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Highlights
• No one particular neighborhood search technique of simulated annealing was found to be 

universally acceptable.
• The optimal number of independent solutions necessary for addressing the area restriction 

harvest scheduling model was described with a negative logarithmic function that was related 
with the problem size. However, optimal number of independent solutions necessary was not 
sensitive to the problem size for non-spatial and unit restriction harvest scheduling model 
problems, which should be somewhat above 250 independent runs.

• The types of adjacency constraints have moderate effects on the number of independent solu-
tions, but these effects are not significant.

Abstract
To assess the quality of results obtained from heuristics through statistical procedures, a number 
of independently generated solutions to the same problem are required, however the knowledge 
of how many solutions are necessary for this purpose using a specific heuristic is still not clear. 
Therefore, the overall aims of this paper are to quantitatively evaluate the effects of the number 
of independent solutions generated on the forest planning objectives and on the performance of 
different neighborhood search techniques of simulated annealing (SA) in three increasing diffi-
cult forest spatial harvest scheduling problems, namely non-spatial model, area restriction model 
(ARM) and unit restriction model (URM). The tested neighborhood search techniques included 
the standard version of SA using the conventional 1-opt moves, SA using the combined strategy 
that oscillates between the conventional 1-opt moves and the exchange version of 2-opt moves, 
and SA using the change version of 2-opt moves. The obtained results indicated that the number 
of independent solutions generated had clear effects on the conclusions of the performances of 
different neighborhood search techniques of SA, which indicated that no one particular neighbor-
hood search technique of SA was universally acceptable. The optimal number of independent 
solutions generated for all alternative neighborhood search techniques of SA for ARM problems 
could be estimated using a negative logarithmic function based on the problem size, however the 
relationships were not sensitive (i.e., 0.13 < p < 0.78) to the problem size for non-spatial and URM 
harvest scheduling problems, which should be somewhat above 250 independent runs. The types 
of adjacency constraints did moderately affect the number of independent solutions necessary, but 
not significantly. Therefore, determining an optimal number of independent solutions generated 
is a necessary process prior to employing heuristics in forest management planning practices.

http://www.silvafennica.fi
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://doi.org/10.14214/sf.7803


2

Silva Fennica vol. 52 no. 1 article id 7803 · Dong et al. · Reflections on the number of independent solutions for…

Keywords simulated annealing; forest management planning; adjacency constraint; neighborhood 
search; combinatorial optimization
Addresses 1 College of Forestry, Northeast Forestry University, Harbin 150040, China; 2 War-
nell School of Forestry and Natural Resources, University of Georgia, Athens 30602, GA, USA; 
3 College of Economic and Management, Northeast Forestry University, Harbin 150040, China
E-mail lzg19700602@163.com (Z. Liu)
Received 9 September 2017 Revised 8 December 2018 Accepted 15 January 2018

1 Introduction

The need to protect wildlife habitat, improve water quality, preserve biodiversity, and produce 
wood products has resulted in a complex forest management planning environment, especially 
when considering the interactions among the threefold values (i.e., economic, ecological and 
social) of forest ecosystems. The spatial structure of the forested landscape, as well as the attributes 
described at the stand-level, might have an influence on ecological processes and the numerous 
plant and animal species living in forests (Borges and Hoganson 2000; Kurttila 2001; Wu 2004; 
Zeng et al. 2010). Therefore, there has been an increasing effort to develop tools by which spatial 
objectives can be explicitly integrated into forest planning processes. Depending on the methods 
used to merge spatial objectives into the forest planning process, the abundant published articles 
can be classified into two categories: exogenous and the endogenous optimization (Kurttila 2001). 
Usually, exogenous methods do not include any spatial information in their optimization process, 
but take into account predetermined spatial constraints (Naesset 1997; MacLean et al. 2001; Zeng 
et al. 2007), such as riparian zones and key habitats. However, endogenous optimization processes 
can employ some decision variables which describe the spatial structure of forest landscape, thus 
the layout of forest plans can address the constraints for the problem formulated (Borges and 
Hoganson 2000; McDill et al. 2002; Öhman and Lämås 2003; Crowe and Nelson 2005; Borges et 
al. 2015a). Since endogenous methods can generate plans that are more appropriate for long-term 
forest planning and thus more effective from economic and ecological points of view, there is a 
considerable interest in using these to solve forest planning problems in this context.

