrimina-
tion of multi-temporal data have been proposed,
using original spectral bands, difference features
or channel transformations as explanatory varia-
bles (Hame 1991, Varjo 1993, Olsson 1994a). The
selection of the observation unit has a considera-
ble influence on the selection of the actual change
detection method.

If a supervised method and the pixel level ap-
proach are considered, the intensity distributions
(Figs. 1, 2 and 3) of different change classes are
difficult to describe accurately by parametric dis-
tributions (Varjo 1996). This could be solved by
using Wilcoxon'’s score functions (e.g. Ranta et
al. 1989) if the distributions are symmetric. How-
ever, this is seldom the case (Figs. 2 and 3).

Another common problem is the construction
of balanced training data for change detection. It
is often difficult to obtain enough training obser-
vations for all the classes of interest because only
small fraction of stands per forest holding will be
treated annually (Varjo 1993). The only training
class which may be assumed to follow a Gaussian
distribution is the ‘untreated’ class (Fig. 1). If an
areal unit larger than the pixel is considered and
the changes are described by, for example, the
central moments of the pixel groups, stands for
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Fig. 1. The DN difference on Landsat TM channel 3
in an untreated stand after regression calibration
with a two-year interval between the images, x =
observed frequency and solid line = estimated
frequency distribution (Varjo 1993).

example, the situation is different. If the sample
size is large enough the stand means should, ac-
cording to the central limit theorem, follow the
Gaussian distribution (Ranta et al. 1989). How-
ever, this assumption about the Gaussian distri-
bution of the stand means may fail if different
change types, such as clear cuts and partial clear
cuts, are randomly combined into the same treat-
ment class. It cannot be expected that, for exam-
ple, the number of different size partial treatments
would be normally distributed. In addition, assum-
ing a Gaussian distribution for the mean values
would be valid only when there is a large number
of observations in every class. This is hard to
achieve if several different types of change are
differentiated (Varjo 1996). The application of
nonparametric discriminant analysis for change
detection may be a way to solve many of the above
problems (Varjo 1993, 1995). In this approach,
the intensity distributions can be multimodal and
asymmetric.

While the use of unsupervised methods might
solve some of the distribution problems at the pixel
level, the pixel level approaches have not been
accurate enough for change detection purposes
(Varjo and Folving 1997). In addition, the utiliza-
tion of pixel aggregates has also favoured selec-
tion of nonparametric methods for the unsuper-
vised approach (Varjo and Folving 1997). Only
treated and untreated pixel aggregates have been
separable with usable accuracy by the unsuper-
vised approach (Varjo and Folving 1997). If more
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Fig. 2. The DN difference on Landsat TM channel 3
in a thinned stand after regression calibration with
a two-year interval between the images, x = ob-
served frequency and solid line = estimated fre-
quency distribution (Varjo 1993).
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Fig. 3. The 1988 and 1990 Landsat TM channel 7 DN
distributions in a partially clear cut stand, x =
observed frequency, solid and dotted line = esti-
mated frequency distributions (Varjo 1993).

accurate causes for change are required, then the
nonparametric supervised methods seem more
suitable.

1.4 Objectives

The study has two main aims: to develop a cost
effective method applying multi-temporal Land-
sat TM data for detecting rapid changes in the
forest canopy, and to control the quality of con-
tinuously updated forest data. This includes de-
veloping and testing methods for using generic
training data in forest change detection and de-
veloping a change detection algorithm which is
not dependent on distribution assumptions. The
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possibilities to control that all the human induced
forest activities and possible rapid damages are
correctly updated with respect to spatial and at-
tribute data is tested for the case of a continuous
updating scheme. The control of possible errors
in stand characteristics caused by updating nor-
mal growth by growth models is not considered.
The basic assumption was that by comparing de-
tected changes with the treatment information, the
quality of continuously updated forest informa-
tion could be maintained by inspecting a small
number of stands in the field (Varjo 1996).

The study falls into three sections: 1) calibrat-
ing the multi-temporal Landsat TM image pairs
radiometrically to achieve comparability under
different situations; 2) detecting changes from
multi-temporal Landsat TM data; and 3) estimat-
ing the effectiveness of the whole system for con-
trolling the quality of continuously updated for-
est data.

In the first section, the main issue is the calibra-
tion of multi-temporal Landsat TM images for
change detection. The first task is to determine
how the time and type of the changes affect inten-
sities within one image pair and how relative ra-
diometrical calibration affects the analysis of the
single difference image. The second task is to
determine the possibility of generating generic
training data in such a way that training data from
earlier difference images covering the same loca-
tion could be used for classifying new image pairs.
The third calibration problem to be examined is
whether the training data from different locations
can be adopted for the classification of changes in
anew difference image. The objective of the first
section is to provide multi-temporal imagery
which would allow the use of generic training data
for change detection.

In the second section, the accuracy of change
detection based on Landsat TM difference imag-
es produced in the first section is tested by further
developing a promising nonparametric approach
proposed by Varjo (1995). The classification ac-
curacy is evaluated in three situations: 1) the train-
ing data are from the difference image under clas-
sification; 2) the training data are from a separate
difference image from the same area; and 3) the
training data are from a totally different area. The
results of a nonparametric classifier are compared
to those of Maximum Likelihood method (Math-
er 1987). In addition, a simple method is present-
ed forrelineating changes when the area of change
differs from the stand delineation used as prior
information in the change detection.

In the last section, the methods are tested for
controlling continuous updating in five subareas
from the forest district of Hyrynsalmi. The change
classification is compared to the treatment infor-
mation, and the need for field work for control-
ling the quality of continuously updated forest
information is evaluated for these five subareas.
The suitability of the methods for decreasing the
amount of field work necessary for maintaining
the accuracy of forest information for manage-
ment planning purposes is assessed. It has become
obvious in the FPS, at least during the transition
period between repetitive inventories and contin-
uous updating, that continuously updated forest
information needs to be controlled because of
human errors in the updating process, changes in
stand delineation and possible damages. The costs
of the method proposed are compared to the costs
of previous updating methods in which the base-
line inventories were repeated.
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2 Material

2.1 Study Area and Stand Information

The main study area is located in Hyrynsalmi for-
est district of the Finnish Forest and Park Ser-
vice (FPS) in the municipality of Hyrynsalmi,
Eastern part of Central Finland (location of the
study area centre: long. 28°30'E, lat. 64°30'N).
In addition to the Hyrynsalmi area, data from
Varjo’s (1996) study, based on a test site at Nur-
mes, were used for comparison purposes. The
Nurmes site is located about 100 kilometres south
of the Hyrynsalmi site. (Fig. 4.).

In the Hyrynsalmi area, the mean stand size is 6.0
hectares. The Hyrynsalmi study area is divided to
17 subareas according to the division used by the
FPS (Fig. 5). The mean effective temperature sum
(threshold +5 °C) of the thermal growing season
during 1961-1990 in the region varies between
900 and 1000 d.d. The mean annual precipitation
varies between 320 and 340 mm from May to
September and the difference between precipita-
tion and evaporation varies from +10 to +50 mm
(Metsitilastollinen... 1994). The forests are dom-
inated by conifers; Norway spruce (Picea abies)
is the most common on rich soils and Scots pine
(Pinus sylvestris) on poor soils. The two species
often form mixed stands. Pure stands of deciduous
species are rare. Sometimes birch (Betula pendu-
la and Betula pubescens), aspen (Populus tremu-
la) and alder (Alnus incana) may form single spe-
cies stands but more often they are mixed with each
others and conifer species. The mean growing
stock volume in the area of Kainuu Forestry Board
District was 71 m*/ha in 1992, being 63 m*/ha in
pine dominated stands, 124 m*/ha in spruce dom-
inated stands and 60 m’ha in birch dominated
stands. The mean annual volume increment was
2.68 m*/habetween 1987 and 1991 (Metsiitilasto-
llinen... 1994).

Three data sets for 1) radiometric calibration,
2) training the change detection algorithm, and 3)
testing, were formed for the Hyrynsalmi area. In
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addition, all the proposed change stands from the
test data were visited in field to verify the change
analysis results. The data set used for radiometri-
cal calibration of the satellite acquisitions con-
sisted of subareas 4074, 6115, 6121 and 6134 to-
talling 4311 ha (Fig. 5). In addition, they formed
the ‘untreated’ class in the training data. The cal-
ibration data consisted of 390 stands on mineral
soils and 321 stands on peat land. There were no
treatments or reported forest damages in those
subareas during the study period 2 1st June, 1990—
31st July, 1993. The rest of the training data con-
sisted of the stands where the treatment history
was known. They were selected by the responsi-
ble district officer from subareas 1027, 3052, 3056,
3061, 3063, 4081, 4083, 5103, 6113, 6123 and

Fig. 4. Location of the test areas, H = Hyrynsalmi and
N = Nurmes.
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Table 1. Mean stand attributes in Hyrynsalmi training data according to the stand register, mineral soil.

Treatment BA Pine. BA deciduous BA spruce,  Age of the main ~ Mean height, m Mean diameter, cm
m</ha species, m-/ha m</ha storey, years Mean/Sd Mean/Sd
Mean/Sd Mean/Sd Mean/Sd Mean/Sd
Unt 6.9 1.6 48 65.3 10.1 15.2
6.8 2.8 7 52.6 54 7.7
UnC. Thinn. 0.2 0.1 0 12.4 2.1 4.0
0.6 0.3 0 5.1 L5 L7
C. Thinn. 8.4 2:1 2.6 534 10.8 13.8
5.6 5.8 4.6 28.5 34 4.8
Prep. cut 19.1 0.5 0.4 111.6 17.7 24.6
7.1 1.0 0. 219 2.4 4.3
HOR * * # * * *
Clear cut " * N o i *
Reg cut * * * * * *
Soil prep. * * * * * *

*data base partially updated, class means and deviations useless for describing the whole class.

Table 2. Mean stand attributes in Hyrynsalmi training data according to the stand register, peat land.

Treatment BA pine, BA deciduous BA spruce,  Age of the main Mean height, m Mean diameter, cm
m</ha species, m-/ha m-</ha storey, years Mean/Sd Mean/Sd
Mean/Sd Mean/Sd Mean/Sd Mean/Sd
Unt 4.1 0 0.9 44.1 59 8.9
4.6 0 27 34.2 3.2 4.9
UnC. thinn 2.2 0 0.3 233 4.4 6.0
1.8 0 0.5 29 15 2.4
C . thinn. 1.4 0 0.4 38.0 9.4 11.2
2.2 0 0.9 8.4 3.7 4.2
Prep. cut 19.0 0 0.6 96.7 16.3 20.7
11.9 0 1.2 29.4 4.1 5.4
Clear cut 15.7 0 0.7 134.0 18.6 23.8
10.6 0 1.6 16.7 2.3 5.1
Drain. 0 0 0 40 33 3.6
0 0 0 14 0.5 0.5

6133 (Fig. 5, Tables 1 and 2). The basal area and
forest type distributions were sufficiently repre-
sentative to describe the variation in the study area
and in all of the three data sets used. The stand
level age distribution was uneven throughout the
whole region because of few observations from
the middle aged stands. The basal area, forest type
and age distributions were comparable in all the
three data sets (Figs. 6. 7 and 8).

There were nine treatment classes in the train-
ing data: 1) no damage or man-made change (un-
treated, Unt.), 2) uncommercial thinning (UnC.
thinn.), 3) commercial thinning (C. thinn.), 4)

preparatory cut (Prep. cut), 5) hold over removal
(HOR), 6) regeneration cut for natural regenera-
tion (Reg. Cut N./regeneration cut), 7) clear cut,
8) soil preparation (Soil prep.), and 9) draining
(Drain.). Drained stands only existed on peat land.
Altogether in the training data, there were 500
stands on mineral soils and 351 stands on peat
land. The majority of the treatments in the train-
ing data were implemented between 1990 and
1992 (Table 3).

The FPS selected five subareas for testing the
methods: 1026, 3056, 3061, 5101 and 6133 total-
ling 6133 ha. The test data consisted of 593 stands
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Fig. 5. The Hyrynsalmi test area. Copyright of the
background satellite image belongs to: ©ESA,
1992, EURIMAGE, National Land Survey of Fin-
land/Satellite Image Centre.

150 Number of stands
100}
[] Peat
50 land
B Mineral
0 soils

G 10 15 20 25 25¢

Basal area, square
meters

Fig. 6. The basal area m*ha distribution in the calibra-
tion data.

on mineral soils and 123 stands on peat land. They
were selected because a range of forest manage-
ment activities had taken place on those subareas
during the study period.

The stand delineation and stand level attribute
data were available from the last base-line inven-
tory in 1989. It had been a normal stand level in-
ventory after which the treatments and normal
growth had been updated continuously. The stands
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Fig. 7.The forest type distribution in the calibration
data, the forest types are presented according the
classes used by FPS (Suunnittelun ... 1991).
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Fig. 8. The age distribution in the calibration data.

had been initially delineated from aerial photo-
graphs and the delineation had been controlled in
the field. Storeywise attribute data had been col-
lected by ocular field inventory assisted by some
basal area, height and diameter measurements in
every stand (e.g. Osara 1948, Suunnittelun...
1991). Stand delineation was transformed into the
Finnish uniform coordinate system at each digi-
tized point. In addition to continuous updating, the
treatment information was available based on the
salary book keeping. This information was inter-
preted for this work by the district officer respon-
sible for forest management in the study area.
The accuracy of the attribute information had
been controlled by inspecting 30 randomly se-
lected sites which together included 90 stands.
Control measurements had been carried out by
measuring a grid of relascope sample plots for
each selected stand; altogether 1186 relascope
plots had been measured. The reference informa-
tion for a stand had been created as a mean of
relascope plot attributes belonging to the stand.
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Table 3. Frequency and timing of the treatments in the training data.

Year of im- UnC. thinn. C. thinn. r i i
plt;l;eom:lrl?un 1\511 t 1}r)m = t] |m;D Il;;ep. cl;)t MHORP R;;Ig. culll)\l. rSllc:ar clll)l ?V(I)xl preg MDram.P
90-91 12 4 2 3 7 - 5
91-92 1 2 10 5 13 1 4 18 6 4
92-93 3 1 10 7 - 2 6 6
M = mineral soil, P = peat land
Table 4. The Landsat TM quadrants used.
Test site Name Time of the Track/row/ Combined registration
used acquisition quadrant and rectification error
in original pixels
(30 x 30 m)
Hyrynsalmi H90 21.06.1990 188/15/b 0.51
Hyrynsalmi H92 10.06.1992 188/15/b 0.44
Hyrynsalmi H93 31.07.1993 188/15/b 0.51
Nurmes N88 08.06.1988 187/15* 0.45
Nurmes N90 23.06.1990 186/15%* 0.32

b=north-east quadrant, *=floating quadrant

Based on a comparison with the operational data
base in use, there was no systematic error in the
attribute information at the 10 % risk level (Lesk-
inen 1993).

