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Highlights
• 3D aerial imaging provides a feasible method for estimating forest variables in the form of 

thematic maps in large area inventories.
• Photogrammetric 3D data based on aerial imagery that was originally acquired for orthomosaic 

production was tested in estimating stand variables.
• Photogrammetric 3D data highly improved the accuracy of forest estimates compared to 

traditional 2D remote sensing imagery.

Abstract
Optical 2D remote sensing techniques such as aerial photographing and satellite imaging have 
been used in forest inventory for a long time. During the last 15 years, airborne laser scanning 
(ALS) has been adopted in many countries for the estimation of forest attributes at stand and 
sub-stand levels. Compared to optical remote sensing data sources, ALS data are particularly 
well-suited for the estimation of forest attributes related to the physical dimensions of trees due 
to its 3D information. Similar to ALS, it is possible to derive a 3D forest canopy model based on 
aerial imagery using digital aerial photogrammetry. In this study, we compared the accuracy and 
spatial characteristics of 2D satellite and aerial imagery as well as 3D ALS and photogrammetric 
remote sensing data in the estimation of forest inventory variables using k-NN imputation and 2469 
National Forest Inventory (NFI) sample plots in a study area covering approximately 5800 km². 
Both 2D data were very close to each other in terms of accuracy, as were both the 3D materials. 
On the other hand, the difference between the 2D and 3D materials was very clear. The 3D data 
produce a map where the hotspots of volume, for instance, are much clearer than with 2D remote 
sensing imagery. The spatial correlation in the map produced with 2D data shows a lower short-
range correlation, but the correlations approach the same level after 200 meters. The difference 
may be of importance, for instance, when analyzing the efficiency of different sampling designs 
and when estimating harvesting potential.
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1 Introduction

Satellite imagery (such as Landsat or SPOT XS imagery) has been used in remote sensing-aided 
forest inventories for a long time to produce geospatial estimates of forest characteristics. A suc-
cessful example of this is the Finnish multi-source National Forest Inventory (MS-NFI) (Tomppo 
1993; Tomppo et al. 2008). Starting from the late 1980s, MS-NFI has been used operationally for 
producing forest information in the form of thematic forest maps and forest statistics for municipal 
areas.

The MS-NFI method is based on combining information from field sample plots of National 
Forest Inventory (NFI), satellite images and digital map data. In general, the satellite images enable 
covering larger areas but have considerably lower spatial resolution compared to aerial images. On 
the other hand, they cover wider spectral variation and generally enable more feasible operational 
use due to their frequent acquisition and public distribution at no cost (Roy et al. 2014; Barrett et 
al. 2016). The main drawback is that the general accuracy of satellite image-based forest estimates 
is not sufficient for forest management purposes at the forest stand level.

Aerial imagery can be used both in management-oriented forest inventories (Köhl 1993; 
Pekkarinen and Tuominen 2003) and in NFIs (Poso 1972; Keller 2001). Compared to satellite 
imagery such as Landsat, the higher spatial resolution of aerial imagery allows the use of textural 
image features in addition to spectral information (Woodcock and Strahler 1987; Lillesand et al. 
2004). Better resolution, together with textural features, help to recognize small-scale variations 
and horizontal vegetation structure in more detail (Wood et al. 2012), therefore improving the esti-
mates of stand-level forest attributes (Poso et al. 1999). The availability and affordability of aerial 
images is generally good in Finland, and the recently established national aerial imaging program 
ensures further updates at maximum five years’ interval for almost the whole country (Tuominen 
and Pekkarinen 2005; Maltamo et al. 2006; Maanmittauslaitos 2016).

During the last 15 years, airborne laser scanning (ALS) has been adopted in many countries 
including Finland for the estimation of forest attributes at stand and sub-stand levels. Compared to 
optical remote sensing data sources, ALS data are particularly well-suited for the estimation of forest 
attributes related to the physical dimensions of trees, such as stand height and volume, due to the 
three-dimensional (3D) nature of the data (van Aardt et al. 2006; Yu et al. 2011; Kankare et al. 2013). 
In forestry use, ALS data is typically summarized using a rasterized grid, where each grid cell is 
populated with a range of ALS-derived metrics and further applied in model development (Wulder et 
al. 2012). ALS is currently considered to be the most accurate remote sensing method for estimating 
stand-level forest variables (Næsset 2002, 2004; Maltamo et al. 2004; Bergseng et al. 2015; Wilkes 
et al. 2015; White et al. 2016). On the other hand, with the pulse densities applied in operational 
forest inventories, ALS is not considered to be well-suited for estimating tree species composition 
or dominance and, thus, optical imagery is typically acquired to complement the ALS data (Törmä 
2000; Waser et al. 2011; Fassnacht et al. 2016). Due to the high cost of ALS data, it is usually not a 
feasible method for covering large areas with good temporal resolution (Barrett et al. 2016).