In forest planning practices, three important strategic options usually employed in forest 
harvest scheduling problems might be the imposition of ending inventory constraints, harvest 
flow constraints, and adjacency constraints (McDill et al. 2002; Zhu and Bettinger 2008). Ending 
inventory constraints can prevent the over-harvesting from a forest during the time horizon of a 
forest plan, thus may be helpful in achieving sustainable development goals of forest ecosystems. 
Harvest flow constraints help to produce a reasonable yield pattern over time (Bettinger et al. 2007; 
Borges et al. 2015a), and are often recognized as important to ensure full utilization of equipment 
and labor (Martins et al. 2014). A variety of spatial constraints that involve adjacency issues have 
been integrated into forest plans, such as those restricting the size of final harvest areas (Bettinger et 
al. 2003; Borges et al. 2015a), encouraging the formation of overmature forest (Kurttila et al. 2002; 
Kašpar et al. 2015), and promoting the clustering of harvest activities (Öhman and Lämås 2003; 
Smaltschinski et al. 2012). Constraining the size of final harvest openings has been the focus of 
much research, in which the unit restriction model (URM) and area restriction model (ARM) are the 
most commonly used approaches (Murray 1999). When using the URM, arbitrary adjacency units 
cannot be assigned a final harvest treatment in the same (or near) periods. However, when using 
the ARM, adjacent units may be allowed to be simultaneously harvested as long as their combined 
area does not exceed the maximum open area (MOA). A near time period is developed from the 
green-up window, which typically reflects the number of years required for adjacent final harvests 
to “green-up” due to reforestation practices. These are called the green-up constraints, and can be 
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treated as a time buffer, i.e., a minimum passage of time before adjacent units can be harvested. 
In practice, if the mean size of management unit (MU) within a forest landscape is similar (or 
near) to the MOA, then the URM should be employed preferentially, while the ARM may be more 
suitable for the planning problems where the size of each MU is well below the MOA (Borges et 
al. 2015a, 2015b). Due to the combinatorial nature of these approaches, the ARM is usually more 
difficult to formulate and solve than the URM, but can result in a higher net present value due to 
the flexibility it provides in scheduling activities across a landscape (Boston and Bettinger 2006; 
Dong et al. 2015). Obviously, planning problems that include these constraints have non-linearity, 
non-continuity and non-convexity characteristics, which contribute to the problems becoming too 
complicated to solve effectively with exact optimization approaches. Recent works in this area 
using mathematical programming have provided some enhanced approaches to mitigate this issue, 
such as path formulation (McDill et al. 2002; Tóth et al. 2013), bucket formulation (Constantino et 
al. 2008; Goycoolea et al. 2009; Tóth et al. 2013), cluster packing formulation (Tóth et al. 2013) 
and generalized management units formulation (McDill et al. 2002; Tóth et al. 2013). However, 
problems may still be difficult to formulate and solvers can require considerable time to process, 
as these issues highly depend on the size and the complexity of planning problems.

In forestry, Kurttila (2001), Bettinger and Chung (2004), Baskent and Keles (2005), Shan 
et al. (2009) and Jin et al. (2016) have systematically reviewed the developmental trends in spatial 
forest planning problems during the last few decades, and found that heuristics, as an alternative 
forest plan development strategy, have drawn much as much attention as traditional mathematical 
programming approaches (e.g., linear programming (LP) and mixed integer programming (MIP)) 
for addressing complex forest planning problems. However, heuristics only can provide satisfac-
tory, near-optimal solutions to problems rather than guaranteeing the optimal solution, mainly due 
to the search behavior inherent in each. Therefore, evaluating and validating the quality of solu-
tions generated by heuristics is one of the most important processes when employing these in the 
development of management plans (Bettinger et al. 2003; Pukkala et al. 2003) or when comparing 
the performance of different heuristics (Bettinger et al. 2002; Falcão and Borges 2002; Pukkala and 
Kurttila 2005; Dong et al. 2015). As Bettinger et al. (2009) summarized, there are five different 
ways to evaluate the quality of heuristics: 1) using statistics associated with independent runs as 
a self-validation process; 2) comparing solution values with those generated by other heuristics; 
3) comparing solution values with an estimated global optimum solution; 4) comparing solution 
values with relaxed LP (or MIP) solutions; 5) comparing solution values with exact LP (or MIP) 
solutions. Therefore, understanding the number of independent runs (or solutions) necessary is 
an important prerequisite for employing heuristics. However, to our best knowledge, few previ-
ous studies have focused on the question of how many independent solutions are necessary and 
appropriate to assess the performance of a heuristic. Based on an extensive literature review of the 
applications of heuristics in forest planning research, we have successfully located 68 peer-reviewed 
papers which have clearly declared the specific number of independent solutions generated in their 
papers. The statistical results showed that the number of independent solutions generated ranged 
from 3 to 500, with a mean value of 47.25 and a standard deviation of 68.87. Given the broad range 
of this assumption (independent solutions generated), it therefore seems meaningful to determine 
whether an optimal value exists for forest planning problems.