2.2 Remote Sensing Information

Three Landsat TM acquisition quadrants were
acquired from the Hyrynsalmi test site and two
were available from the Nurmes test site (Varjo
1996) (Table 4). The details of the Nurmes test
site are presented by Varjo (1993, 1996). The
quadrants from the Nurmes test site had first been
registered together after which they had been rec-
tified into Finnish uniform coordinate system
(Hame 1991, Varjo 1996). For the Hyrynsalmi
test site, the image from 1992 was first rectified
into the Finnish uniform coordinate system, and
the other images were registered on to the recti-
fied 1992 image. First order polynomial was used
for registration and rectification for the Hyryn-
salmi site and second order for the Nurmes site.
For both test sites, images were resampled into
20 x 20 m? pixel size by the nearest neighbour
method. The ground control points were selected

independently for registration and rectification.
Combined registration and rectification errors
varied from 0.32 to 0.51 pixels when the regis-
tration and rectification errors were considered
to be independent (Varjo 1996) (Table 4). The
quadrants used in Hyrynsalmi were completely
cloud free on the selected test areas. In order to
reduce the effect of mixed pixels along roads,
lakes, and river sides, 20 m wide patches adja-
cent to such features were given null DN values.

In addition to Landsat TM images, two aerial
photographs were acquired covering subarea
3061. They were false colour infrared photos tak-
en at a scale of 1:30 000 and orthogonally cor-
rected and magnified to 1:10 000 for final use.
Visual interpretation suggested that the precision
of the orthogonal correction with these two imag-
es was insufficient for using the aerial photographs
as reference information for change delineations.
Every reference delineation digitized from the
photographs was first corrected into the Finnish
uniform coordinate system based on tie points lo-
cated around the change object under delineation.
It was estimated that by employing this proce-
dure, the location errors in reference delineations
were less than 5 m.
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3 Methodology

3.1 Processing Multi-temporal Landsat
TM Data for Forest Change Detection

3.1.1 Regression Calibration and Image
Differencing for One Image Pair

For making two overlaying Landsat TM scenes
radiometrically comparable, the earlier acquisi-
tion in each image pair was calibrated to the lev-
el of the later acquisition by robust regression
(Olsson 1993, Varjo 1996). Stand means of in-
tensity values were regressed between TM im-
ages for each channel (Equation 1); i.e. the first
order differences in intensities between the im-
ages caused by differences in atmospheric con-
ditions, observation and sun angles, normal
growth, possible seasonal differences and changes
in sensor properties were explained by regression.
This was achieved by using the calibration data
in which no known rapid changes existed (Ols-
son 1993). There were two types of phenomena
which were supposed to be loaded into the re-
gression coefficients: 1) changes in the sensor
properties and growth of trees were dependent
on time and 2) the other affecting phenomena,
which were just different realizations of condi-
tions existing on the time of image acquisition.
All these intensity changes between two acquisi-
tions were assumed to be linear. The calibration
and the whole analyses were executed separately
for peat lands and mineral soils because of their
different spectral responses (Saukkola 1982).
When estimating the parameters at Equation 1,
the inverse of within-stand variance of intensity
from earlier image was used as weight (Varjo
1996). Homogeneous stands therefore were giv-
en more weight in the parameter estimation. The
weighting reduced the effect of mixed border pix-
els typical to small stands and the registration and
rectification errors. The parameters of the model
were estimated twice. After the first estimation,
outliers and leverage points were detected and ex-
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cluded from the calibration data before the esti-
mation of the final calibration parameters (Varjo
1996). By detecting outliers and excluding them
from the calibration data, the effect of possible
unknown forest damages, undetected clouds and
cloud shadows were reduced from the calibration
(Varjo 1996).

Vin = ﬁﬂ.i\n + ,Blj,nxiﬁ + ﬂl‘i,nxifl,n

(1
+ﬁ3.i.nxi+].n + ﬁ-‘.i.nxi—l‘n tEin

where

B.i» = parameters of the model (p =0, 1, 2, 3, 4),
B..n = Owheni#4,
Bs.. = 0wheni=#3and
B.in = Owheni#6

v;» = mean DN value of a stand on channel i on
the dependent image
X;, = mean DN value of a stand on channel i on

the independent image taken n years
before the dependent image

n = time interval between dependent and
independent image, n = 1, 2, 3 years

i = Landsat TM channel 1 =1,2,3,4,5,6,7

€, = error term

An observation was considered to be an outlier if
the difference between the stand mean feature and
estimate of it from Equation 1.

y=y

was statistically significant at 5 % risk level (e.g.
Varjo 1996) according to the Student’s t-test. The
test was made separately for each band. Similar-
ly, an observation was considered to be a lever-
age point if Cook’s distance was greater than |
(Weisberg 1985, Rousseeuw and Leroy 1987 p.
227). Cook’s distance indicates the change of the
parameter estimate if the parameters of the cali-
bration model are estimated without the single
observation (Rousseeuw and Leroy 1987). If the
change is too strong the observation has errone-
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ously strong influence on the parameter estimates
(Rousseeuw and Leroy 1987).

Based on the relative calibration of the earlier
image, the stand level DN differences (AMpy,,)
mean (m = 1), standard deviation (m = 2), skew-
ness (m = 3), 25 % quartile (m = 4) and 75 %
quartile (m = 5) were calculated for every TM
channel and for every single image pair (Varjo
1996) (Equation 2).

AMDN(mu = Yomy)i — yﬁ(ln)i (2)
where
Yo = feature m calculated from the DN values

of a stand on channel i at time ¢

)A'(,,,,,- = feature m calculated from the DN values
of a stand on channel i at time 7 — n after
regression calibration by Equation 1

In addition the difference of within stand central
moments, the Angular Second Moment (ASM)
texture measure was computed using 3 X 3 pixel
window (Haralick et al. 1973) for Landsat TM
channels 3 and 4 (Equation 3). The difference of
ASM values were calculated as presented in equa-
tion 2. All these features AM and AASM were
considered as spectra] indicators and explaining
variables of forest change. They were supposed
to correlate with the change of stand properties
due to damages or human induced actions (e.g.
Saukkola 1982, Hime 1991, Olsson 1994a, Var-
jo 1996). In this study, the mean ASM for stands
was formed as a mean of four directions (Equa-
tion 3) (Haralick et al. 1973, Hyppinen 1994).
The ASM is a measure of the homogeneity of
intensities within a stand, and it varies from 0 to
1. For a spectrally homogeneous stand, the ASM
is close to one and for a strongly heterogenic stand
it is close to 0 (Haralick et al. 1973). The ASM
was selected based on the assumption that under
normal conditions treatments such as thinning
from below tend to make a stand more homoge-
neous. This is because the main tree storey and the
most fertile trees are favoured in these treatments.

Ng Ng P(i.i 2
ASM = zz[_(’_l)) 3)
i=1 j=1 R
J
where
P = relative frequencies in co-occurrence
matrix (Haralick et al. 1973) in which two

neighbouring cells are having DN values i
and j respectively

Ng = number of quantized DN classes

R = number of DN value pairs

3.1.2 Studentization of Regression Cali-
brated Differences

The regression calibrated stand level differences
(AMpyimy) in the training and the test data were
studentized (in the sense of Weisberg 1985) to
enable the use of generic training data for sever-
al image pairs. Regression calibration gives all
the DN difference images unique scaling of the
dependent image (see Equation 1) (Olsson
1994a). These explanatory candidates (AMpy ;)
were studentized to make them more independ-
ent of this image pair specific scaling (Weisberg
1985, Olsson 1994a) (Equation 4). When the stu-
dentized changes were used for discrimination,
it was assumed that spectrally exceptional untreat-
ed stands would not be as easily misclassified as
without studentization because the scaling factor
becomes larger compared to average observa-
tions.

AMDN(m)i

AM(","' = Siron T ——
RMSE, V 1+ ICV,'

4)

where

AMDN,,,; = DN difference of stand level feature
m on channel 7 with scaling of the
dependent image

AM,,,; = unitless studentized difference of
stand level feature m on channel i

RMSE, = root mean square error on channel
in Equation 1

lev, = leverage of an observation on chan-

nel i (Weisberg 1985, Olsson 1994a)

3.1.3 Range Scaling of the Regression
Calibrated and Studentized Differences

Range scaling presented by Franssila et al. (1981)
(Equation 5) was used in the cases where studen-
tized differences AM,,,, between image pairs were
not comparable because of a different range in
corresponding training classes (for an empirical
example see Appendix 3A).
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z — — Sd?
;= b x| xF—xW— 3)

y; = AM,,, on channel i in the difference
image w scaled according to the difference
image z

x = AM,,, on channel i in difference image w

Sdf = standard deviation of AM,,, value on
channel i in difference image z

SdY = standard deviation of AM,,, value on
channel 7 in difference image w

xf = AM,,, value on channel i in difference

Il image z

x} = AM,,; value on channel i in difference
image w

The combination of the three radiometric calibra-
tion steps are presented: stand level regression,
studentization of the regression calibrated stand
level DN differences, and range scaling of the
studentized DN differences when the studentiza-
tion by some reason did not produce comparable
ranges. These methods were also tested separately
and the effect of the calibration with respect to
change detection was analysed. The presented
radiometric calibration was assumed to enable the
use of training data from a totally different peri-
od when image pairs cover each other, or even
from totally different areas as long as a similar
type of forest is analysed.

3.2 Method for Detecting and Re-lineating
Rapid Forest Changes Using Multi-
temporal Landsat TM Data

The results of Olsson (1994a) and Varjo (1993,
1996) were combined when selecting the change
detection methodology for this work. The above
calibration approach was selected to enable the
use of generic training data for detecting rapid
forest changes (Varjo 1993, 1996, Olsson 1994a).
Olsson (1994a) proposed a studentization meth-
od for making separate difference images more
comparable. Varjo (1996) used a two stage stand
level nonparametric change classification. In this
two stage approach, changes were first classified
by nonparametric discrimination mainly based on
intensity difference between two Landsat TM
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acquisitions. In the second stage, possible change
areas were re-examined by using a measure of
spectral change, available forest attribute data and
knowledge of possible treatments in certain con-
ditions using the rule based expert system (Varjo
1996). The measure of spectral change used in
the second phase was Kolmogorow-Smirnov’s D
and its occurrence point (Varjo 1996). In this
work, the change classification was accomplished
in one phase by replacing the second stage of
Varjo’s (1996) approach with the studentized
variables of spectral change proposed by Olsson
(1994a) in the classification procedure used by
Varjo (1993, 1996). The Kolmogorow-Smir-
now’s D for spectral change on Landsat TM chan-
nels was also replaced by studentized differenc-
es used as an explaining variable in the discrimi-
nation. The explanatory spectral variables for the
change discrimination were selected on the basis
of results from previous studies (Hdme 1991,
Varjo 1996), as well as from the results of step-
wise parametric discrimination (Ranta et al.
1989). The rule based expert system of Varjo
(1993, 1996) was replaced by the use of the ex-
perience of local forest management officer in-
stead of general rules.

A nonparametric stand level discrimination
(SAS... 1989, Varjo 1993, 1996) was also em-
ployed for detecting changes. The selection was
based on the assumption that the stand level dif-
ference features used to describe the treatment
classes do not accurately enough follow any par-
ametric distribution. Even the distribution of the
stand means belonging to a class can be multi-
modal or non symmetric. There are several obvi-
ous reasons for these problems. It is difficult to
collect enough training observations for all the
treatment classes. Treatments in certain classes,
such as uncommercial and commercial thinnings,
are sometimes implemented only in dense parts
of the stands. Another example are the drastic
changes which only occur in a part of a stand.
When such stands are present in any given class,
they make the class distributions very complicat-
ed to describe by a parametric distribution and a
nonparametric solution becomes the most appro-
priate one (Varjo 1996).

The explaining stand level variables in each class
of interest in the training data were described by
Kernel functions (Equation 6) (Silverman 1986,
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SAS... 1989). Similar approach has resulted good
accuracy in detecting forest changes (Varjo 1993,
1995, 1996). The normal distribution form of the
single Kernel function was used. As in the cali-
bration, the stand delineation was used as prior
information for forming units, stands, for change
detection. A Kernel density estimate was calcu-
lated for every stand under classification for as-
signing stands to their treatment class (Equation
6). The difference between this method and the
traditional Maximum likelihood (ML) classifica-
tion is that in this method the Mahanalobis dis-
tance is calculated between every stand within
the training class and the stand under classifica-
tion. The density estimates assigning a stand to a
training class are formed as a mean of the all the
distances between an stand under classification
and all stands in the training class (Equation 6). In
ordinary ML classification, an stand under classi-
fication is compared only with training class means
(Mather 1987). The robustness of the method was
analysed by the Jackknife method (Ranta et al.
1989).

I <
f«(X)=I—2K<-(x—y,-) ©6)
¢ i=l
where
fuAx) = kernel estimate of density of explaining
variables given that the stand belongs to

the class ¢
[, = number of stands in the training class ¢
y, = stand i in the training class ¢
1 _lz' s-1.Z
K(v(z)z—p————]e 2 h?
(2m)2 helS)2
P = dimension
h = window parameter for smoothing
S = pooled variance-covariance matrix of

explaining variables

A stand is classified into class ¢ according to the
highest posterior probability (Equation 7). The
prior probabilities were also set equal to decrease
the risk of misclassifications of changes such as
forest damages which can be expected to have
equal occurrence probability, for example, in all
the age classes.

p(clx) = Ifci

Y fe(x)
c=1

)

where

p(clx) = posterior probability that the stand x
belongs to the class ¢

l = number of classes in the training data

The change classification in the test data was con-
trolled by inspecting all the proposed change sites
in the field. The change type was labelled in the
field and if it differed from the change class pro-
posed by the method, the stand attribute infor-
mation was inventoried according the traditional
stand level ocular inventory procedure of the FPS
for further analysis. The ‘untreated’ class was
controlled by sequential sampling (Loetsch and
Haller 1973, Varjo 1996).

The overall percentage of correct classifications
was used to describe the classification accuracy.
This was because the overall accuracy directly
affects the amount of field work needed to control
the discrepancies between image analysis and
treatment information. It was considered the most
important component of the accuracy for this ap-
plication (Lark 1995). The percentage of correct
classifications is calculated by dividing the sum
of the numbers in diagonal at the confusion matri-
ces by the total number of observations. The mean
of the class specific correct classification percent-
ages (Mather 1987) was not used because all the
change classes found from ground inspection in
the test data were not present in the training data.
In these classes, classification into any of the
change classes present in the training data was
considered to be correct because they should be
noticed when comparing the change classifica-
tion results with the treatment information. The
robustness of the classification accuracy was eval-
uated by estimating the lower edge of the 95 %
confidence level for the overall percentage of the
correct classification (Equation 8) (Jensen 1986).
In the evaluation, the overall percentage of the
correct classification was expected to follow Gaus-
sian distribution. Accuracy assessments based on
the x? distribution, such as )*-test, were not con-
sidered because of the assumptions required for
using the x> distribution (Ranta et al. 1989). This
is because with several change classes the number
of observations should be quite high to ensure
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that the expected values in confusion matrix will Base map Landsat TM material
be high enough (Ranta et al. 1989). H90 H92 H93
s=P—|z, Q +— (8) /
\ n n TSa_ v 7
where ”
s = lower confidence limit o 3
P = correct classification percentage Reg'|stra?|on e -
rectification ¢ S
AR Ho2 Ho3
b4 = critical value in Student’s t-test HED 2
n = sample size

In addition to the assessment of stand level accu-
racy of the change detection, there is a need to
control the delineation of the detected changes.
Possible differences are due to the differences in
the size of inventory units, stands, and actual treat-
ment units. In addition, possible forest damages
can not be expected to follow stand boundaries.
Utilisation of the procedure proposed for change
detection is too heavy to be used at the pixel lev-
el and that is why it was not directly tested for
change delineation. Other methods are therefore
needed for checking the delineation of the detect-
ed changes.