Similar to ALS, it is possible to derive a 3D forest canopy surface model (CSM) based on 
aerial imagery using digital aerial photogrammetry (Pitt et al. 2014; Stepper et al. 2016). This 
requires imagery with sufficiently high spatial resolution and stereo overlap. 3D CSMs derived 
from aerial photographs using stereo-photogrammetric measurement have been reported to be well 
correlated to CSMs generated from ALS data, and they can be considered as a viable alternative 
to ALS (Baltsavias et al. 2008; Pitt et al. 2014), although their geometric accuracy is often lower 
(St-Onge et al. 2008; Haala et al. 2010). The main benefit of the photogrammetric canopy model 
is that no separate flights are required for the acquisition of 3D data and imagery, which often 
have different flight parameters in relation to the imaging altitude and coverage in case of ALS and 
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aerial imagery. Furthermore, aerial images are typically acquired at frequent intervals for purposes 
other than forestry such as mapping and surveying, which increases their availability compared 
to ALS data (Granholm et al. 2015; Stepper et al. 2016). Therefore, aerial images have significant 
potential for operational use in forestry applications (Bohlin et al. 2012).

In this study we examine the stereo-photogrammetric 3D canopy data derived from archived 
aerial imagery as a potential data source covering the requirements of large area forest inventory 
(aiming at high area coverage) while simultaneously serving the needs of management-oriented 
forest inventory (aiming at high local accuracy). The primary focus of this paper is on large area 
inventory compatible with the results of current operational MS-NFI. In particular, we focus on 
an approach where traditional 2D aerial and satellite image data are complemented with 3D CSM 
derived from aerial stereo-imagery. The forest estimates based on stereo-photogrammetric 3D CSM 
are compared to those based on traditional 2D remote sensing data, as well as to the estimates 
based on ALS data and aerial orthoimagery.

2 Materials and methods

2.1 Study area

The study area is located in central Finland and covers approximately 5800 km² (Fig. 1). The 
topography of the area is relatively flat with elevation values ranging generally between 100–200 m 
above sea level. A majority of the region is characterized by oligotrophic moraine and peat soil 
deposits. These areas have traditionally been unfavorable for settlement and cultivation, and they 

Fig. 1. Study area in Finland visualized on top of the Landsat 8 image (2014) used in the study.
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have mainly been allocated for forestry. Thus, the study area is characterized by a wide coverage 
of forested areas, sparse inhabitation and lack of significant urban areas. In addition, the area is 
part of the Suomenselkä watershed zone which separates two drainage basins, one having streams 
running towards the Gulf of Bothnia (west) and the other towards the Gulf of Finland (south).

The study area belongs predominantly to the middle boreal vegetation zone with some south-
ern boreal influences in its southern parts. According to 2013 Finnish multi-source NFI results, 
78.8% of the total area (470 000 ha) is used for forestry purposes, while the remaining coverage 
is primarily dominated by a few larger water bodies and scattered agricultural areas. Of the for-
estry land, 72.0% is mineral soil, 26.2% forested peatland and 1.8% open bogs or mires. Forests 
are mainly coniferous and dominated by Scots pine (Pinus sylvestris L.; 54.1%), Norway spruce 
(Picea abies [L.] H. Karst.; 5.4%), or by combination of the two (21.8%). To a lesser extent, there 
are also mixed forests (7.4%), broadleaved forests (mainly Betula pendula Roth and B. pubescens 
Ehrh.; 4.9%) and sparsely forested areas (6.5%). The principal silvicultural system in the region 
has been even-aged management.

2.2 Field data

A total of 2469 sample plots were placed on the study area using systematic cluster sampling. Each 
of the full clusters had eight plots with 250 m spacing in two orthogonal rows, and clusters were 
placed 4.3 km apart from each other both horizontally and vertically (Tomppo et al. 2016) (Fig. 2). 
Clusters at the edges of the study area contained less than eight sample plots. Of the 2469 defined 
plots, 1956 (79.2%) were located on forestry land.