Simulated annealing (SA) belongs to a group of local search, s-metaheuristic processes. SA 
was initially introduced by Kirkpatrick et al. (1983) as a technique for solving optimization prob-
lems in fields such as electronics, transportations, medicine, etc., however, it was inspired by the 
work of Metropolis et al. (1953). In forest planning, SA has been used to provide a set of detailed 
information about where, when and how forest management prescriptions should occur (Lockwood 
and Moore 1993; Bachmatiuk et al. 2015), to evaluate the transportation of various forest products 
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(Richards and Gunn 2000; Contreras et al. 2008), and to maximize the overall benefits of various 
conflicting management objectives (Bettinger et al. 2003; Baskent and Keles 2009). However, SA 
has usually been implemented using a 1-opt search process in most cases in forestry, where a new 
candidate solution is generated by altering the status (i.e., harvest time or prescription) of just one 
MU. In recent research designed to improve the performance of heuristics using alternative neigh-
borhood search strategies, two efficient methodologies are proposed: 2-opt moves that randomly 
(a) change or (b) exchange the status of two different MUs. Using tabu search as an example, the 
exchange version of 2-opt moves in combination with a conventional 1-opt move search strategy 
was initially described in Bettinger et al. (1999) for forest spatial harvest scheduling problems, 
and then was evaluated for wildlife habitat development (Bettinger et al. 2002) and forest land-
scape planning problems (Bettinger et al. 2007). As compared to 1-opt moves alone, a heuristic 
process using this will observe smaller changes to the objective function value, thus increasing the 
probability that it can produce high quality forest plans not located by a conventional 1-opt move 
heuristic process. However, to our best knowledge, few examples of literature have implemented 
it with a SA algorithm. The change version of 2-opt moves, as an alternative enhancement tech-
nique, has also been used in a widespread manner during the last decade. For instance, Caro et al. 
(2003), Heinonen and Pukkala (2004) and Dong et al. (2015) all employed this strategy in forest 
spatial harvest scheduling problems with a set of metaheuristic techniques, including Monte Carlo 
integer programming, the Hero algorithm, tabu search, and SA. Typically, this strategy may result 
in a relatively larger change to objective function values than conventional 1-opt moves alone. As 
compared to the exchange version of 2-opt moves, the changes version does not require separate 
sets of 1-opt moves to increase the diversity of the solution being developed. The performance 
of these alternative search processes of SA in a forest spatial harvest-scheduling problem have 
recently been evaluated by Dong et al. (2015); the results indicated that the exchange version of 
2-opt moves may be superior to the change version. However, the effects of constraint types and 
the problem size on their conclusions were not considered.

The goals of this paper are therefore to quantitatively evaluate the effects of the number of 
independent solutions generated on the performance of different neighborhood search processes 
of SA when solving forest harvest scheduling problems. The planning problems were formulated 
to maximize scheduled harvest volume over a 50 year time horizon, using ten 5-year time periods. 
The problem is subject to non-spatial constraints (wood flow and ending inventory), as well as 
URM and ARM adjacency constraints. Using SA as the base heuristic approach, the search pro-
cesses included three different neighborhood search techniques, namely the standard version of 
SA using the conventional 1-opt moves (Method 1), SA using a combined strategy of conventional 
1-opt moves and the exchange version of 2-opt moves (Method 2), and SA using the change ver-
sion of 2-opt moves (Method 3). Each were applied to five different sizes of hypothetical forests. 
Our hypotheses were as follows: 1) the number of independent solutions generated has an effect 
on conclusions of the performance of a heuristic; 2) the optimal number of independent solutions 
necessary is related to the problem size; and 3) the type of adjacency constraints employed have 
an effect on the optimal number of independent solutions necessary.