The possibility to delineate changes was dem-
onstrated by screen digitizing visible changes from
single Landsat TM and difference images, and
comparing them with reference data from aerial
photographs. In addition, the present stage of the
operational stand boundary information after ap-
plication of continuous updating was studied by
comparing the stand boundary data base to the
reference data. This was assumed to indicate the
actual need for correcting the boundaries of the
stands in which changes were detected.

3.3 Applying the Presented Methods for
Controlling Continuously Updated
Forest Information

The application of the methods presented to the
case of the FPS consisted of three main parts. In
the first part, the Landsat TM images were geo-
corrected and radiometrically calibrated for for-
est change detection. The available field infor-
mation was combined with the satellite imagery
(Fig. 9). The first part consisted of six steps:
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Geocoded
TM images

Radiometrical calibrations )
between image pairs

Forming standwis 92-90 H93-90 H93-92
differences for
change detection

Fig. 9. Producing the multi-temporal TM data for
forest change detection.

1) registration and rectification of the images

2) combining digital stand maps with imagery

3) radiometric relative calibration of the image pairs
by regression

4) calculating stand level difference features used in
the subsequent analysis

5) studentization of the difference features

6) range scaling the studentized difference in the
cases where studentization failed to bring training
and test data into comparable range.

In the second part, rapid changes in the forest
were detected from Landsat TM data and, in the
third part, the changes detected from satellite
images were compared to the recorded man-made
changes. Based on the comparison, the stands
showing discrepancies between treatment infor-
mation and image analysis were recommended
for field updating (Fig. 10). The third part includ-
ed also a cost comparison between presented con-
tinuous updating with satellite image aided con-
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spectral features with
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Updating the standwise forest information by inspecting
detected differences in field

Fig. 10. Detecting changes form multi-temporal TM
data and updating the stand information.

trol and traditional updating by repetitive base-
line inventories.

The second part consisted of three steps:

1) selecting spectral difference features for change
detection

2) combining the old field attribute information with
spectral features for change detection

3) detecting stand level changes using nonparamet-
ric classifier.

The third part consisted of three steps:

1) the local forest management otficer compared the
detected changes with the stand treatment records

2) the stands showing considerable discrepancy from
previous information sources were recommended
for field inspection

3) the applicability of the method for controlling the
quality of continuously updated forest informa-
tion was evaluated by comparing the costs of the
methods presented with the old updating by re-
peating the base-line inventories.
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4 Results

4.1 Radiometric Calibration of Multi-
temporal Landsat TM Images

Altogether in the three difference images, 93
stands were detected as outliers and three stands
as leverage points on mineral soils, and 100 stands
as outliers and five stands as leverage points on
peat land in the calibration data (Table 5). On
mineral soils, 23 % of the detected outliers were
young stands of low basal area and all the lever-
age points were low density pine stands. On peat
land, 47 % of the outliers were open bogs and all
the leverage points were small stands of low den-
sity (Table 5).

Simple regression models were estimated for
Landsat TM channels 1, 2, 5, and 7, while for
channels 3, 4 and 6 multiple regression was used

(see Equation 1) (Table 6). After excluding the
outliers and leverage points, the root mean square
errors of the final calibration models varied from
0.2280 to 0.9471 (Table 6, Appendix 1, Fig. 11).
The coefficient of determination varied from 0.59
to 0.94 with multiple regression and from 0.66 to
0.93 with simple regression. The coefficients of
determination should not be interpreted literally
because of outlier exclusion. However they are
indicative because the same procedure were ap-
plied for all the image pairs. Generally, the coef-
ficients of determination were at the same level
for H92-H90 and H93-H92 but slightly weaker
for H93-H90.

The usefulness of the training data in which
treatments were implemented in different years
within difference image was examined by Stu-

Table 5. Characteristics of the outliers and leverage points excluded from the calibration data.

Number Mean area Sd of area Mean BA Sd of BA Outliers Outliers Outliers
ha ha m%ha m%ha H92-H90 H93-H92 H93-H%0
D1 DS D1 DS D1 DS
M outliers 93 5.9 12.4 16.5 8.9 23 21 23 21 33 25
P outliers 100 5.6 8.2 8.2 7.5 37 26 23 16 26 20
M lev. points 3 1.0 0.4 6.3 1.5
P lev. points 5 1.7 0.9 4.4 29

D | = detected from one channel only, D S = detected from several channels.

Table 6. RMSE of the calibration models.

RMSE H92-H90

RMSE H93-H90

RMSE H93-H92
P P

Landsat TM Parameters

channel Bo B B B Ba

1 * i 0.4014
2 * s 0.4402
3 * * * 0.4226
4 ¥ s N 0.3536
5 i e 0.4185
6 i * - 0.8757
7 * * 0.5007

0.3089 0.2824 0.2377 0.3828 0.2934
0.4005 0.3400  0.3459 0.4068  0.3908
0.5341 0.3523  0.2695 0.3893  0.3031
0.2479 0.4979  0.5043 0.4578 0.4164
0.6176 0.2648  0.3359 0.3356  0.3546
0.9471 0.3731  0.4562 0.3036  0.4476
0.5331 0.2280 0.2364 0.2999  0.3107

* Effective in Equation 1, M = mineral soils and P = peat land.
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Landsat TM 1990 original
channels 4,3 and 2 (RGB)

Legend for 1992 intensity level

Young coniferous stand
with hardwood thicket

3
e
- Mature coniferous stand

Open bog

Clear cut between 1990 and 1992

. KM
2 0

Landsat TM 1990 calibrated to TM 1992
channels 4, 3 and 2 (RGB)

Landsat TM 1992 original
channels 4,3 and 2 (RGB)

Fig. 11. Radiometric calibration by robust regression, an example from sub-area 3061 on mineral
soils. Copyright of the satellite images belong to: ©ESA, 1990 and 1992, EURIMAGE,
National Land Survey of Finland/Satellite Image Centre.

REN

Legend for difference |age TM 1992 - calibrated
TM 1990 + 100, difference channels 4,3 and 2 (RGI

m* Regeneration cut
Mete
Preparatory cut  soo0 0

Fig. 12. The regentration cut and preparatory cut in
the regression calibrated difference image. Copy-
right of the satellite images belong to: ©ESA,
1990 and 1992, EURIMAGE, National Land Sur-
vey of Finland/Satellite Image Centre.

dent’s t-test with respect to differences of stand
means between different treatment classes and the
‘untreated’ class. The longest time interval, im-
age pair H93-H90, was selected for this compar-
ison. Simple t-test was selected analyse the first
order explaining power of different TM channels
(Appendix 2). Statistically significant differenc-
es were most often found on TM channels 2, 3, 5
and 7. In the case of drastic changes in mineral
soil stands, the differences were significant in al-
most all the TM difference channels except chan-
nel four (Appendix 2A1-3, Fig. 12). The only
exception was a soil preparation which took place
between 1990 and 1991. This was separable only
on channel 4 and without any calibration. In the
case of majority of moderate changes, the differ-
ence was significant at least on one of the differ-
ence channels (see Appendix 2A1-3). This indi-
cated that it should be possible to separate at least
the treated and untreated stands in the training
data on mineral soils on the basis of spectral in-
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Fig. 13. The stand level mean differences and the
standard deviations of the differences at the cali-
brated and studentized situation on mineral soil in
the ‘untreated’ class on Landsat TM channel 3,
H92-H90.

formation (Appendix 2A1-3). On peat land, only
the drastic changes were separable on the basis of
spectral information (Appendix 2B). The separa-
bility of the change classes was not dependent on
the implementation time within the three-year
interval (Appendix 2). The results of the Student’s
t-test should be interpreted keeping the multi-com-
parison problem and the distribution violations in
mind.

The effect of the regression calibration and stu-
dentization was initially studied by the difference
of stand means in different development classes
onmineral soils in the ‘untreated’ class. The devel-
opment classes used were: 0 =thicket, 10 =young
forest 7cm <D< 17 cm, 30 = moderate age forest
D 217 cm and 40 = mature forest. After the re-
gression calibration and studentization, the im-
age pair H92-H90 showed no statistically signif-
icant intensity changes at 5 % risk according to
the t-test in any of the development classes in the
‘untreated’ class (Figs. 13 and 14).

Secondly, the effects of the proposed steps of
the radiometric calibration process were tested by
comparing the separability of the stand means be-
tween the ‘untreated’ class and the treatment class-
es after each step. The image pair H93—-H90 was
used for comparisons on mineral soils (Appendix
2A1-3). There were some differences in the sep-
arability of certain treatment classes depending
on the calibration. The ‘uncommercial thinning’
class was more separable in the uncalibrated sit-
uation compared to the calibrated data. In the
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Fig. 14. The stand level mean differences and the
standard deviations of the differences at the cali-
brated and studentized situation on mineral soil in
the ‘untreated’ class on Landsat TM channel 7,
H92-H90.

‘commercial thinning’ class, the separability was
of the same order after all the calibrations. How-
ever, TM channel 7 was more important in the
uncalibrated situation compared to the calibrated
data in the both thinning classes. In the ‘prepara-
tory cut’ class there were no differences depend-
ent upon the calibration, but the uncalibrated data
worked best in the ‘hold over removal’ class. In
the most drastic change classes, i.e. ‘clear cut’
and ‘regeneration cut for natural regeneration’,
there were no differences dependent upon the
calibration. The only exception was in the ‘soil
preparation’ class. None of these changed stands
were clearly separable with the uncalibrated data,
although, a later soil preparation could be identi-
fied based on calibrated data (Appendix 2A1-3).
Altogether there were only marginal differences
between regression calibrated, and regression
calibrated and studentized data.

The possibilities of using generic training data
for several separate image pairs was analysed by
comparing the differences of the stand mean in-
tensities between regression calibrated and stu-
dentized image pairs (Appendix 3). The analysis
based on stand means was selected because the
difference of the stand mean intensities alone
described the used change classes quite accurate-
ly (see classification results chapter 4.2). The
change classes detected from different difference
images on mineral soils in the Hyrynsalmi area
showed a similar spectral response on all the Land-
sat TM channels. The only exceptions were chan-
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nels S and 7 in the ‘uncommercial thinning’ class,
channel 4 in the ‘commercial thinning’ class, and
all the channels in the ‘preparatory cut’ class. In
the ‘commercial thinning’ class on mineral soils,
the image pair H93-H90 showed an increase in
TM channel 4 whereas commercial thinning de-
creased TM channel 4 intensities in all the other
difference images. The ‘uncommercial thinning’
class showed increase in the image pair H93-H90
but decrease in the image pair H92-H90 on chan-
nels 5 and 7. A preparatory cut resulted increased
intensities in all the channels but the magnitude
of change varied between the image pairs (Ap-
pendix 3A).

Despite the studentization, spectral changes
were different between the Nurmes and Hyryn-
salmi areas on mineral soils for almost all the
change classes on all the channels. In the ‘com-
mercial thinning” and ‘clear cut’ change classes
studentized spectral changes were smaller in the
Nurmes test data on all the channels. In the ‘HOR’
class, changes were larger on all the channels
except on channel 4. This may have been because
there were only few observations for both test sites
specially inthe ‘HOR’ class. The ‘untreated’ class
in the Nurmes test data showed greater differenc-
es compared to the Hyrynsalmi test data (Appen-
dix 3A). Without scaling into comparable range,
comparisons between the Nurmes and Hyrynsal-
mi test sites were meaningless (Appendix 3). The
range scaling method proposed by Franssila et
al.. (1981) (Equation 5) was applied for scaling
the studentized training data from different loca-
tions.

On peat land, the studentized means H93-H92
showed lower intensity changes compared to H93—
H90 from the Hyrynsalmi test site (Appendix 3B).

A comparison between Nurmes and Hyrynsalmi
was not useful for peat lands because there were
so few observations.

4.2 Change Detection

The difference of stand mean intensities, stand-
ard deviations, skewness, 25 % and 75 % quar-
tiles for all the TM channels were used for feature
selection applying the backward stepwise discri-
minant analyses (SAS ... 1989). The original DN
values were not included because of the need to
limit the number of explaining variables and be-
cause stand attribute information was available
for separating the same types of spectral changes
occurring in different forests. In the beginning of
the analysis all the previous spectral variables were
included in the discrimination model. In each step
the explanatory variable which had the lowest
squared partial correlation with the change class-
es was removed until the discrimination model
was no longer improved. This was done for each
of the three intervals on both mineral soils and
peat land using studentized training data. The re-
sults of these analysis were combined with Var-
jo’s (1993) selection of explaining variables. The
difference variables which had been selected at
least three times out of the four analyses, were
selected to be used as explaining variables in
change detection (Table 7). The only exceptions
were the differences of channel 1 and 2 means
which were accepted on peat land though they
had been selected only twice. All the selected
spectral features were studentized according the
calibration error and the leverage in the test and in
the training data respectively for the test and train-

Table 7. Spectral explanatory variables used in the change discrimination.

Explanatory Landsat TM channel
variable 1 2 3 4 5 6 i
M P M P M P M P M P M P M P
3 * * * * * * * * *
DMmcun * N ) i % " «
DMSd * * * . .
DMgicuncss " "
DMZS'% quartile *
* :
DM7S‘»& quartile

* used as explanatory variable in the change discrimination
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ing observations. In addition to spectral informa-
tion, the old field information employed were the
basal area of pine, spruce and birch, and the age of
the main storey. According to the stepwise dis-
crimination, the selected texture measure AASM
on channels 3 and 4 had so low explanation value
that it was excluded from the explanatory vari-
ables. Consequently, only the change of standard
deviation was used as a measure of texture.

The window parameter for discrimination (h in
Equation 6) was based on the standard deviation
of stand mean differences on Landsat TM chan-
nel 3 and number of stands (Varjo 1996). Silver-
man’s (1986 p. 45) approximation was used in
the estimation. The window parameters varied
from 0.221 to 0.621 (Table 8).