All trees whose diameter at breast height (dbh, in our case, diameter at the height of 1.3 m) 
was at least 4.5 cm were calipered for a fixed radius plot of 9 m. Tree species, dbh, tree class, dis-
tance from the center point of a plot to the tree, as well as the azimuth of the tree, were recorded 
for all tally trees. The distance and azimuth were measured simultaneously with the Masser Sonar 
caliper. Additionally, the average age and height of the trees were measured from the basal area 
median trees of each tree species group. Additionally, a small set of stand-level characteristics 
were measured from each stand intersecting a plot (Tomppo et al. 2016).

The statistics of the most important forest variables, measured from the plots located on 
forestry land, are presented in Table 1. In addition, the distribution of volume classes is illustrated 
in Fig. 3.

Table 1. Field-measured mean, standard deviation (SD) and maximum (Max) values of tree height (H) and diameter at 
breast height (D) as well as volume metrics including pine, spruce and broadleaved species.

H (m) D (cm) Vol tot (m3 ha–1) Vol pine (m3 ha–1) Vol spruce (m3 ha–1) Vol Broadl. (m3 ha–1)

Mean 12.7 15.6 120.9 73.3 28.5 19.1
SD 5.83 7.54 95.6 70.8 63.4 34.3
Max 28.1 43.8 867.3 519.9 461.3 411.9

Fig. 2. Field sampling design used in the study.



5

Silva Fennica vol. 51 no. 4 article id 7743 · Tuominen et al. · Improving Finnish Multi-Source National Forest…

2.3 Remote sensing data

Aerial images used in the study were digitally acquired in good weather conditions during July and 
August in 2013. Imagery was acquired using a Microsoft UltraCam Eagle camera, and the imaging 
altitude was 4700 m. Images contained red (R), green (G), blue (B) and near-infrared (NIR) spectral 
bands, and they were orthorectified to a ground resolution of 30 cm per pixel. Furthermore, based 
on the photogrammetric measurements of stereo pair images, a 3D point cloud (canopy surface 
model, CSM) representing the uppermost canopy layer was calculated using Trimble MATCH-T 
software. This point cloud covers the study area in the form of an evenly spaced grid with 0.75 m 
intervals between points (excluding water bodies).

Since the operational MS-NFI of Finland is based on using satellite imagery as remote sensing 
data source, we used Landsat satellite image as a point of comparison. Landsat 8 images were used 
both for comparison and for complementing the information based on aerial images with satellite 
data. As no suitable Landsat 8 materials were available from summer 2013, a frame acquired on 
July 23rd, 2014 was downloaded from United States Geological Survey (USGS) service as an 
atmospherically corrected surface reflectance product (see Fig. 1). To replace patches affected by 
clouds or their shadows, a second surface reflectance Landsat 8 frame, acquired on July 3rd, 2015, 
was downloaded as well. Both of the images were carefully rectified using aerial images, band-wise 
reflectance histograms of the 2015 image were matched to the 2014 image, and finally cloudy/
shadowy patches of 2014 were replaced with the data of 2015. In this study, bands 1–7 were used.

The second reference remote sensing method used in this study for comparison was a 
combination of ALS and aerial imagery, used in forest inventories aiming at producing stand-
level forest data for forest management. ALS data were acquired originally for the Finnish Forest 
Centre in June–August 2013 using an Optech Gemini ALTM laser scanner. The scanning altitude 
was 1730 m with a maximum zenith angle of 20° and side overlap of 20%. The average density of 
points in the ALS point cloud was 0.91 m–2, strip overlap was 20%, half scan angle 20 degrees and 
the maximum number of observed pulse returns was four. Both the digital terrain model (DTM) 
and canopy surface model (CSM) were derived from ALS data. Pulse returns with heights greater 
than 1.3 m above the ground were classified as canopy. The DTM was produced in two phases 

Fig. 3. Distribution of total tree volume in the sample plots.
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(Tomppo et al. 2016). In the first phase the area was divided into 8 × 8 m grid cells and each grid 
cell’s ground elevation was calculated using the average elevation above sea level of the ground 
points inside the grid cell if there were at least three ground points. For grid cells with less than three 
ground points the elevation was calculated in the second phase using neighboring cells with ground 
elevation values and a Gaussian weighing function. The height above ground (H) was calculated 
for each LiDAR point as the difference between the z coordinate and the estimated ground level.