2 Materials and methods

2.1 General model

To evaluate the effects of problem size on the optimal number of independent solutions generated 
of SA, five hypothetical forest datasets were created to represent five alternative planning prob-



5

Silva Fennica vol. 52 no. 1 article id 7803 · Dong et al. · Reflections on the number of independent solutions for…

lems. The problems were arranged in square grids of 20, 40, 60, 80 and 100 rows and columns, 
respectively. Each cell in each grid represented a 10 ha logging unit. The age for each unit was 
created using a random number generator, and the age varied uniformly between 0 and 50 years. 
The management decisions we considered only included clear-cut harvests and no harvest. All of 
the harvest activities were assigned to the middle of a planning period. Forests can not be harvested 
before it reached 30 years old according to the Technical Regulations of Forest Resources Con-
tinuous Investigation in China (State Forestry Bureau 2014). Forest timber yields were estimated 
using the Richards equations for Dahurian larch (Larix gmelini) plantations in northeast China 
(Rong et al. 2011):

V a Exp b t c� � � �( ( )) ( )1 1

, where V is the predicted volume, t is the age of management unit; a = 244.22, b = 0.09 and c = 12.13 
are estimated parameters of the Richards equations.
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, where
T is the number of periods in the planning horizon
N is the number of management units in the forest
i is an arbitrary management unit
t is an arbitrary time period
m is a near-time period of the period t
z is a management unit that is adjacent to unit i
k is a management unit from a subset of units adjacent to unit i and the neighbors of unit i and so 

on (Murray 1999), in the form of a recursive function
Ai is the area of management unit i in hectares
Xit is a binary variable (0 or 1) indicating whether unit i is scheduled for harvest during time period t
Vi is the volume per hectare of the beginning inventory in unit i
V̂i is the volume per hectare of the ending inventory in unit i
Vit is the scheduled harvest volume per hectare in unit i during time period t
H is the total volume of the beginning inventory
Ht is the total wood volume scheduled for harvest in period t
Ĥ is the total volume of the ending inventory
α is the deviation proportion allowed in harvest volume from one period to the next, which was 

assumed as 15% in this analysis
β is the increased proportion of the total volume of the ending inventory to the beginning inven-

tory, which was assumed as 20% in our analysis
p is the length of green-up constraints among adjacency harvest units in years
Ni is the set of all harvest units adjacent to unit i
Si is the set of all harvest units adjacent to units (Ni) that are adjacent to unit i
Umax is the maximum opening size assumed, which was assumed as 50 ha (i.e., five logging units) 

in this analysis
Ageit is the age of management units i in the period t
AgeT is the minimum harvest age, which was assumed as 30 years in this analysis

Eq. 2 defines the objective of maximizing timber harvested within the entire time horizon. 
Eq. 3 states the binary requirements on decision variables. Eq. 4 represents the singularity con-
straints, which prevent a unit from being harvested more than once during the entire planning 
horizon. Eq. 5 ensures that the minimum harvest age will not be violated. Eqs. 6–8 represent the 
accounting rows to add up the volume of beginning inventory (H), and scheduled for harvest for 
each period (Ht), and ending inventory ( Ĥ ), respectively. Inequalities 9 and 10 define the wood 
flow constraints for scheduled harvests over the planning horizon, which may ensure the sustain-
ability of the forest. Eq. 11 ensures that the ending inventory target is met. Eq. 12 represents a unit 
restriction model of harvest adjacency, which prohibits the neighboring units from being scheduled 
for a final harvest during the same time period (Murray 1999). Eq. 13 defines an area restriction 
model of harvest adjacency, which ensures that the size of harvested contiguous units does not 
exceed the maximum clear-cut opening size (Murray 1999). The adjacency constraints also hold 
for a 2-period green-up constraint, which can guarantee a time buffer between the locations of 
two final harvest units.

For testing purposes, we developed three different planning problems to assess the impacts 
of the number of independent solutions generated on the performances of different heuristics. 
These problems were constructed by adding constraints one at the time. The first planning prob-
lem referred to the non-spatial goals, which included, among others, the wood flow and ending 
inventory constraints (Eqs. 2–11). In the second planning problem, the URM restriction (Eq. 12) 
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was further added, and for the third problem Eq. 12 was replaced by the ARM restriction (Eq. 13). 
As described here, the constraints involved in these planning problems might also be associated 
with forest management practices, regulations, and verification programs throughout the world. 
The three planning problems are named the non-spatial, URM and ARM problems consistently 
throughout our analysis.