In the discrimination analysis, applying regres-
sion calibrated and studentized difference images
from Hyrynsalmi area, the correct classification
percentage in the training data for all the intervals
was 100 on both mineral soils and on peat land.
For the image pairs H92-H90 and H93-H92, a

Table 8. Window parameters used in the discrimina-

tion.
The image pair Window parameter
Mineral soil Peat land
H92-H90 0.355 0.414
H93-H92 0.221 0.434
H93-H90 0.621 0.600

part of the training observations were from other
difference images (Table 3). When the classifica-
tion in training data on mineral soils was tested
for the image pair H92-H90 using only the differ-
ences of stand means from TM channels 2-7 as
explanatory variables, the percentage of correct
classifications was 96.7. Because of the overlap
of the training and the test data consisting of 46
stands, mainly uncommercial thinnings, could not
be avoided, the robustness of the method was stud-
ied by the Jackknife analysis. The overlap was
due to the low number of observations. In the Jack-
knife analysis the training data were classified by
dropping out observations one by one from the
analysis and classifying the observation excluded
as an independent observation. This test was ap-
plied only to the difference images of two- and
three-year intervals because with a one-year in-
terval there were too few change observations
within the period and it was necessary to avoid
the possibility of error caused by using training
data from other intervals. The results were almost
the same as for the generic training data, i.e., the
percentage of correct classifications was 100 ex-
cept in one case; concerning a two-year interval
on peat land there were probably too few obser-
vations available in the ‘preparatory cut’ class.
Because of this, seven untreated stands (2.0 %)
were classified into the ‘preparatory cut’ class.
The proposed nonparametric change discrimina-
tion was compared to a traditional ML solution
employing a two-year interval on mineral soil.

Table 9. Jackknife change classification results in the training data using the traditional ML classifier with the

image pair H92-H90 on mineral soils .

Treatment in the

Image analysis by the Jackknife method
Prep. cut Reg. cut N. Clear cut  Soil prep. Total %o

training data Unt. UnC. thinn. C. thinn.
Unt. 357 6 8
UnC. thinn. 1 12

C. thinn. 3 7
Prep. cut 1

Reg. cut N. & soil prep. |
Clear cut & soil prep. 1 1

Soil prep. 1

Total 363 20 16
% 76.4 4.2 34

17 2 390 82.2
13 27

1 1 12 2.5
15 16 3.4
2 6 1 1 11 2.3
2 1 17 22 4.6
10 11 2.3

37 8 18 13 475% 100.0
7.8 1.7 38 2.7 100 89.3

* 25 changes that occurred within H93—-H90 are excluded to make sure that possible preparatory actions for 1993 treatments before H92
image, such as opening forwarding tracks or temporary forest roads, do not affect the result.
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Table 10. Change discrimination results for the Hyrynsalmi test data using the image pair H92-H90 on mineral
soils. Results using the ML classifier are presented in italics*.

Field check Image analysis
Unt.  UnC. thinn. C.thinn. Prep. cut HOR  Reg.cutN. Clear cut Soil prep. Total %

Unt. 436 11 1 8 4 2 1 463 78.1

UnC. thinn. 21 19 40 6.7
16 24

C. thinn. 1 4 2 7 1.2
2 1 4

Prep. cut 1 9 10 1.7
2 1 7

HOR 1 1 0.2

1

Reg. cut N. 2 1 15 1 19 3.2

& soil prep. 1 1 15 1

Clear cut 2 3 | 16 6 28 4.7

& soil prep. 9 S 10 4

Partial clear cut 4 5 3 1 1 14 24

or Reg. cut N. 4 1 2 1 8 1.3
9 2 7 4( combined)

Soil prep.

Drain. 2 2 0.3
2

Wind damage 1 1 0.2
1

*Total 470 31 16 27 5 16 21 7 593 100

%o 793 5.2 2.7 4.6 0.8 2.7 35 1.2 100 86.7

*Summary information concerning the ML classification is not presented because of the lack of information for the ‘untreated’ class.

With the above mentioned Jackknife classifica-
tion of the training data, the ML classifier result-
ed in 89.3 % correct classification (Table 9).
The effect of studentization was studied by clas-
sifying the Hyrynsalmi training data without stu-
dentization. As could be expected based on the
analysis during the calibration, the results were
exactly the same as with the studentization. The
usability of the studentized training data was test-
ed by dividing the training data into two parts;
changes were detected from H93-H92 using the
training data from H92-H90. On the mineral soil,
the percentage of correct classification was only
1.7 percentage unit lower compared to the situa-
tion including the training data from H93-H92.
(Table 11, Appendix 4B and 5A). Concerning peat
lands, omitting the training observations from
H93-H92 seemed to slightly improve the results.
This may, however, result from the differences in
the standard deviations between the H93 and oth-

er Landsat TM images from the Hyrynsalmi area
as well as from the uneven distribution of the peat
land training observations at different intervals
(Table 11, Appendix 4E and 5B).

In the test data, the percentage of correct classi-
fications when using studentized explainers var-
ied from 55.3 % on peat land to 86.7 % on mineral
soils depending on the interval between the imag-
es (Table 10 and 11, Appendix 4). The ML clas-
sifier was compared to the selected nonparamet-
ric classifier by classifying the changed stands in
the test data on mineral soils. Unchanged stands
could not be used because all the stands which
were found to be changed by the ML classifier
could not any more be inspected in the field. When
classifying the changed stands only, the correct
classification for the ML classifier was 56.2 %
and 60.0 % for the selected nonparametric classi-
fier. If any change classified to a change class was
considered to be correct in this test, the percent-
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age of correct classification was 75.4 % using ML~ 4.3 Change Detection Errors -
and 73.8 % using the selected nonparametric clas- :§ £ 1
sifier (Table 10). 4.3.1 Change Class Labelling Errors £2.,8% | mSSSTN Rk R hrhs
To examine the possibility of using generic train- g ;;Eg'g ~oc~occococcocooo
ing data from geographically different locations,  The classification errors which occurred with the B §§ Lo
the Hyrynsalmi training data were classified by — nonparametric classifier for the Hyrynsalmi test e 8& | @7 =T - STYESE
using the training data of Nurmes (Varjo 1996)  data were analysed on the basis of the stand reg- S
and vice versa. For these experiments the explain-  ister and the observations made during the field E e L " I
ing variables were studentized stand level differ-  checking. (Tables 12 and 13). The accuracy of By = i F =1 5]
ences of means for TM channels 3-7, difference  the classification in the ‘untreated’ class was con- 55 g8 o4 =R
of skewness for TM channel 7 and differences of  trolled by a sequential sampling. According to the ;2 o " | =
standard deviations for TM channels 2,3,6and 7  sequential sampling scheme, the stands classified s &% |® & = i
and the basal area (Varjo 1996). It became obvi- into the ‘untreated’ class were untreated at 5 %
ous that the ranges of the regression calibrated  risk. The aim was to find possible reasons for clas- dl el | anills = |
and studentized difference images were different  sification errors or to determine common denom- z | 33 i i ITE
between these test areas (Appendix 3A). These  inators which could possibly permit the omission 2 E?% %8 Sn® bl O~/
AM,,,; were smoothed by range scaling the stu-  of part of the unchanged stands which were clas- 21 5= T I - * © "
dentized differences into the same mean and var-  sified as changed out from the field inspection % | | BT l T = ¥ "‘
iance (see Equation 5). The training observations  (Fig. 15). Only the error classes including at least £
from the area not covered by the difference image  two stands were analysed. In addition, errors with g £ o | maocmnow Qo wanDinoy
under classification seemed to perform quite nicely ~ partial treatment, soil preparation and uncommer- :::, 5 Fhdnll (N = B hai= ke
after the range scaling. Atleast, whenbroad change  cial thinnings on peat lands were not included in '*E < ;E;‘g ARFIE =¥ IniY E ~
classes such as employed in the Nurmes data are ~ Tables 12 and 13 because they were obviously 2 | 28 dg | ao ry i & Cyunnnn
accepted, a useable accuracy can be achieved caused by timing problems and unclosed cano- -% il 1T T il i e B
(Table 11, Appendix 6). py. The most serious error was the classification ;f
of a changed stand as ‘untreated’. There were only _8 £ dg | comnwem 5 S e N s e 0 S
two clear reasons for this error. A high propor- g | E3 T
tion of deciduous species caused some stands to E §§ =& S em ol O el B Nk W
be classified into the ‘untreated’ class although = ;2 de | o~ o LI B g
they really belonged to the ‘preparatory cut’ class. A
Such stands were not present at the training data §
-é‘ £2 28 | —NemooN SESECENES P =S
= | 22
Table 11. Correct classification percentages with different combinations of the training and test data. 2 gg 2_5; %8 SN N—NOS~N—~mn™m
T A | —~ N -~ AN ==~
Test data Training data Number of Correct classification % =
classes In training In test 95 % con- e
training/test data data fidence level 8
' _ . é & 28| —aToox NSNS oam
N90-N88 Mineral soil NOO-N88 (Varjo 1993) 4/4 100.0 *98.3 97.4 S | S
N90-N88 Peat land N9O-N8S (Varjo 1993) 4/4 979  *91.] 88.9 2| g8 &8 o~ %o —~ 0% 0w
H92-H90 Mineral soil H92-H90, H93-H92 8/12 100.0 86.7 84.3 5| 2= _ o
H93-H92 Mineral soil H92-H90, H93-H92 8/12 100.0 75.2 72.2 2= Ee = b «
H93-H90 Mineral soil H93-H90 8/12 100.0 78.2 75.3 8 . ;
H92-H90 Peat land H92-H90, H93-H92 9/12 100.0 71.5 64.4 S g = = - &
H93-H92 Peat land H92-H90, H93-H92 912 1000 740 671 8| .3 £ £ 3 3 3
H93-HY0 Peat land H93-H90 9/12 100.0 55.3 475 5| 25 £ £ £ £ £ @ £ 5§ 8 § =
H93-H92 Mineral soil H92-H90 716 100.0 73.5 68.3 8| Eg D 2 B B B b v dad B O o
H93-H92 Peat land H92-H90 5/4 100.0 74.9 69.8 & =
H93-H90 Mineral soil N90-N88 4/8 1000 *85.4 84.6 8 TR~ £
N90-N88 Mineral soil H93-H90 4/4 99.8 #80.2 76.6 o £ s E 8 2 2 e
2|38 @ £ g 3 E £ £ £ £ £ £ |z
e | 22 5B U A U A B B B8 B B 8 2

* Changes grouped according to (Varjo 1993): untreated, moderately changed and drastically changed.
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(compare Tables 1 and 12). Furthermore, on peat z On peat land, the reasons for errors in the ‘un-  graphs. Two types of errors could be identified
lands the obvious reason for errors in the ‘com- E% b | e o By g o commercial thinning’ class were similar to those by comparing the screen digitized delineations
mercial thinning’ class was the greater propor- E _ii;g‘”@ o for mineral soils. Untreated sparse and low vol-  from TM images and the present delineation from
tion of deciduous species than in the training data g3 E 28 | ocomto™m =N ume stands were sometimes classified into the  the map base with the reference delineation. The
(compare Tables 2 and 13). All the damaged § EE(,I s | cooo . change classes such as ‘commercial thinning’ or  error types were commission errors, i.e., untreat-
stands were not recognized as having changed, ge = o ‘preparatory cut’. In such cases, the tree canopy  ed areas, which had been delineated as treated
but they did not exist in training data; neither did © may not have been the main reflecting element,  areas, and omission i.e., where treated areas had
drainings occur in the mineral soils’ training data. By s | %« F i and differences in moisture, and consequently in  been delineated as untreated areas (Table 14). The
The misclassification from the ‘soil preparation’ ga o i the ground vegetation, may have caused spectral ~ change discrimination algorithm presented was
class to the other change classes were probably g% 28 | @~ © oot changes which were misinterpreted. Anotherrea-  not tested with respect to the change delineation
due to the fact that there was often no informa- 52 A5 | s Jap sonmay be the rapid growthin young stands which  as it was not applicable at the pixel level. As an
tion available in either the training data or the test > may affect the detected intensities especially con-  alternative approach, screen digitization from sin-
data to separate the spectral responses from treat- cerning the treatments from the beginning of the  gle and difference image were tested for correct-
ments aiming at regeneration and soil prepara- B 45 | &= £3 e 1y g o 0 analysis interval. Such stands can be left out of  ing the errors in the delineations of drastic treat-
tions. o f:@ 'T 3 the field inspection without risking the quality of ~ ments. It was demonstrated that the change de-
The reasons were more obvious for the classifi- 3 2 5 o8 | =~ SRS ae = the continuously updated stand information. lineation errors concerning drastic change class-
cation etll*rors in hthe olzlpositg directi?n, i.';' g) the Z ;235 dg | Beus 4 loa es can be improved by screen digitization from
cases when unchanged stands were classifiedinto = Landsat TM data (Table 14, Fig. 17).
the change classes. In the training data, the ‘un- % 4.3.2 Change Delineation Errors
commercial'thinning’ (':lass was repre_seqted oqu é S, 28 | # » ggeamy
by the cleaning of sapling stands, while in reality % ; g § o L NANAN When the delineation of the man-made changes 4.4 Costs of the Methods Presented
various different treatments, such as the clearing FREL 58 0 = YN =N was examined by comparing the clear cut and
of a felling area, had spectral responses close to 2 Eu’;f g | 2= %o regeneration cut for natural regeneration areas,  The estimated decrease of field work with con-
this training class. In addition, the cleaning of a _g which were clearly visible, to the existing stand  tinuous updating controlled by the proposed
“sapling stand was often done in such a way that 3 delineations it was obvious that several errors  method was compared to the old updating meth-
only the most dense parts of the stand were treat- 2 | £ 28 | oo tocooo existed (Fig. 16). Two new aerial photographs  od using repetitive base-line inventories. The need
ed. In such a case, the spectral response from the & EZ; v Ll L L corrected to orthogonal projection and covering  for field inspections in the test data were estimated
whole stand changed less than when the whole % ég Ko | & e sub-area 3061 were used for studying the deline-  for a hypothetical ten-year-control period by as-
stand was treated. Another reason decreasingthe = | < dg | oox oo ation errors and the possibilities for a more pre-  suming that the level of the changes from one- to
separability of this class may be the larger varia- s |8 cise re-lineation. The reference delineation for  three-year control periods remain constant dur-
tion on young untreated stands compared to the 'g clear cut and regeneration cut for natural regen-  ing the whole ten-year period. The final costs
older ones (see Fig. 13). On mineral soils in the _‘é 5 2 g8 [ oo amo~oo eration areas was made from these aerial photo- ~ were estimated for a thirty-year period by multi-
‘commercia} thinning’ and ‘prf:paratqry cu.t’ class- £ -g'{E g 25 | e HRRRN plying the ten-year period costs by three. The thir-
es, Fhe possible reason for mlscla§51ﬁcat10n was 2 | S£3° r T ty-year period was supposed to be the maximum
again the greater proportion of deciduous species S | £% 43 | T SRS Table 14. Possibilities to correct delineation errors  interval for the applicability of the available
than in the training data, especially with respect %‘ from Landsat TM data. growth models and thus the maximum interval
to the ‘preparatory cut’ class. The ‘HOR’ class 2 L1 | between two base line inventories when apply-
was sometimes confus.ed with improvement cut- é 2. 48 | —~ 00V M= 5:‘]‘:;1'1';:3“ d e(;l(:\:;ILIE) - —wi omissioning continuous updating.
amgs., andf tl}llls was qbv10usllz cat;sc;d by the sp?rse 9 : E i 1 e bl k] area % area % area % The district officer responsible for the treatments
ensity of the growing stock and thus spectralre- g | 22 < il in the area compared the presented change classi-
sponse from ground vegetation. = 252 98 | o« -~ Present delineation 54 25 21 fication resultspwilh trezI:tmem fufmation snl
Errors in the ‘clear cutting’ class were surpris- £ Clearcutand 85 14 1 present attribute data. Based on this comparison,
ing and no obvious reasons for them were found. % 8 . g :(%mt;f;grj finlnmtan all the stands from the test data were divided into
One possibility may be that in some stands the ¢ Jg E ° ¢ z Clear cut and 77 17 6 three decision categories according to the need
attribute data were already updated according to £ é’JE g € § & E '§' ree. cut N. delinieation for further field inspection (Varjo 1996):
the situation after the clear cut while in the others & | ~ = 2 =2 @ R H g from H92-H90
it was not. However, the clear cut classifications 3-; E § An example of 69 13 18 a) No need for field inspection: no differences be-
were not affected when the classification was test- g = fg Z one screen digitized tween image analysis and recorded treatments.
ed without using basal areas and age as explain- £ | =2 Z % £ £ £ o8 preparatary gut b) No need for field inspection although the change
ing variables. = =g o T R B P A HO2-HP0

detected from satellite images differed from the
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Legend Scale

Undetected HO removal
B Undetected change in clear cut delineation o a e a ey KM

B Undetected preparatory cut

The stands recommended for
e field inspection

= Uncorrected stand delineation

Fig. 15. The change classification errors in sub-area 3061. Copyright of the
background satellite image belongs to: ©ESA, 1993, EURIMAGE, Nation-
al Land Survey of Finland/Satellite Image Centre.