A digital terrain model was provided by the open data file download service of the National 
Land Survey of Finland (National Land Survey 2017). Approximately 75% of the study area was 
covered by a terrain model based on ALS data and generated at 2 m pixel size, while the remain-
ing 25% had been constructed earlier using aerial images at 10 m pixel size. The terrain model 
was applied with photogrammetric point cloud data for determining the terrain elevation in rela-
tion to photogrammetric point cloud. This DTM was not available at the time when ALS data 
was processed. As with ALS, canopy height (above ground) was calculated for each point of the 
photogrammetric 3D data.

3 Methods

3.1 Extraction of remote-sensing features

Canopy height values of the photogrammetric point cloud were interpolated into a raster format 
canopy height model (CHM) at spatial resolution and grid spacing similar to that of the digital 
aerial images. Final height values were limited to between 0 and 40 m, thus covering the expected 
variation in the forests of the study area and reducing the effects of potential outliers.

Remote sensing features for sample plots were extracted from the ALS point clouds, photo-
grammetric point clouds, the rasterized canopy height model (derived from the photogrammetric 
point data) as well as from the aerial and satellite images.

Features extracted from ALS and aerial image data sets for a different study (Tomppo et al. 
2016) were used and are described in that article.

Raster features were extracted from 16 × 16 m square windows, whose centers coincided 
with the centers of the sample plots. Features from the photogrammetric point data were extracted 
from around the sample plots’ centers within a radius of 9 m.

The following features were extracted from the photogrammetric point data (Næsset 2002; 
Maltamo et al. 2009):

1. Average value of H for vegetation points (m)
2. Standard deviation of H for vegetation points (m)
3. H at which percentiles of vegetation points (0%, 5%, 10%, 20%, ..., 85%, 90%, 95%, 

100%) accumulated (m)
4. Coefficient of variation of H for vegetation points (%)
5. Proportion of vegetation points relative to all points (%)
6. Proportions of vegetation points having H above fraction* 0, 1, ..., 9 from all points (%)
7. Ratio of the number of vegetation points to the number of ground points
8. Proportion of ground points (%)

* The range of H was divided into 10 fractions (0, 1, 2, …, 9), of equal distance.
where H = return/point height above ground
vegetation return/point = return/point with H ≥ 1.3 m
ground return/point = other than vegetation return/point
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The following features were extracted from the CSMs:
1. Averages of pixel values
2. Standard deviations of pixel values
3. Textural features based on co-occurrence matrices of pixel values (Haralick et al. 1973; 

Haralick 1979):
• Angular Second Moment
• Contrast
• Correlation
• Variance
• Inverse Difference Moment
• Sum Average
• Sum Variance
• Sum Entropy
• Entropy
• Difference Variance
• Difference Entropy
• Information Measures of Correlation 1
• Information Measures of Correlation 2

The textural features based on co-occurrence matrices of pixel values were extracted as 
average values for features calculated in four directions in the extraction window: horizontally 
(0° angle), vertically (90°), and diagonally (45° and 135°). The same set of textural features was 
extracted from aerial images with a pixel lag of 2.7 meters additionally to the lag of 5.7 meters 
used by Tomppo et al. (2016).

The following features were extracted from the satellite image:
1. Pixel values in each image band
2. Ratios of all possible band combinations (excluding reciprocals)

3. Normalized difference vegetation index (NDVI), NDVI
Near Infrared Red

Near Infrared Red
=

−( )
+( )

4. NDVI Green, NDVI
Near Infrared Green

Near Infrared Green
Green =

−( )
+( )

Single pixel values from the sample plot centers were extracted.
All features were scaled to have a standard deviation of 1. This was done because the origi-

nal features had very diverse scales of variation. Without scaling, variables with wide variation 
would have had greater weight in the estimation regardless of their correlation with the estimated 
forest attributes.