2.2 Simulated annealing

Three different neighborhood search processes of SA were employed to solve the forest harvest 
scheduling problems. The first search process (Method 1) utilizes conventional 1-opt moves. To 
generate a feasible candidate solution, each 1-opt move consists of three steps: 1) changing the 
harvest prescription or time for just one MU; 2) verifying the practicability of the new candidate 
solution with respect to all constraints; 3) assessing the acceptability of the objective function value 
of the new candidate solution with respect to the Boltzman formula (i.e., e(–ΔE/t)). The necessary 
parameters for implementing SA are the starting temperature (st), the final temperature (ft), the 
cooling rate (cr) and the number of iterations allowed at each temperature (nrep). To illustrate the 
context of these parameters, a concise outline of the conventional of SA were presented in Table 1.

The second search process (Method 2) will oscillate the search process back and forth 
between conventional 1-opt moves and the exchange version of 2-opt moves, which was initially 
presented by Bettinger et al. (1999). As emphasized here, the conventional 1-opt moves and the 
exchange version of 2-opt moves must be employed together in an independent run. A set of the 

Table 1. The general description of simulated annealing (SA) algorithm.

1: Set SA parameters: start temperature (st), the final temperature (ft), the cooling rate (cr) and the number of itera-
tions allowed at each temperature (nrep), and select the search strategy to generate candidate solution.

2: Generate an initial feasible solution by assigning a random prescription to each management unit (MU). Set this 
solution as the current (S) and best solution (S*).

3: Compute the objective function value of S.

4: Generate a candidate solution (S’) based on the current solution S by randomly selecting n MUs according to the 
search strategies, and then randomly change (i.e., Method 1 and Method 3) or just exchange their prescriptions 
(i.e., Method 2) of different MUs.

5: Check the conformity of the new candidate solution (S’) to constraints 4 and 5 in the planning formulation (see 
Section 2.1 for details). If feasible, go to step 6; otherwise, return to step 4.

6: Evaluate the feasibility of candidate solution S’ against the harvest even-flow (i.e., Eqs. 9–10), ending inventory 
(i.e., Eq. 11) and adjacency constraints (i.e., Eqs. 12–13; see Section 2.1 for details). If infeasible, reject the candi-
date solution, and go back to step 4.

7: Compute the objective function value of S’.

8: If the objective function value of S’ is larger than that of S*, go to step 9. Otherwise, go to step 10.

9: Let S = S’ and S* = S’, and move to step 10.

10: Evaluate the acceptability of the candidate solution S’ with respect to the objective function value, i.e., compare 
the result between the value of Boltzman formula (i.e., e(–∆E/t)) and a random number that varies between 0 and 1, 
in which ∆E is the difference between S’ and S*, and t is the current temperature.

11: If the non-improving solution is rejected, then directly go to step 12. Otherwise, let S = S’, and go to step 12.

12: If nrep is not reached, increase nrep by one, and go back to step 4. Otherwise, cool the temperature according to 
cooling rate cr and reset nrep to zero, and go to step 13.

13: If ft is not reached, then go back to step 4. Otherwise, output the best solution S*.
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conventional 1-opt moves must be firstly employed to diversity the search, and then a set of the 
exchange version of 2-opt moves are implemented to intensify the search. A candidate solution 
of the exchange version of 2-opt moves will be generated by exchanging the harvest prescription 
or time for two MUs simultaneously. Then, the practicability and acceptability of the candidate 
solution will be further evaluated according the procedure as implemented in Method 1. For the 
third search process (Method 3), we utilize the change version of 2-opt moves provided by Caro 
et al. (2003), Heinonen and Pukkala (2004) and Dong et al. (2015). The new candidate solution 
in this strategy will be generated by randomly changing the harvest prescription or time for two 
MUs simultaneously, in which the 1-opt moves can be absent.

For each search strategy, the potential change for each move will be rejected prior to assessing 
the impacts on the objective function value if the potential change in treatment schedules violates 
any one of the constraints, essentially generating an infeasible solution. This strategy avoids the 
need to penalize the objective function for infeasibilities, and maintains the search within the 
bounds of the feasible solution space.