The present delineation of the clear cut and regeneration cut
areas between 1990 and 1992 Shown on the Landsat TM 1992

Legend

B Commission error
Omission error
I Correct
Fig. 16. The change delineation errors in the existing stand delineation with
drastic changes in sub-area 3061. Copyright of the background satellite
image belongs to: ©ESA, 1992, EURIMAGE, National Land Survey of

Finland/Satellite Image Centre.
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The present delineation of the clear cut and regeneration cut

areas between 1990 and 1992 Shown on the Landsat TM 1992

Legend

B  commission error
Omission error
N coreat
Fig. 17. The change delineation errors with drastic changes after correction by
screen digitizing. Copyright of the background satellite image belongs to:
©OESA, 1992, EURIMAGE, National Land Survey of Finland/Satellite

Image Centre.

recorded treatment. The difference was not con-
sidered to affect the planning of future treatments
and thus a field inspection was not recommended.
For example, commercial thinning in the treat-
ment list was labelled as a preparatory cut in the
change detection.

¢) Field inspection is recommended; the image anal-
ysis differed considerably from the registered treat-
ment or the existing stand attribute data.

From the stands which were labelled as changed.,
27 to 39 % belonged to the category ¢ within one
image pair, depending on the time interval be-
tween the images (Table 15).

The distribution of the stands into decision cat-
egories was used to estimate the need for field
inspection during a ten-year inventory period. The
proportion of all the stands recommended for field
inspection varied from 34.5 % on mineral soils
with 5 TM image pairs to 100 % with 3 image
pairs on peat land and with 10 image pairs on
mineral soils (Table 16).

The costs of the method presented were esti-
mated based on costs of the geo-corrected Land-

sat TM data on mineral soils. The costs of the
image analysis were assumed to be part of the
fixed costs as great deal of the proposed system
can be automatized. The image analysis costs were
assumed to be unchanged between different in-
tervals applied. The effective cover of the TM
image for the FPS for the Hyrynsalmi test area
was 40 % and the price of a geo-corrected Land-
sat TM quadrant with value add tax in Finland
was 26 474 FIM. The costs of the field inspection
were estimated to be 50 FIM per hectare. With
these parameters, the image costs varied from 0.27
FIM to 0.80 FIM per hectare for a ten-year-period
varying according to the number of images need-
ed (Table 17).

Several aspects should be considered when
evaluating the results from a financial point of
view. First, the updating is missing or erroneous
for only a small proportion of the treated stands.
Similarly, the proportion of the stands in which
there has been significant damages, is small. Ac-
cording to the comparison of the treatment infor-
mation and image analysis, the joint proportion
of these kinds of stands varied between 1.5 % for
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Table 15. The distribution of the detected changes into decision categories according

to the need for field inspection.

Control period Number of

Decision classes

proposed a, % , %o C, %

changes M P M P M P
H92-90 146 35 3 22 6 27 7
H93-92 216 8 A 40 6 38 4
H93-90 284 22 3 16 d 39 13

Table 16. Percentages of stands recommended for field inspection in different image intervals.

Control period Stands recommended for field Stands recommended for field inspection within
inspection between two images a hypothetical ten-year-period with 3—-10
Landsat TM images
on mineral soil, % on peat land, % on mineral soil, % on peat land, %
H92-H90 6.9 8.9 345 44.5
H93-H92 13.8 8.1 * 81.0
H93-H90 18.7 30.1 62.3 i

* According to the results, all the stands should be reinventoried.

Table 17. Image costs of the pfoposed satellite image analysis.

Lenght of Number of acquisi-  Cost of one acquisi- Estimated costs for Percentage of stands
the control tions needed tion, FIM/ha a 10-year-period, FIM/ha recommended for field
period years inspection within a 10-year-
period on mineral soil
1 10 0.08 0.80 100
5 0.08 0.40 345
3 33 0.08 0.27 62.3

a tree-year control period to 2.5 % for a one-year
control period on mineral soils in the test data.
The largest proportion of updating for the short-
est control period was due to errors in the ‘soil
preparation’ class and delays continuous updat-
ing procedure for the treatments. When the pro-
portion of incorrectly updated stands was com-
bined with the proportion of serious errors in the
change classification as a whole, the maximum
proportion of erroneously updated stands was
under | % after the proposed control on mineral
soils. On peat land the proportion of erroneously
updated stands after the control was 2-3 %. These
figures can be considered as rough accuracy esti-
mate of the stand level attribute information after
continuous updating controlled by training data
from the same geographical area and with the in-
formation subjected to quality control. This esti-

38

mate does not include the possible errors caused
by growth models for long updating periods be-
tween base-line inventories.

Because of the great number of classification
errors between change classes in the one-year-
interval, only two- and three-year-intervals on
mineral soil were included in the cost estimation.
Only mineral soil stands were included because
the amount of peat land test data was low. The
‘soil preparation’ class could be separated only
from the latest one-year-interval and there were
several errors in the classification from this class
to the other change classes. In this situation it was
supposed that the cost estimation would give too
negative results for one-year-interval.

The image costs varied from 0.27 FIM per hec-
tare with a three-year image interval to 0.4 FIM
per hectare with a two-year image interval for the
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ten-year hypothetical control period. With the
same intervals, the percentage of stands recom-
mended for field inspection respectively were 62.3
and 34.5 % in all stands on mineral soil. This means
that for two-year control periods, every stand
would be field inspected about once in every thir-
ty-year-period. By a very rough estimation, to be
economic, the costs of controlling the quality of
continuously updated field information should be
lower for a thirty-year-period compared to three
repetitive base-line inventories within this peri-
od; assuming that both methods were started in a
situation where the base-line inventory had just
been accomplished before the beginning of the
period. It is assumed that for the whole period,
stands are field inspected separately, i.e. without
any information from field inspections during the
previous two- or tree-year-interval.

The costs of the controlling the quality of infor-
mation by satellite images with a two-year-inter-
val between the images would be 1.2 FIM per
hectare for a thirty-year-period. This has to be
summed with the costs of the field inspection re-
quired which is 1.035 (i.e. 3 x 0.345) times the
total base-line inventory for the thirty-year-peri-
od, totalling 52.95 FIM per hectare. When these
costs are compared to the costs of base-line field
inventories (approximately 50 FIM per hectare
multiplied by three for the thirty-year-period) the
final costs of the traditional system for a thirty-
year-period are 150 FIM per hectare. With a three-
year-interval, the image costs for the proposed
method would be 0.80 FIM per hectare, and the
costs of field inspecting 1.869 (i.e. 3 x0.623) times
the total base-line inventory costs, totalling 94.25
FIM per hectare. On the other hand, the inventory
costs using a traditional stand level inventory were
estimated to be much lower for the FPS mainly
because of the large average stand size in the test
area. The estimated costs per hectare were 24 FIM
under these circumstances. The comparison would
then result in 72 FIM/ha for the traditional repet-
itive inventory and 26.04 FIM/ha and 45.66 FIM/
ha for continuous updating controlled by the re-
mote sensing method proposed with two- and
three-year-intervals respectively between the im-
ages.

The cost estimation can be questioned because
the field inspection of only a few stands revealing
possible change would increase the costs per hec-

tare compared to normal base-line inventory.
However, in practice the inspection can be com-
bined with other necessary work such as delinea-
tion of cutting areas or monitoring the cutting
work, and so the cost estimates are probably in-
dicative; even though they must not be consid-
ered absolutely accurate. In addition, the costs of
the remote sensing data, such as Landsat TM in
this study, are very low compared to the costs of
field work. This may enable the economical use
of the method proposed, even in the case of a low-
er effective cover than 40 % or with somewhat
higher control inspection costs. If the effect of
changes in the effective cover or field inspection
costs are estimated on the basis of the current costs
of TM images in image pairs for two-year inter-
vals for a thirty-year period, the costs of the pro-
posed method, continuous updating with control,
remain lower in all the combinations compared to
updating by repetitive inventory (Figs. 18 and 19).
This indicates that the change detection would be
economic for controlling continuous updating also
on peat land at least with two-year image interval.
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Fig. 18. Total updating cost as a function of effective
cover % of satellite data over a thirty-year-period.

Updating cost

200 FIM/hectare

570 2 PRI O L g
= Cont. inv.

100F with contr
S0F --- Repetitive
inventory

10 20 30 40 50 60 70 80 901

00
Cost of field ins—
pection FIM/hectare
Fig. 19.Total updating cost as a function of field in-
spection cost over a thirty-year-period.



5 Discussion

5.1 Calibration for Producing Generic
Training Data

The results of the regression calibration were sat-
isfactory when the root mean square errors
(RMSE) of the calibration models were compared
to the magnitude of the changes to be detected.
On mineral soils, the smallest statistically signif-
icant change between stand mean intensities in
the two calibration alternatives was 0.8 DN on
Landsat TM channel 2 for the ‘uncommercial
thinning’ class after regression calibration (Ap-
pendix 2A3). Generally, this class caused the
smallest change in stand mean intensities. The
RMSE of the calibration for channel 2 varied from
0.3 to 0.4 DN, which should not prevent the de-
tection of this magnitude of change. The results
of the calibration matched those of previous re-
sults (Chavez and MacKinnon 1994). The
RMSEs of the calibration models were of the
same magnitude as Varjo’s (1996) and Olsson’s
(1993, 1994a). Significant differences in RMSEs
or coefficients of determinations were not detect-
ed when the multiple regression results from
channels 3, 4 and 6 were compared to simple re-
gression on other channels. The multiple regres-
sion was used only with channel pairs: 3, 4 and
6. For other channels, multiple regression was not
found to improve results in a way which would
have favoured the use of it.

The number of outliers detected in this study
was greater than in Varjo’s (1996) study. Sparse
stands where soil and under storey vegetation ef-
fect the detected spectral response were easily
detected as outliers. This was because the spec-
tral changes were partly caused by changes in the
understorey. In addition, many of the outliers were
one-channel specific. Nonetheless, detecting and
excluding outliers based upon strict rules seems
to be feasible. If only the most exceptional obser-
vations were excluded, the risk of existence of
hidden outliers could still affect the calibration
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(Rousseeuw and Zomeren 1990). Naturally, ex-
tensive exclusion of observations can only occur
where there are enough observations to represent
variability of all the age and forest type classes in
the calibration data. Such was the approach in this
investigation where 24 % of the observations were
excluded from the calibration of mineral soils and
31 % on peat land. If the exclusion by the rules
presented would have resulted in an insufficient
number of observations, the weighting of the out-
liers instead of their exclusion could have been
considered (Olsson 1993).

T-tests showed only little difference in the sep-
arability between treatment classes and the ‘un-
treated’ class between the regression calibrated
difference images, the regression calibrated and
studentized difference images and the uncalibrat-
ed difference images based on stand means over
a three-year-interval (compare Hiame 1991). The
spectral changes caused by different treatments
after regression calibration corresponded well to
those estimated by absolute calibration (Nilson
and Peterson 1994, Muinonen 1995). TM chan-
nel 4 was found to show a varying spectral re-
sponse, e.g. after thinning (Hame 1991, Olsson
1994a). Olsson (1994a) has proposed this to be
due to decreasing proportion of deciduous trees
in cutting. In this work the effect of removing
deciduous trees was noted clearly later as change
detection errors in mixed species stands which
were not present in the training data.

Based on empirical results the applicability of
the proposed linear calibration in the case of a
single image pair does not seem very clear. The
calibration affects the change detection and im-
proves the results in some cases. However, the
detected differences between a calibrated and an
uncalibrated single image pair were minor; but
analysing and labelling the different change types
has been shown to be easier from calibrated than
from uncalibrated data (Chavez and MacKinnon
1994, Varjo and Folving 1997).

Varjo, J. Change Detection and Controlling Forest Information Using Multi-temporal Landsat TM Imagery

When studying the effect of the time of change
within a three-year-interval from the studentized
image pair H93-H90, the changes from the mid-
dle of the period generally caused smaller spec-
tral responses compared to the changes at the be-
ginning of the period with respect to the commer-
cial thinning and preparatory cut classes. It was
expected that normal growth would tend to cover
any changes from the beginning of the interval
making them more difficult to detect. However,
on the basis of the stand means, thinnings from
1990-1991 were separated more easily than thin-
nings from 1991-1992. This is obviously because
of the low number of observations. Concerning
more drastic change groups, the time of the chang-
es had no effect on the separability of the chang-
es. A regeneration cut for natural regeneration
between 1992-1993 caused a smaller spectral re-
sponse than earlier observations with all the three
calibration alternatives used. This was probably
because there were only two observations availa-
ble from this period. Generally, the results of the
statistical tests concerning both the separability
and the time of the changes should not be inter-
preted literally because of a small number of ob-
servations in some classes.