3.2 Estimation of forest attributes and selection of remote-sensing features

The k-nearest neighbor (k-NN) method was used for the estimation of the forest variables. Different 
values of k (3–6) were tested in the estimation procedure. The nearest neighbors were weighted 
by the inverse squared Euclidean distances for diminishing the averaging of the estimates (Altman 
1992). The following Euclidean distance d was applied in k-NN (Eq. 1):

d w f fp p l l p l p
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where pj is the pixel j, p is the target pixel, fl is the l th feature, wl is the weight of l th feature. The 
weight of sample plot I to pixel p was defined as:

w
d d

i p
p p
t

p p
t

j Ni j

,
, ,

( )=
∈
∑

1 1
2

where N is the neighborhood of k nearest sample plots i1(p)…ik(p) of pixel p. Then, a pixel-level 
estimate for variable y is:

ˆ ( ),y w yp i p i
i N

=
∈
∑ 3

The selection of the features (as well as the optimal value of k) was performed with a genetic 
algorithm (GA)-based approach, implemented in the R language by means of the Genalg package 
(Willighagen and Ballings 2015; R Development Core Team 2016). Here the evaluation function 
of the genetic algorithm was employed to minimize the root mean square errors (RMSE) (Eq. 4) 
of the k-NN estimates of inventory variables in leave-one-out cross-validation. In cross-validation 
the estimated forest variable values were compared with the measured values (ground truth) of 
the sample plots.

2

1

ˆ( )

( ) (4)
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m m
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where M is the number of sample plots. The relative RMSE was obtained by relating the RMSE 
to the mean value of the variable in question.

3.3 Distribution of forest attribute estimates

In addition to cross-validating the estimates, the amount of variation (of field data) that can be 
retained in the estimates was examined. The distribution histograms of the field data, operational 
MS-NFI (from year 2013), and the method combining satellite images and aerial photos (2D and 
3D) (hereafter referred as 3D-MS-NFI) were calculated for volumes of growing stock (both total 
and for tree species groups pine, spruce and broadleaved trees) as well as for mean height. K-NN 
estimation method typically cannot extrapolate estimate values outside the reference values, and 
it also often causes undesirable averaging in the estimates, especially in the higher end of growing 
stock volume. This is partly due to the fact that the assortment of potential reference plots with a 
large volume or tree size is often limited. The averaging is more pronounced when the correlation 
between inventory variables and remote sensing features is low. For example, spectral features of 
satellite imagery typically have a poor ability to discriminate forests with volumes greater than 
250 m3 ha–1. Furthermore, the value of k affects the amount of original variation (of field observa-
tions) that can be retained in the estimates; the higher the value of k the more averaging occurs.

3.4 The spatial distribution and autocorrelation

Spatial structure and local autocorrelation of the operational MS-NFI data and 3D-MS-NFI pre-
dictions were also visualized using correlograms (Fig. 8). A correlogram indicates autocorrelation 
values which are plotted against distances among localities, given the expectations that there is a 
certain dominant spatial structure found in the study area, and this structure is isotropic i.e. inde-
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pendent of the observation direction (Legendre and Fortin 1989). Correlogram calculations used 
in this study are based on a nonparametric spline-derived technique described by Bjørnstad and 
Falck (2001) and implemented in R statistical software using the “ncf” package. Correlograms 
are closely related to semivariograms but offer a standardized range from –1 to +1 rather than a 
magnitude-dependent variance measure, thus allowing an easier comparison between the differ-
ent data sets and regions (Legendre and Fortin 1989; Meisel and Turner 1998; Overmars et al. 
2003). Due to the heavy calculation routines related to correlogram determination, a 2.5 × 2.5 km 
analysis window was selected from the middle of the study area which was expected to represent 
the spatial structure of the total study area.

4 Results

4.1 Accuracy of forest variables

In the estimation of the total volume of growing stock, satellite image spectral features resulted 
in a relative RMSE of 60.95%, which was slightly better than the combination of spectral and 
textural features (i.e. “traditional” 2D image features) of aerial orthoimagery (RMSE 62.45%). 
When combining the aforementioned satellite and aerial image features, the accuracy of volume 
estimates was 57.66%, i.e. somewhat better than the estimates that resulted from any of those data 
sources separately. A major improvement in the estimation accuracy was achieved only when 3D 
point cloud features were introduced. The combination of ALS and 2D aerial image features (as 
used in management-oriented forest inventory) resulted in the best volume estimation accuracy 
(RMSE 27.80%), but there was no large difference in the accuracy compared to estimates based 
on photogrammetric 3D data in combination with satellite and/or aerial image features. Here the 
inclusion of satellite image features with point cloud features resulted in slightly better accuracy 
(RMSE 31.26%) than aerial image features (RMSE 31.53%). The RMSE of the total volume esti-
mates using stereo-photogrammetric 3D data was approx. 11% larger than that produced with ALS.

When estimating volumes per tree species groups (pine, spruce and deciduous trees) the 
trend and the order of the tested data sources was almost exactly similar, with the main exception 
that the aerial image 2D features performed better than satellite image features here. Furthermore, 
the inclusion of the satellite image data with the combination of aerial image 2D data and photo-
grammetric 3D data made a more pronounced difference in the volume estimates per tree species 
(compared to total volume estimates). The estimation accuracy of the total growing stock volume 
and volumes per tree species groups with the tested data combinations is illustrated in Fig. 4.

In the estimation of basal area the relative accuracy of the estimates with the tested data 
combinations were almost in proportion to those of total volume estimates, and the order of the 
tested data sources was similar. When estimating forest variables directly related to the size of the 
trees, i.e. mean height and diameter, there was a clear difference in the performance of 2D satellite 
and aerial image features. Here, aerial imagery performed somewhat better than satellite features, 
and combining them did not bring marked improvement compared to aerial image features only. 
For the estimates of mean height and diameter the inclusion of 3D features brought much greater 
improvement in the accuracy than for growing stock volumes (total or per tree species). Thus, the 
poorest estimates of height and diameter were based on satellite image features, RMSE 33.78 and 
37.50%, respectively. Aerial image 2D features gave RMSEs of 31.16% for height and 34.23% 
for diameter, and the combination of satellite and aerial images 29.93% for height and 33.27% for 
diameter. Inclusion of aerial (stereo-photogrammetric) 3D features with satellite image features 
reduced the RMSEs of height and diameter estimates to 11.49% and 17.02%, respectively, and 
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Fig. 4. Relative RMSEs of volume (total, pine, broadleaved trees and spruce) estimates.

Fig. 5. Relative RMSEs of height, DBH and basal area estimates.

combining satellite data with aerial image 2D and 3D features resulted in RMSEs of 10.99% for 
height and 17.14% for diameter. Again, the best estimates were based on combination of ALS 3D 
data and aerial 2D features, but the difference between ALS and stereo-photogrammetric 3D data 
was clearly smaller here than in the case of volume. Here the difference in the accuracy of the 
best estimates using ALS or stereo-photogrammetric 3D data was only 4.8% for height and 1.7% 
for diameter. The estimation accuracy of the basal area, height and diameter with the tested data 
combinations is illustrated in Fig. 5.
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Fig. 6. Histograms of the different variables from operational MS-NFI, 3D-MS-NFI results (satellite image and aerial 
photos 2D + 3D) of this study, and sample plots. Features selected for this comparison are total volumes of growing 
stock for pine, spruce and broadleaved trees, and average height of the trees.
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4.2 Distributions of forest variables

As a general tendency, sample plots gain higher frequencies at both ends of the distributions 
compared to operational MS-NFI and 3D-MS-NFI predictions (i.e. satellite images and aerial 
photos 2D and 3D), which are more prone to predict values relatively close to the variable 
mean (Fig. 6). Of these two methods, however, 3D-MS-NFI frequencies are generally closer 
to the field-derived data. This tendency is particularly evident with total volume of the grow-
ing stock. Correct estimates of extremely high values seem to be problematic for both MS-NFI 
and 3D-MS-NFI methods, although the latter is closer to the field-measured values with all the 
measured variables.

Mean values of MS-NFI, 3D-MS-NFI and field data are relatively similar to each other. 
In terms of maximum values, 3D-MS-NFI mean is always lower compared to the field data, but 
MS-NFI values exceed the field data with spruce volume and average height. Based on the histo-
grams, these differences appear to be due to single pixels rather than reflecting general emphasis 
on higher values. It must be also noticed that although all the data are targeted at representing the 
same area and year, operationally produced MS-NFI data is based on a different set of sample 
plots compared to the ones used in the 3D-MS-NFI calculations, and there are also differences in 
the used satellite images. Mimicking the whole operational chain within this study in order to use 
the same field data, however, would have been complicated and expectedly led to similar results 
compared to the applied MS-NFI data.

4.3	 Spatial	configuration	of	the	forest	area

In Fig. 7, volumes of growing stock and average height have been visualized using a small subsec-
tion of the study area. The figure indicates clear differences in the spatial structure between the 
MS-NFI and 3D-MS-NFI estimates. In particular, values predicted by the operational MS-NFI 
method tend to be less extreme and more scattered compared to the 3D-MS-NFI values, which 
appear to construct larger continuous patches. In addition, border lines between the dissimilar 
patches are visually more distinctive with 3D-MS-NFI data than with MS-NFI predictions.