The calibration results were fairly good when
applying training data from the same geographic
location, but from different image pairs. This in-
dicates a possibility of employing such a generic
training data which was aimed in this study. How-
ever, the change ranges were too different when
the Hyrynsalmi and Nurmes data were employed.
This may indicate that studentization does not
work if training data from different geographical
locations are used or the difference images ap-
plied are not similar enough (Appendix 3). A
possible reason for this effect may be the pheno-
logical changes between the images: the earlier
image from Nurmes was from early spring unlike
the two Hyrynsalmi images employed in this test.
On peat land, the comparison between Hyrynsal-
mi and Nurmes data was not usable because of
the sparsity of observations. One possibility to
overcome these problems could be robust studen-
tization, i.e., excluding or giving smaller weight
to the observations with most exceptional residu-
als in the studentization (Olsson 1994a).

5.2 Change Detection by Remote Sensing
for Controlling Continuously Updated
Forest Information

The ASM texture measure which had a reason-
able explanation value for describing within-
stand variation with mono-temporal data (Hyp-
pédnen 1994) had a low explanation value when
used for change detection. One reason for this
might be that the analysis window used (3 x 3
pixels) may not have been the best scale for de-
tecting stand level changes. Another possible ex-
planation might be that the assumption concern-
ing the increase of spectral homogeneity after sil-
vicultural treatments can be made in only a few
cases; even in the training data where, for exam-
ple, partial treatments were not present. In this
case, the measure of homogeneity, such as ASM,
is not useful as a texture measure for change de-
tection. The selection of other spectral variables
for detecting change produced results similar to
those from previous studies (Hime 1991, Varjo
1993, Olsson 1994a). Compared to Varjo’s (1996)
results the only exception was that in some cases
the quartiles used in the present work replaced
the central moment, which was selected in the
earlier study. In addition to the selected explain-
ing variables the original stand level DN values
might have some explanation value. They could
help the separation of the change classes with sim-
ilar spectral response but in different age forest
and thus from different operation for example.
However, in this work they were excluded be-
cause of the need to keep the number of explain-
ing variables low enough and because the old field
information was available for above described
separation of changes in different forests.

The analysis of the explanation values of the
TM difference channels revealed that channel 7
had considerable explanatory power in change
detection (Olsson 1994b, Lambert et al. 1995).
The use of TM channel 4 seems problematic be-
cause while it may have certain explanatory pow-
er in change detection, the direction of the change
of intensity is unstable and varies within some of
the given change types (Hime 1991). Channel 4
might work better in unsupervised approaches to
change detection. An examination of the ability
to detect changes using only the differences of
stand means as explanatory variables with the
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training data gave correct classification results
which were 3.3 percentage units lower compared
to the discrimination with all the selected explan-
atory variables for a three-year-interval. The dif-
ference is not great in terms of percentage units,
but when considering the traditional ten-year-in-
ventory cycle itis obvious that an additional 10 %
error is not acceptable because of the increasing
need for field inspection. Consequently, changes
cannot be detected accurately enough for control
purposes by using only the differences of stand
means.

The window parameters for change discrimi-
nation were selected by Silverman’s (1986) ap-
proximation, based on the stand mean differences
on Landsat TM 3 and the number of observations.
The window parameter had the highest values with
the longest interval. A possible reason for this is
that the spectral change due to treatments becomes
smoother as the time interval increases. This may
partly explain the fact, discussed above, that the
changes described by differences of stand means
are not always sufficient, especially over short
intervals where violations such as nonsymmetric-
ity in parametric distributions become most obvi-
ous.

When the results of the change classification
based on the test data using two-year-interval were
compared to those of Varjo (1993, 1996), the per-
centage of correct classifications was about 10
percentage units lower on mineral soils and about
20 percentage units lower on peat land in the cur-
rent work. The lower percentage of correct classi-
fications was obviously due to the increased
number of change classes with more accurate la-
belling of the change type (e.g. Lambert et al.
1995). This could be expected, especially as sev-
eral spectrally weak change classes such as ‘un-
commercial thinning’ or ‘draining’ were includ-
ed (e.g. Muchoney and Haack 1994). The correct
classification percentage varied according to the
interval by almost ten percentage units on miner-
al soils and almost twenty percentage units on
peat land.

It was not expected that the best accuracy would
be achieved for mineral soils with a two-year-
interval rather than a one-year-interval. There were
at least two reasons for this. The first was the sep-
arability of the ‘soil preparation’ class which was
often confused with the other change classes in
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the case of one-year-interval. The soil prepara-
tions could only be separated from the latest im-
age pairs by field inspection. In earlier image pairs,
soil preparations were combined with treatments
aiming at regeneration and were consequently not
erroneously classified. The second was the une-
qual distribution of the training data between the
various intervals. In addition, the differences in
standard deviations, especially between H93 and
other images from Hyrynsalmi, may have had
some effect. In the regression calibration, the
standard deviation of the regression calibrated
image can be expected to be lower compared to
the original image. This is because the regression
will always smooth the results. Consequently,
there may be small additional artificial changes in
the differences of standard deviations due to the
regression calibration.

The useability of the studentized generic train-
ing data was tested by classifying the changes in
the test data without studentization. As expected,
there was no difference in the results when using
the image pair H93-H90 with and without stu-
dentization. However, detecting the changes be-
tween H93-H92 using only the training data from
the image pair H92—-HO90 slightly decreased the
correct classification percentage on mineral soils
(Appendix SA). This may indicate that having at
least some training observations from the image
pair being analysed for changes improves the re-
sults and may explain the superiority of the two-
year interval in this work. On peat land, exclud-
ing the training observations from the period
1993-1992 seemed to slightly improve the change
classification, but this must be due to the insuffi-
cient amount of available data. When it was pos-
sible to use training data from a totally different
area by using Varjo’s (1996) broad change class-
es, the result was acceptable; but only if these
change classes were considered to be accurate
enough for controlling purposes. Jackknife anal-
ysis confirmed that the change classification re-
sults presented were reliable even though there
was some overlap between the training and test
data concerning single treatment observations.
Jackknife analysis was selected to allow partial
overlap for keeping the amount of the training
observations at reasonable level with all intervals.

The selected nonparametric classifier was com-
pared to the traditional parametric ML classifier
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by means of the Jackknife discrimination of the
training data. The percentage of correct classifi-
cations was about ten percentage units lower when
using the ML classifier than the result with select-
ed nonparametric classifier. However, when only
the change classes from the test data were classi-
fied by the ML classifier, or only treated and un-
treated stands were separated, the differences were
smaller compared to the results with the nonpar-
ametric classifier. This indicates that with the ML
classifier, problems caused by mixing between
the ‘untreated’ class and the ‘moderate change’
classes, and especially within the ‘moderate
change’ class, are even greater than in the case of
the nonparametric classifier.

Because of the stand level approach, the accu-
racy of the delineation of the treatments aiming at
regenerations was studied by comparing the new
screen digitized boundaries and boundaries from
the operational database with reference delinea-
tion from aerial photographs. The comparison
showed that despite updating the delineation, the
realized treatments differed from the lineation in
the database. The obvious reason for this was that
stand delineations made for management plan-
ning purposes, even for as short as a ten-year pe-
riod, are not flexible enough for the short-term
planning of harvesting. To enable management
planning boundaries to be followed when realiz-
ing cuttings, the stand size should be so small that
any combination of amounts and assortments of
timber could be formed by combining these small
stands. So far, this has been impossible because
of inventory costs and technical problems related
to the handling and locating of very small stands.
However, promising results have been presented
to decrease the size of the observation unit down
to the plotlevel in a base-line forest inventory and
monitoring (Hagner 1990, Tomppo 1992). If it
became operational, such a system could reduce
the need for the re-lineation of changes. In the
present situation, however, it has to be accepted
that stand delineation is sometimes changed be-
cause of the demand for certain timber assortment
or simply because the stand delineations on a map
and those made in field do not completely match.
Sucherrors have to be corrected, at least with treat-
ments aiming at regeneration which form the ba-
sis for forest generations and consequently define
new stands.

This study has shown that at least existing de-
lineations can be corrected by simple screen dig-
itizing to the level where 85 % of the regeneration
and clear cut areas were delineated correctly. As
an alternative to manual delineation good results
have been introduced with spatially more accu-
rate images. Olsson (1994b) achieved over 90 %
re-lineation accuracy in clear cut areas and over
80 % accuracy in thinning cut areas by applying
image segmentation and discriminant analysis to
multi-temporal SPOT images. With the manual
approach in the present work, most of the errors
after correction were due to the fact that too large
an area was delineated to be treated. This com-
mission error can possibly be decreased by per-
sonnel training. [t was surprising that the deline-
ation accuracy achieved with the difference im-
age was slightly lower compared to that with sin-
gle images. This may be due to the effect of the
mixed pixels on the difference image. Another
possible reasons may be the non optimal look up
table setting and unfamiliarity of the personnel
with difference images. The delineation of lighter
treatments such as thinnings was not normally a
problem compared to treatments aiming at regen-
eration. This was because. for example, thinnings
yielded much less commercial timber and thus
there was no need to relineate thinning areas be-
cause of changing market demands. If delinea-
tion errors existed with treatments such as thin-
nings, they were mostly due to inaccuracies be-
tween stand maps and the delineation of the thin-
ning area in the field.

The percentage of stands with changes recom-
mended for field inspection was only half of that
found by Varjo (1996), but this was because a
more accurate treatment information was availa-
ble for the Hyrynsalmi test site. The percentage of
category ‘¢’ stands from all stands in the best case
with a two-year period on mineral soil was 6.9 %,
totalling 34.5 % for a hypothetical ten-year peri-
od. However, in the worst cases, all the stands
were recommended for field inspection. The
superiority of the two-year control period was not
expected. According to Olsson (1994a), for ex-
ample, the diminishing spectral response of the
changes due to time should not be very radical: at
least during the first 3 years between images. The
main reasons for the strength of the two-year pe-
riod were the unequal distribution of the training
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data between different image pairs and different
standard deviations on the H93 image compared
to the two earlier images. Based on the results of
this study the two-year period might be suitable
for monitoring rapid forest changes. The effect of
possible phenological changes between the im-
age pairs, for example, may effect the results and
thus more material is needed for further testing.

6 Conclusions and Future Outlooks

Radiometric calibration proposed for one TM
image pair works well with the 1-3-year inter-
vals applied in this work. The results suggested
that even longer calibration intervals should be
tested. Olsson’s (1994a) results show that the cal-
ibration interval can be extended up to at least 5—
6 years. The construction of generic training data
for successive image pairs by studentization was
successful in this work. However, the time inter-
val did not exceed three years and only one im-
age pair was available for each interval. It was
estimated that if the calibration works for longer
periods, it might be possible to construct generic
training data for a longer period than three years.
In addition to the required combarability of the
change observations between image pairs it is
necessary to have a set of untreated observations
for calibration when aiming the generic training
data. This seems possible to be achieved based
on the outlier and leverage point detection be-
fore calibration if such an information as in this
work is not available for separating untreated
areas.

The use of generic training data was supported
by the fact that the timing of the changes within
the control period did not necessarily affect the
detectability of changes under the conditions of
the test area when the intervals used were not long-
er than three years. The differences between
change observations in different regions were so
great that range scaling was necessary after stu-
dentization. However, the possibility of using
generic training data between different geographic
locations seems promising, but further testing with
more accurate change classes are needed before
estimating the final accuracies in such an approach.
It also has to be remembered that only forest ob-
servations were used in the calibration. If a broad-
er classification scheme, such as land use classi-
fication, was to be applied it can be expected that
the calibration accuracy would decrease.

In change detection the results showed that the

change classification accuracy decreases as the
interval between images increases. The only ex-
ception was the one-year interval on mineral soil
but it has to be considered to be due to insufficient
data as discussed in previous chapter. The overall
change classification accuracy was generally high-
er compared, for example, to the results obtained
by Hime (1991). The differences in these two
works may be partly due to the greater mean size
of the stand in the present study. Other reasons
may be the use of the nonparametric change clas-
sifier instead of, for example, Maximum Likeli-
hood classifier. The results would suggest that the
applied nonparametric approach is more robust
with unbalanced training data than the traditional
Maximum Likelihood classifier. The differences
might be smaller if balanced training data con-
cerning all the treated classes and the class ‘un-
treated’ could be constructed. However, due to
the small area of man-made annual forest treat-
ments compared to untreated areas this is impos-
sible as long as the methods proposed are not
applied in practice. If applied they would contin-
uously create new training data via field inspec-
tions.

The method for change classification proposed
in this study also requires training data from all
the classes and from all the forest types involved.
In particular, the existence of broadleaved spe-
cies in some stands in the test data confused the
change detection process. A problem arose with
mixed stands. If the broadleaved trees were re-
moved, the consequent decrease of intensities was
sometimes offset by the increase caused by the
treatment. When it was not possible to collect
complete training data, the problem could partly
be reduced if broad change classes can be accept-
ed in the change detection (Varjo 1996). This was
especially the case when detecting damaged or
partially treated stands. With broad change class-
es, such as ‘untreated’, ‘moderately changed’ and
‘drastically changed’ (Varjo 1996), the damages
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and partial treatments were mostly classified into
the ‘moderate change’ class. In the current work,
damages were more often misclassified as ‘un-
treated’. In addition to classification errors, it was
clear that re-lineation is needed in the case of a
stand level approach.

Under the conditions of the FPS, controlling
continuously updated forest attribute information
by multi-temporal Landsat TM satellite image
seems to be profitable when using a two-year in-
terval between images especially on mineral soil.
The results were at same level compared to those
presented by Varjo (1996). Estimates based on a
one-year interval were probably too pessimistic
because of the unfavourable distribution of the
training observations. However, no advantages
were found in using one-year instead of two-year
intervals except for securing the updated infor-
mation every year and a reduction of serious er-
rors. The two-year interval seemed superior in
terms of economy and accuracy compared to the
three-year interval. Before final conclusions, it
has to be remembered that only few image pairs
were available in this work and the result should
be verified with larger data.

When calculating the costs of quality control
for continuous updating using satellite images,
only the material costs were taken into consider-
ation. This was because it was assumed that many
parts of the methodology used could be automat-
ed (e.g. Eckhardt et al. 1990) by using a generic
training information base. The technical facilities
are already available for the automatic pre-
processing of the multi-temporal satellite images
needed for the change detection system under
discussion. Automatic and semi-automatic meth-
ods have been described for registering satellite
images together and rectifying them on map co-
ordinate systems (Holm et al. 1994). The relative
radiometric calibration system can be automated
by developing outlier and leverage point detec-
tion so that changes in the calibration data will
automatically be excluded. The change detection
phase can be semi-automatized for generating the
training data base by accepting new observations
for the generic training data base derived from
field checks on the category ‘c’ changes previ-
ously detected. The necessary re-lineation of the
drastic changes can also be done automatically
with the stand level approach (Olsson 1994a). In
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addition, the development of automated mapping
systems such as GPS for recording stand deline-
ation already planned to be cut or during cutting
may replace the need for separate treatment de-
lineation.