In the correlograms presented in Fig. 8, the 3D-MS-NFI curve starts generally from a higher 
initial correlation and remains above the MS-NFI values until at least a 200 m distance. This stands 
for higher similarity of the variable values at close distances, i.e. indicating stronger spatial auto-
correlation and the existence of larger relatively homogeneous patches. In forest estimates based 
on satellite imagery, high proportion of pixels are mixed (i.e. receive reflectance from more than 
one stand) due to the small average stand size, approx. 1–2 ha in Southern Finland (Tokola and 
Kilpeläinen 1999; Mäkelä and Pekkarinen 2001). When using higher resolution remote sensing 
data, the landscape patch structure is more evident in mapped data (proportion of mixed pixels is 
lower). At approximately 200–300 m distance, autocorrelation levels out close to zero level. The 
only exceptional curve is the spruce volume. However, one should notice that spruce is not the 
dominant tree species and the study area is rather characterized by relatively low mean volume 
and comparatively high standard deviation (Table 1).

5 Discussion

In this study, the inclusion of 3D information to complement 2D data resulted in a major enhance-
ment in estimation accuracy. Depending on the variable, the difference in RMSEs could be close 
to 100%. On the other hand, the differences between 3D materials from ALS and photogrammetric 
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Fig. 7. Visualization of the different variables based on operational MS-NFI (left) and 3D-MS-NFI results of this study 
(right) related to growing stock volumes and average height.
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Fig. 8. Correlograms (i.e. correlation as a function of distance between pixels) of the growing stock volumes 
(pine, spruce, broadleaved, total) and average height.
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point clouds were much smaller, albeit still clear. Although the photogrammetric point cloud appears 
to be a very crude representation of the canopy structure (Fig. 9), there is strikingly little differ-
ence between key features extracted from photogrammetric and ALS point clouds, for example, 
in relation to stand height (Fig. 10). The importance of this difference in decision making remains 
to be studied, for instance with a cost-plus-loss analysis (Bergseng et al. 2015).

Fig. 9. An illustration of the photogrammetric point cloud.

Fig. 10. Scatter plot describing the relation of H80 feature of 3D cloud points (first points only 
in ALS data) vs. measured value (H80 was selected because it usually corresponds well to the 
mean height of a plot). Linear trendline of ALS data shows R2 = 0.9405; with photogrammetric 
data R2 = 0.9203.
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The possibility of collecting data during relatively frequent aerial image acquisition cam-
paigns, however, improves the operational feasibility and cost efficiency of CSMs compared to ALS 
data. Whether standard image acquisition parameters are sufficient for CSM production, particularly 
related to image overlap, has been a recent topic of discussion. Puliti et al. (2017) and Bohlin et 
al. (2012), for example, tested and compared overlaps of both 60% and 80%. Puliti et al. (2017) 
found 80% overlap slightly outperforms 60%, but Bohlin et al. (2012) reported to have detected 
no improvement from higher overlap. This may result from a trade-off between increased image 
matching success when using higher overlap, and simultaneous decrease in height accuracy due 
to a shorter baseline between the images leading to weaker relief displacement (Lemaire 2008). 
60% overlap was used in this study, which also corresponds to the Finnish image acquisition 
standards. In addition to ALS and CSM data, 3D information can be retrieved by radar data from 
spaceborne platforms such as TanDEM-X or TerraSAR-X as well as very high resolution (VHR) 
optical satellites. Radar materials are able provide a more generalized mid-canopy response, but 
gained accuracy remains generally at a lower level compared to airborne sources (Wulder et al. 
2012; Rahlf et al. 2014; Yu et al. 2015). VHR-derived 3D data, in turn, may produce results which 
are comparable or even outperform the CSMs created from aerial images (Yu et al. 2015; Stone 
et al. 2016), but the current costs of acquiring VHR materials over large coverages for the needs 
of operational use may turn out to be unacceptable. Furthermore, it should be stressed that all the 
methods except ALS are relying on the existence of good quality ground elevation models, which 
may pose restrictions to the selection of the applicable method.