When estimating the costs the fact has to be
noted that the satellite image obtained for con-
trolling continuously updated forest information
may also serve other purposes. In addition to
monitoring rapid changes with long updating pe-
riods, it may also be necessary to control the up-
dating of the slowly changing larger part of a for-
est area. The base-line forest inventory methods
which employ satellite remote sensing have been
continuously improving, and possibly the most
severe errors caused by updating the normal
growth can be corrected from satellite imagery.
The current methodology and satellite imagery
allows accurate estimation of forest attributes for
large areas such as forest districts or possibly the
subareas used in this work (Tomppo 1992, Péivi-
nen et al. 1993). Good examples of this kind of
applications are provided by the reference sam-
ple plot method for the regionalisation of national
forest information (Kilkki and Piivinen 1987,
Kilkki 1988, Tomppo 1990, 1992). Several new
satellites and sensors will also be available in the
next few years which will increase the spatial res-
olution to the 2—10 meters. This may improve both
the separability of rapid changes and the possibil-
ities for satellite image aided base-line invento-
ries.

In addition to the reduced costs compared to the
old repetitive inventory system, the advantage of
continuous updating controlled by remote sens-
ing is that the forest data base is more often up to
date. Error levels of less than 1 % on mineral soils
and 2-3 % on peat land have been estimated after
the proposed control. From the point of updating
control these are conservative estimates because
they are based on the assumption that the errors
between repetitive two-year control periods are
independent. However, it can be expected that
repetition of the control several times in same the
area would increase the information concerning
the most likely sources of errors. Repeated errors
in very similar, or even in the same stands, once
understood would relieve the stand from further
field inspection. Another factor affecting to the
applicability of the proposed controlled continu-
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ous updating is the error caused by growth simu-
lation. It may set even stronger limits to the max-
imum period between base line inventories than
the updating of treatments (Kangas 1997). The
combined affect of growth model errors and con-
servativeness of control error estimate is difficult
to estimate but they can be expected to offset each
other at least up to some extent.

The only comparison made was between the
old repetitive inventory system and a continuous
updating system aided by satellite images. It is
more difficult to compare cost and risks for con-
tinuous updating with inadequate quality control
methods. It seems obvious that some quality con-
trol is necessary, at least in the beginning when
employing a new system. During the implemen-
tation of continuous updating in the FPS, it be-
came obvious that all the treatments had not been
updated and also that there were significant errors
in the delineation. Two of the main issues when
deciding upon a suitable method for quality con-
trol are the accuracy necessary for updating at-
tribute information and the accuracy required for
stand delineation. It has been demonstrated that
both can be improved by the presented methods.
The resulting level of the serious updating errors
after the proposed cortrol is low. In addition, the
stand delineation can be improved by satellite
remote sensing in the case of treatments aiming at
regeneration at the end of one forest generation. It
is obvious that if, for example, aerial photographs
are used for delineation, then the results will be
more accurate than the satellite remote sensing
such as used in this investigation.

Landsat TM data, especially at two-year inter-
vals, would appear to be both accurate and eco-
nomical for the task of controlling the quality of
continuously updated forest information in the
conditions prevailing in the state owned forest
properties in Central Finland (Varjo 1993, 1996).
Nonetheless, future research will need to address
at least two problems. First, for multi-national
purposes, the possibility to detect changes in nat-
ural resources by using coarser data than Landsat
TM has to be considered. Which types of change
and how small an area of change can be detected
from the data which can be economically applied
repetitively for the global level also requires at-
tention. The results achieved by coarser remote
sensing data will certainly include more errors,

but the main function at this level is to guide fur-
ther and more accurate investigations concerning
potential areas of interest, for example, forest
damages or areas of over exploitation. Second,
scales larger than have been applied in this work
also require attention. On these scales, more ac-
curate remote sensing data such as aerial photo-
graphs, airborne scanners or satellite images with
better spatial resolution, have to be considered.
Longer intervals and the detection of smaller
changes may reduce some of the problems which
have arisen in this work. In addition, an increased
spatial accuracy may permit the construction of
more complete training data by dividing observa-
tions. Another advantage is that geometrically
more accurate data may permit the direct meas-
urement of interesting variables, such as the
change in crown diameter or number of trees, in-
stead of estimating the change on the basis of
spectral responses. On the other hand, the cost of
satellite remote sensing data, even with a low ef-
fective cover, is very small compared to the costs
of field inspections. This may allow the combina-
tion of different multi-temporal data sets such as
radar and visible wave length images if this im-
proves the accuracy of change detection.
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Appendix 1A. Parameters of the calibration models on mineral soils.

Control period / parameters Landsat TM channel
4

1 2 3 6 7
H92-H90 By 21247 8864  9.884 8964 8638 10479 3330
n=2 B, 0.725 0.701 0736 0793 0.830 1.060  0.825
B, 0 0 0 0.198 0 0 0
B, 0 0 -0.043 0 0 0 0
B 0 0 0 0 0 ~0.022 0
H93-H92 B 8368 4005 4119 -21.675 2467 84774  2.866
n=1 B, 0688 0639  0.521 1.101 0718 0236 0518
B 0 0 0 0.627 0 0 0
B 0 0 0.015 0 0 0 0
B. 0 0 0 0 0 ~0.004 0
H93-H90 B 22945 90490  9.688  -8438 6905  82.691  4.268
n=3 B, 0499 0454 0393 0840 0629 0293  0.439
B 0 0 0 0.840 0 0 0
B 0 0 ~0.020 0 0 0 0
B. 0 0 0 0 0 ~0.025 0

Appendix 1B. Parameters of the calibration models on peat land.

Control period / parameters Landsat TM channel
4

1 2 3 6 7
H92-H90 Bo 15692 5457 5599 11005 2627  17.403  -2.551
n=2 B, 0834 0859 0927 0747 1.098 1.034 1.208
B, 0 0 0 0.202 0 0 0
By 0 0 -0.027 0 0 0 0
i 0 0 0 0 0 0.093 0
H93-H92 By 17353 4402 5902  -9.848 9214  77.909  4.557
n=1 B, 0535 0620 0456 0982 0556 0276 0421
B. 0 0 0 0414 0 0 0
B; 0 0 0.008 0 0 0 0
B 0 0 0 0 0 0.024 0
H93-H90 By 25621  6.115 8208 0730 6494 78732  3.193
n=3 B, 0449  0.607 0420 0760  0.566  0.331 0.519
B. 0 0 0 0.595 0 0 0
B; 0 0 -0.001 0 0 0 0
B 0 0 0 0 0 -0.032 0
52
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Appendix 2. The effect of timing of the treatments on the difference image 1993-1990.

The hypothesis for the ‘untreated’ class was
H,-Me =0
The test used for this class was

Me
NP
sD| =

\ll

For the other classes the hypothesis was

Hﬂ : Mecl.\ss X Mfch“ ‘untreated’

Variances of the different treatment classes and the ‘untreated’ class could not be assumed to be equal.
For instance, thinnings make a stand more homogeneous which can be assumed to affect to the variance of these
treatment classes. The t-test used was (e.g. Ranta et al. 1989, Snedecor and Cochran 1989).

_ Mey—Me,
Sdi  Sd3
| + 50
\ n n»
The degrees of freedom were solved for each tested pair from the following equation (Ranta et al. 1989).
—m j——
Sd? . Sds Sdi . Sds
1 n n n n
- = +
df m-1 n—1

wn
(%]
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Appendix 2A1. Regression calibrated and studentized changes in training data for the image pair H93-H90 for
mineral soils.

Treatment Realized Landsat TM channel
1 2 3 4 6 7
Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd
Unt. -3 22 2 13 -1 2.0 0.5 5.6 -3 6.8 -2 14 -2 32

UnC.Thinn. 90-91 1.0 1.7 19 15 29 22 -1.8 2.7 6.0 6.1 3.0 3.1 50 38

C.Thinn. 90-91 86 28 32 02 10.0 1.38 86 38 66.4 17.3 62 173 239 95
91-92 57 6.6 46 44 78 8.0 44 7.1 32.8 283 63 5.0 174 164
92-93 893 28 64 08 12.7 33 86 5.0 573 11.5 104 22 317 6.2

Prep. cut 90-91 6.7 23 59 02 95 0.8 20 1.2 349 10.3 56 32 236 0.6
91-92 31 31 26 12 41 22 1.1 4.1 20.7 143 33 34 104 58
92-93 109 103 64 5.2 11.1 88 22 49 353 28.1 43 43 189 15.9

HOR 92-93 2.0 28 43 14 55 24 96 79 17.9 109 15 24 101 5.7

Reg.cutN. 90-91 142 55 80 3.6 16.1 6.3 26 4.6 79.0 27.1 10.8 3.0 50.7 14.3
91-92 17.3 23 94 09 21.2 24 -1 15 86.7 3.3 89 1.8 56.0 2.5
92-93 105 0.8 79 06 17.7 19 108 1.5 754 7.6 13.8 3.5 348 49

Clearcut 9091 20.1 4.3 10.5 29 229 5.6 02 4.1 84.1 13.5 93 09 548 6.8
91-92 185 7.7 108 44 21.6 8.9 1.9 69 824 368 109 55 528 21.7
92-93 127 39 77 32 15.7 6.4 47 43 69.1 20.0 7.6 4.0 27.1 15.0

Soil prep. 9091 153 93 99 6.1 18.8 10.5 -2 66 73.0 49.5 52 72 40.8 24.0
91-92 85 58 61 2.5 1.7 59 -133 106 419 25.6 50 32 33.7 120

Statistically significant differences at 1 % risk based on two-way Student’s t-test are in bold face
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Appendix 2A2. Uncalibrated changes in the training data for the image pair H93-H90 for mineral soils.

Treatment Realized Landsat TM channel

1 2 3 4 5 6 7
Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd
Unt. =31 1.7 =23 1.1 =31 2.0 2 38 -10.5 4.8 4.6 2.6 -5.6 2.8
UnC. Thinn. 90-91 48 1.5 =31 7 =51 1.3 23 22 -160 2.0 -8.8 14 -8.7 21
C. Thinn.  90-91 1.9 1.0 1.5 8 35 19 24 16 169 7.6 1.5 34 54 45
91-92 -5 28 -2 20 4 34 1.8 4.0 2.0 10.0 -7 35 8 54
92-93 1.2 09 9 3 29 13 43 24 10.0 4.3 g 20 47 13
Prep. cut 90-91 3 1.2 4 8| 1.5 7 S5 2 35 35 -13 7 30 6
91-92 -13 1.6 -8 8 -3 14 2 -1.8 5.6 -1.9 2.0 -1.3 23
92-93 2.1 40 9 22 29 39 2 1 46 9.2 -2 14 22 46
HOR 92-93 -6.0 1.7 -25 09 -55 14 121 3.7 -15.1 4.7 -10.8 1.9 -11.6 25
Reg. cut N.  90-91 34 26 1.6 1.7 4.6 29 8 1.8 19.2 10.2 1.8 22 11.7 4.5
91-92 47 1.0 23 5 70 1.1 -10 8 228 1.7 9 L6 140 1.2
92-93 22 6 19 6 56 9 44 10 179 35 38 1.1 6.7 1.7
Clear cut 91-92 55 19 25 14 71 2.6 -5 22 209 5.2 9 12 123 28
91-92 49 3.7 28 23 6.8 4.6 b 2.1 20.6 14.1 22 4.2 122 7.6
92-93 28 15 14 13 48 25 8 22 16.3 6.8 1.5 1.6 49 45
Soil prep. 90-91 22 58 14 34 30 73 31 11 12.5 232 -38 72 52 112
91-92 -2.0 39 -1.2 21 -2.1 438 -4 40 -2.7 138 -5.7 4.1 -7 12
Statistically significant differences at 1 % risk based on two-way Student’s t-test are in bold face.
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Appendix 2A3. Regression calibrated DN changes in the training data for the image pair H93-H90 for mineral

soils.
Treatment Realized Landsat TM channel
3 4

Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd
Unt. -1 1.0 A S5 .0 8 2 26 -1 23 -1 5 -1 1.0
UnC. Thinn. 90-91 4 v 8 6 i I R, -8 13 20 21 1.2 1.2 1.5 12
C. Thinn. 90-91 33 1.1 26 0.1 39 06 40 12.7 224 59 45 0.6 72 29
91-92 22 25 19 1.8 3.0 3.1 19 32 11.0 95 25 20 52 49
92-92 34 1.1 26 03 50 1.3 40 23 19.3 39 41 09 95 1.8
Prep. cut 90-91 26 9 24 1 37 3 -9 6 11.7 35 22 13 7.1 02
91-92 1.2 12 1A 5 LT 9 S 1.9 69 48 3 14 33 1.8
92-93 42 39 26 21 43 34 1.0 22 119 94 1.7 1.7 57 438
HOR 92-93 R 1.1 1.7 .6 22 9 45 37 58 3.7 .6 1.0 30 1.7
Reg. cut N. 90-91 55 21 32 15 6.3 25 1.2 21 26.5 9.1 43 1.2 152 43
91-92 66 9 38 3 83 9 .0 7 29.1 1.1 35 7 16.8 .8
92-93 40 03 32 2 69 7 50 7 254 25 55 14 10,5 1.5
Clear cut 90-91 7.8 1.6 43 1.2 89 22 1 1.9 282 45 38 3 16.5 2.0
92-93 71 29 44 18 84 35 9 32 27.7 124 43 2.2 159 6.5
92-93 49 1.5 31 13 6.1 25 22 20 233 6.8 30 1.6 82 45
Soil prep 90-91 59 35 40 25 73 4.1 -1 3. 246 16.6 2.1 28 123 7.2
91-92 33 22 28 1.0 46 23 -6.1 49 141 8.6 20 1.3 10.1 3.6

Statistically significant differences at 1 % risk based on two-way Student’s t-test are in bold face.
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Appendix 2B. Regression calibrated and studentized changes in the training data for the image pair H93-H90

for peat land.

Treatment Realized Landsat TM channel
2 4 7
Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd
Unt. -3 23 2 1.4 . T 3 59 -1.7 87 -5 50 -4 40
UnC. Thinn 90-91 1.8 1.8 14 04 20 1.6 0.0 52 124 26 24 43 48 20
91-92 4 7 -1 9 1.1 1.0 -35 53 -38 53 -2 10 -5 27

C. thinn. 91-92 23 56 1.6 4.1 39 65 -2 32 20.3 22.1 40 73 10.2 153
Prep. cut 92-93 10,7 11.7 6.1 53 9.1 7.1 26 3.7 22.8 10.8 19 18 123 49
Clear cut 92-93 12.1 39 8.1 32 16.0 6.2 12 4.1 68.2 19.8 73 39 269 14.8
Drain. 91-92 3.1 1.7 31 14 58 2.1 -29 7.1 315 8.2 51 32 16.6 4.7

Statistically significant differences at 1 % risk based on two-way Student’s t-test are in bold face.
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Appendix 3A. Regression calibrated and studentized differences of the stand means in the different image pairs
for mineral soils.

TM Image pair Treatment

Unt. UnC. thinn. C. thinn. Prep. cut HOR Reg. cut N. Clear cut Soil prep.

Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd

1 H92-H90 0 33 14 28 6.1 52 42 47 164 6.2 153 6.5 174 84
H93-H92 -6 26 70 64 139 13.8 1.6 2.1 144 9 169 4.2

H93-H90 -3 22 2.1 45 6.8 5.6 63 7.6 20 28 144 438 17.6 7.0 11.8 8.0
NOO-N88 1.0 2.0 19 21 79 25 79 3.7

2 H92-H90 3 16 2 14 36 3.6 28 26 8.4 3.1 8.1 39 95 52
H93-H92 -2 15 49 28 78 53 32 13 98 2 104 39

H93-H90 2 13 28 37 53 36 43 38 43 14 8.3 28 10.1 4.1 7.8 47
NO90-N88 8 2.1 1.2 1.8 49 14 43 26

3 H92-H90 4 26 1.1 33 85 73 5.1 44 20.2 5.7 200 9.2 182 11.4
H93-H92 -4 19 10.1 6.7 126 838 54 30 201 22 184 6.8

H93-H90 -1 20 49 75 9.2 6.8 73 64 55 24 176 53 20.6 83 149 8.7
NO0-N88 8 1.8 25 3.1 95 28 95 54

4 H92-H90 1.1 59 90 50 -1.8 7.8 2 63 02 7.2 6.7 114 -58 10.0
H93-H92 -7 5.6 -1.2 148 23 33 3.7 38 92 1.6 52 34

H93-H90 S5 56 56142 57 64 1.6 45 96 79 3.3 5.1 22 6.1 -7.4 11.0
N90-N88 6 2.7 -32 32 -24 40 27 6.5

5 H92-H90 3 69 -32 84 301243 18.8 124 674 7.2 67.7 29.9 52.6 404
H93-H92 -1.5 8.6 38.7 39.0 444 345 245135 89.7 9.2 86.9 24.7

H93-H90 -3 638 7.7 87 429272 273 210 172109 803206 799 315 56.2 39.7
NO90-N88 2.1 48 62 9.0 246 154 30.2 153

6  H92-H90 -3 16 24 24 39 55 5.1 37 13.6 24 134 5.7 3.7 68
H93-H92 0 14 79 44 5.1 47 34 20 139 4.1 8.1 4.1

H93-H90 -2 14 28 3.1 7.1 44 38 3.6 1.5 27 108 3.0 10.0 4.9 51 5
N90-N8&8 1.1 20 41 3.1 7.7 9.8 10.6 6.2

7 H92-H90 2 33 -1.0 50 113 838 83 6.7 352 89 29.8 12.5 29.7 17.2
H93-H92 -1.1 3.8 31.7 11.8 245 205 140 64 438 54 35.8 19.1

H93-H90 -2 32 74 95 214147 146 11.5 10.1 57 494129 47821.6 369 17.8
N90-N88 1.2 29 43 57 172 54 16.5 6.7
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Appendix 3B. Regression calibrated and standardized differences of the stand means in the different image
pairs for peat land.

TM Image pair Treatment
Unt. UnC. thinn. C. thinn. Prep. cut Clear cut Drain.
Me Sd Me Sd Me Sd Me Sd Me Sd Me Sd
1 H92-H90 -0 9 1.3 1.2 1.6 28 32 .8
H93-H92 -1 ) 40 45 4.6 1.3
H93-H90 -3 24 1.4 1.6 23 56 94 114 12.1 3.9 3.1 1.2
2 H92-H90 2 .6 3 .8 6 1.8 23 .6
H93-H92 1 .6 27 21 3.6 1.4
H93-H90 2 1.4 9 9 1.6 4.1 56 52 8.1 32 3.1 1.4
3 H92-H90 .1 1.1 1.1 1.0 28 3.1 4.1 9
H93-H92 -0 i 36 28 6.3 24
H93-H90 S22 1.8 1.4 39 65 83 7.0 16.0 6.2 58 22
4 H92-HY% 2 1.8 -2.7 1.6 -1.6 2.1 -20 1.0
H93-H92 -4 27 -1.5 1.7 S 1.6
H93-H90 3 D9 -1.1 5.0 -2 32 -1.9 40 1.2 4.1 =29 71
5 H92-H9% 1.4 47 25 33 99 128 206 44
H93-H92 -1.6 42 70 3.7 22.5 6.7
H93-H90 -1.8 . 87 7.1 8.8 203 22.1 205 119 68.2 19.8 315 82
6  H92-H90 0 1.6 23 1.7 53 359 49 13
H93-H92 ~1 1.9 1.3 08 32 1.5
H93-H90 -2 50 1.6 3.6 40 42 1.9 1.7 73 39 5.1 32
7 H92-H90 00 23 1.1 1.4 52 13 106 2.1
H93-H92 -2 1.3 34 1.3 7.9 44
H93-H90 -4 40 3.0 34 102 153 109 59 29.9 14.9 166 4.7
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Appendix 4A. Change discrimination results using the image pair H93-H90 in the test data for mineral soils. Appendix 4C. Change discrimination results using the image pair H93-90 in the test data for peat land.
Field check Image analysis Field check Image analysis
Unt.  UnC. thinn. C. thinn. Prep.cut HOR Reg. cut N. Clear cut Soil prep.  Total % Unt. UnC. thinn. C. thinn. Prep. cut HOR Reg. cut N. Clear cut Soil prep. Drain. Total %o
Unt. 350 23 4 26 15 418 70.5 Unt. 50 12 5 6 2 75  61.0
UnC. thinn. 6 26 1 4 6 1 44 7.4 UnC. thinn. 2 6 6 1 15 122
C. thinn. 5 1 2 8 13 ‘ C. thinn. 4 1 2 3 1 11 8.9
Prep. cut 2 2 12 16 2.7 Prep. cut 1 1 0.8
HOR 1 2 1 4 0.7 HOR 1 1 2 1.6
Reg. cut N. & soil prep. 1 2 17 6 26 4.4 Reg. cut N. & soil prep. 1 1 0.8
Clear cut & soil prep. 1 4 1 1 2 22 5 36 6.1 Clear cut & soil prep. 1 1 1 1 4 33
Partial clear cut 3 1 5 2 1 4 16 57/ Partial clear cut 3 1 4 3.3
orreg. cut N. 2 2 4 2 2 12 2.0 or reg. cut. N. 1 1 0.8
Soil prep. 1 1 0.2 ‘ Soil prep.
Drain. ) 2 0.3 Drain. 1 | 1 3 2.4
Wind damage 2 1 3 1 3 10 1.7 Damage 1 1 3 5 4.1
Total 372 51 24 54 27 21 38 6 593 100.0 g?:\(/jer 1 1 0.8
% 82.2 8.6 4.0 9.1 4.6 35 6.4 1.0 100.0 78.2
Total 60 21 13 22 3 4 123 100.0
% 495 17.1 106 17.1 2.4 33 100 553

Appendix 4B. Change discrimination results using the image pair H93-H92 in the test data for mineral soils.

Appendix 4D. Change discrimination results using the image pair H92-H90 in the test data for peat land.

Field check Image analysis
Unt.  UnC. thinn. C. thinn. Prep.cut HOR Reg. cut N. Clear cut Soil prep.  Total %o
Field check Image analysis
Unt 406 40 11 25 4 3 9 1 499 841 Unt. UnC. thinn. C. thinn. Prep. cut HOR Reg. cut N. Clear cut Soil prep. Drain. Total %
nt. ;
UnC. thinn. 3 1 4 0.7
C. thinn. 1 1 0.2 Unt. . 79 2 1 4 1 87 70.7
Prep. cut 6 6 1.8 UnC. thinn. 9 5 1 15 12.2
HOR i I I 305 C. thinn. 2 g : 33
Reg. cut N. & soil prep. 3 4 7 1.2 Brep. out 5 ) 1.6
Clear cut & soil prep. 1 1 4 2 8 1.3 SR . 1 I 0.8
Partial clear cut 1 1 2 03 Reg. cut N. & §()1l prep. 1 0.
or reg. cut N. 1 1 1 1 4 08 Clear cut & soil prep. 1 2 i ;-:
i artial clear ¢ b 7 .
Soil prep. 3 | 4 1 1 16 16 8 50 8.4 Partial clear cut 2 2 3.3
Drain. or reg. cut N. 1 1 0.8
Wind damage 3 1 4 1 9 15 Smlh prep.
Drain.
ame 5 4.1
Total 409 47 23 37 8 31 29 9 593 100 ‘ Damage i :
% 690 79 39 62 14 52 49 15 100 752 dried Al
beaver 1 1 i
Total 100 9 8 5 1 123 100.0
% 81.3 7.3 6.5 4.1 0.8 100 715
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Appendix 4E. Change discrimination results using the image pair H93-H92 in the test data for peat land. Appendix S5A. Change discrimination results for the image pair H93-H92 using the training data only from

H92-H90 for mineral soils.

Field check Image analysis
Unt. UnC. thinn. C. thinn. Prep.cut HOR Reg. cut N. Clear cut Soil prep. Drain. Total % Field check Image analysis
Unt  UnC. Thinn. C.Thinn. Prep.cut Reg.cutN. Clearcut Soil prep. Total %

Unt. 88 9 3 11 111 903

UnC. thinn. Unt. 148 6 17 13 1 1 186 88.3
C. thinn. 2 2 2 1 7 5.7 | C. Thinn. 1 1 1 3 1.4
Prep. cut 1 1 0.8 Prep. cut 1 2 4 2 1 10 4.7
HOR HOR 1 2 1 - 1.9
Reg. cut N. & soil prep. Reg. cut N. &soil prep. 2 2 0.9
Clear cut & soil prep. 1 1 0.8 Clear cut & soil prep. 4 1 1 6 2.8
gffé;' el | Total 154 11 7' 18 4 2 5 211 1000
Soil prep. ' %o 73.0 52 8.1 8.5 1.9 0.9 24 100 73.5
Drain. 2 1 3 2.4

Total 91 9 5 15 3 123 100.0

%o 74.0 73 4.1 122 24 100 74.0

Appendix 5B. Change discrimination results for the image pair H93-H92 using the training data only from
H92-H90 for peat land.

Image analysis Field check
Unt.  UnC. Thinn. C.Thinn. Prep.cut  Clear cut  Drain. Total Y

Unt. 161 7 19 12 2 201 93.4
C. Thinn. 1 1 0.5
Prep. cut 4 3 7 33
Clear cut & soil prep. 5 1 6 2.8
Total - 171 8 22 12 0 2 215 100
¥/ 79.6 3.7 10.2 5.6 0 0.9 100.0 74.9
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Appendix 6.A. Change discrimination results for Hyrynsalmi H93-H90 training data using Nurmes N90-N88
as training data for mineral soils.

Image analysis Field check
Unt C. Thinn. HOR Clear cut Total %

Unt. 377 11 2 390 78.0
UnC thinn. 7 3 1 2 13 2.6
C. thinn. 9 2 4 15 3.0
Prep. cut 18 7 1 26 52
HOR -+ 4 0.8
Reg. cut N. & soil prep. 3 1 9 13 2.6
Clear cut & soil prep. 5 7 16 28 5.6
Soil prep. (no partial) 3 8 11 2.2
Total 426 31 4 39 500 100
%o 85.2 6.2 0.8 7.8 100 85.4

Appendix 6B. Change discrimination results for Nurmes N90-N88 training data using Hyrynsalmi H93-H90 as

training data for mineral soil.

Image analysis Field check
Unt C. Thinn. HOR Clear cut Total %

Unt. 281 20 33 6 340 93.7
C. Thinn. 4 3 7 1.9
HOR 1 2 3 0.8
Clear cut & soil prep. 1 2 10 13 3.6
Total 287 22 33 21 363 100
% 79.1 6.1 9.1 5.7 100 80.2

Class thinning is assumed to represent classes: uncommercial thinning, thinning and preparatory cut
Class clear cut is assumed to represent classes: regeneration cut for natural regeneration, soil preparation and clear cut

64

Submission

of Manuscripts

Publication

Schedule

Subscriptions
and Exchange

Statement
of Publishers

Abstracting

Manuscripts should be submitted in triplicate to Acta Forestalia Fennica, Unioninkatu 40 A,
FIN-00170 Helsinki, Finland. Detailed instructions to authors have last been printed in Acta
Forestalia Fennica 244, are available from the editorial office, and can be found on Acta’s
WWW pages at http://www.metla.fi/publish/acta/

Acta Forestalia Fennica is published intermittently, 3 to 6 numbers per year.

Subscriptions and orders for back issues should be addressed to Academic Bookstore, Subscrip-
tion Services, P.O. Box 108, FIN-00101 Helsinki, Finland, Phone +358 9 121 4322, Fax +358 9
121 4435. Subscription price for 1997 is 70 FIM per issue. Exchange inquiries should be
addressed to the Finnish Society of Forest Science, Unioninkatu 40 A, FIN-00170 Helsinki,
Finland, Phone +358 9 857 05235, Fax +358 9 857 05677, E-mail sms @helsinki.fi

Acta Forestalia Fennica has been published since 1913 by the Finnish Society of Forest Science.
In 1989 Acta Forestalia Fennica was merged with Communicationes Instituti Forestalis Fenniae,
started in 1919 by the Finnish Forest Research Institute. In the merger, the Society and Forest
Research Institute became co-publishers of Acta Forestalia Fennica. The Finnish Society of
Forest Science is a nonprofit organization founded in 1909 to promote forest research. The
Finnish Forest Research Institute, founded in 1917, is a research organization financed by the
Ministry of Agriculture and Forestry.

Articles in Acta Forestalia Fennica are abstracted and indexed in Agrindex, Biological Ab-
stracts, Current Advances in Ecological Sciences, Current Advances in Plant Sciences, Ecologi-
cal Abstracts, Forest Products Journal, Forestry Abstracts, International Bibliography of Period-
ical Literature, Life Sciences Collection.



ACTA FORESTALIA FENNICA

The Finnish Society of Forest Science
The Finnish Forest Research Institute

249

250

251

252

253

254

255

256

257

Jukka Tyrviinen: Wood and fiber properties of Norway spruce and its
suitability for thermomechanical pulping.

Mauno Pesonen, Arto Kettunen and Petri Riasidnen: Non-industrial
private forest landowners’ choices of timber management strategies:
Genetic algorithm in predicting potential cut.

Jyrki Kangas, Teppo Loikkanen, Timo Pukkala and Jouni Pykildinen:
A participatory approach to tactical forest planning.

Pekka Ripatti: Factors affecting partitioning of private forest holdings in
Finland. A logit analysis.

Vesa Kaarakka: Management of bushland vegetation using rainwater
harvesting in eastern Kenya.

Pertti Hari, Juhan Ross and Marja Mecke (eds.): Production process
of Scots pine; geographical variation and models.

Euan G. Mason and A. Graham D. Whyte: Modelling initial survival and
growth of radiata pine in New Zealand.

Juha Nurmi: Heating values of mature trees.
Timo Hartikainen: Late-industrial sawmill customers. The concept of

industrial operating mode and its testing in secondary wood processing
industry.

ISBN @51-40-1578-9
ISSN 0001-5636 9

89514

0157

8

UBUNAIOY OWID[ J8A0T)