The differences between the spaceborne and airborne 2D data were mixed; in some cases 
spaceborne data was more accurate than airborne data, and vice versa. This indicates that the wide 
spectral range of multispectral satellite imagery still has advantages over the high spatial resolution 
of aerial imagery. As their combined use leads to an augmented range of available features, includ-
ing wider spectral and textural variation, it is however slightly surprising that the model including 
both aerial photos and satellite images does not result in more distinctive improvement compared 
to the single-data models. This could potentially be explained by mixed signals given by the two 
data sources due to their different initial resolutions, particularly referring to the coarser resolu-
tion of the Landsat data (30 m) compared to the analysis window used in this study (16 × 16 m). 
In addition, the applied Landsat frame was from one year later compared to the aerial images and 
field data, thus adding a potential source of errors to the analysis.

The relative RMSEs of total volume for the 3D material here were markedly higher than in 
Puliti et al. (2017), namely 31.60 for image matching data and 27.80 for ALS, compared to 21.3 
and 19.7 in Puliti et al. (2017), respectively. One obvious reason for this difference is that the mean 
volume in this study was 120 m3, while in Puliti et al. (2017) it was 248.3 m3. In this study, all 
forest development classes were included, while in the study of Puliti et al. (2017) young stands 
and recently regenerated or open areas were left out. A respective difference can also be seen in 
the species-level results. Furthermore, several studies have reported that the use of ALS data mark-
edly outperforms photogrammetrically created point clouds in forest variable estimation. Rahlf 
et al. (2014), for example, found that ALS resulted in a 19% RMSE at the plot-level compared to 
31% RMSE for photogrammetric data. Similar results have also been obtained by Vastaranta et al. 
(2013), where the RMSEs for total volume were 18% and 25% for ALS and photogrammetric point 
clouds, respectively and Järnstedt et al. 2012, with 31% and 40%, and with Straub et al. (2013) 
with 34% and 41%. Generally the differences between these two methods have thus been clear. It 
is possible that these differences are related to the ALS point density, which in the abovementioned 
studies ranged between 5 and 10 pulses m–2, while the density used in this study was less than 
one point per square meter and footprint size was larger due to higher flight altitude. However, 
the resolutions of the aerial images and CSMs generated from them were also differing and there 
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were variations in the fieldwork planning and data collection, therefore making it difficult to define 
any single reason for the observed differences. These examples nevertheless indicate that ALS has 
capabilities in accurate forest variable estimation, but from the perspective of repetitive large area 
operational analyses aiming at frequently updated products similar to the present MS-NFI, requir-
ing relatively frequent and repetitive estimations over large areas, production of high-density ALS 
data may not be a feasible option.

The effect of adding 3D information to support 2D information is clearly seen from the his-
tograms of the forest variables, and from the spatial distribution as well. When using k-NN-based 
estimation, it is often unavoidable that distribution tails near to minimum and maximum values of 
the reference data are partially neglected as k observations are used to calculate the estimates. A 
closer match of the 3D-MS-NFI distribution with field data compared to the operational MS-NFI 
values, however, proves that 3D information can clearly improve the accuracy of estimates over a 
larger range of values. This could further lead to better success in forest type classification, particu-
larly emphasizing the detection of those classes, which without 3D data would be underrepresented 
(Dalponte et al. 2008). In terms of spatial structure, more distinctive border lines created by the 
3D-MS-NFI data have a closer match to reality, given the current forestry system in Finland which 
favors periodical clearcuts, often followed by planting a single species and resulting in even-aged 
stand structure (Kuuluvainen et al. 2012). The support of 3D data may be explained by its capabili-
ties to measure more directly variables such as forest volume, DBH, basal area and particularly 
average height, whereas the sole use of 2D data primarily offers correlating surrogates to indicate 
these characteristics. Surrogates are beneficial in measuring variables that would otherwise be 
difficult to interpret, such as using image texture to reflect the actual physical canopy composition 
(Wulder 1998), but more direct variables will normally increase the accuracy of the results.

The forest resource maps produced with satellite images have often also been used for opti-
mizing the sampling design (Tomppo et al. 2011). When selecting the cluster size and the distances 
of plots within the cluster, autocorrelation is very important. The map estimated using satellite 
images has lower autocorrelation than the 3D-MS-NFI map utilizing point cloud data especially 
in the range of 200 meters, but the difference is negligible with larger distances. This indicates 
that while both of the data types are able to detect similar characteristics in terms of general forest 
structure, the 3D-MS-NFI version with added 3D information is more prone to generate smaller 
homogeneous patches, which is reflected by increased spatial autocorrelation at short distances. 
Such a tendency is likely to improve the detection of stand-related forest structures, and further 
lead to, e.g., easier identification of harvesting opportunities. The importance of this difference 
from the decision making point of view still needs to be examined.
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