To minimize the effects of parameter values on the performance of SA, a formal treatment 
for the selection of the initial parameters of SA should be included. In forestry, some research has 
suggested the initial parameters of SA may be related to the planning problems, such as the ini-
tial temperature and annealing rate (Heinonen and Pukkala 2004; Strimbu and Paun 2013) or the 
algorithm termination assumption (or freezing temperature) (Baskent and Jordan 2002). However, 
these aspects of a heuristic search may be difficult to employ directly in our research, due to the 
different planning formulations. In addition, it may be too time-consuming to implement a new 
parameter sensitivity analysis in this paper. Therefore, a wide range of the combinations among 
the four important parameters of SA were evaluated using trial-and-error tests, as implemented 
in Bettinger et al. (2002). The four SA parameters we used for this problem were: st = 106, ft = 10, 
cr = 0.99 and nrep = 100, which resulted in 114 600 iterations per independent run. The solutions 
of the planning problems were generated using software developed within Microsoft Visual Basic 
6.0, and applied on a 2.6 GHz Core i5 processor computer that used the Windows 7 Pro 32 Bits 
operating system.

2.3 Analytical method

The main objective of this study was to analyze whether the number of independent runs of a heu-
ristic has a significant effect on conclusions regarding the performance of the heuristic. We delve 
into this using three s-metaheuristic neighborhood search strategies involving SA, as applied to 
three increasing difficult harvest scheduling problems. One thousand feasible solutions for each 
of 45 planning problem instances (i.e., 3 harvest scheduling problems × 3 SA search strategies × 
5 forest datasets) were generated, where which each was initiated from a random, feasible starting 
solution. Therefore, a total of 45 000 independent solutions were generated for this analysis, which 
required a total computation time of approximately 1500 h (about 62 days). All of the solutions 
were sorted strictly along the chronological order of the solutions generated. The 1000 independent 
solutions of each problem instance were grouped into 20 sets along the chronological order of the 
solutions generated. The first set consisted of the first 50 runs (of the 1000 independent solutions 
of a problem instance) and the other sets were formed by successively adding 50 more runs, that 
is, the first set consisted of runs 1–50, the second set consisted of runs 1–100, the third set con-
sisted of runs 1–150, and so on. The time of discovery of the superior solution (which might be 
treated as the near-optimal solution) for a specific planning problem instance is usually a random 
event within a single search process, and depends on the parameters employed, their status (if they 
change), search strategies inherent in the heuristic, and the complexities of the planning problem. 
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Therefore, it may be more practical to evaluate the search capabilities of heuristics using average 
objective function values of the best solutions located during a heuristic search process (i.e., the 
final solution for each independent run) rather than the potential maximum values. The another 
reason for using the average values instead of maximum values to evaluate the performance of 
different implementation of SA is that the average values of a set of mean solutions is more stable 
than the maximum values (which are usually), which highly depend on the search mechanism 
of alternative neighborhood search techniques of SA. Therefore, the developments of the mean 
objective function values for each group of three alternative neighborhood search strategies related 
to the group number were presented on scatter plot in this context, which are employed to verify 
our first hypothesis. Then, we can conclude that the number of independent solutions may have 
effects on the stated performance of different neighborhood search techniques if any two curves 
have one or more intersection points on the scatter plot.

3 Results

The maximum, minimum, means and standard deviations of objective function values of the 
independent solutions all indicated that no one particular neighborhood search technique was 
universally acceptable, given the number of decision variables and the constraint types assumed in 
the planning formulations (Table 2). With respect to objective function values, Method 3 found the 
largest minimum solutions (best solutions) for 12 out of 15 cases (80%), however the other three 
cases were all generated by Method 2. For maximum solutions, the largest maximum solutions 
were found on 12 out of 15 cases (80%) by Method 3, and 2 out of 15 cases (13%) by Method 2, 

Table 2. The statistical results of 1000 independent objective function values (106 m3) of the three planning problems 
for each hypothetical forest dataset when using three different neighborhood search techniques of simulated annealing 
(SA). The largest minimum objective function value for each planning scenario is highlighted in italic, the maximum 
objective function value is highlighted in boldface, the maximum mean objective function value is highlighted with a 
shadow, and the smallest standard deviation (SD) value is highlighted with underline. Method 1 represents the standard 
version of SA using 1-opt moves, Method 2 represents the exchange version of SA using 2-opt moves, and Method 
3 represents the change version of SA using 2-opt moves. NON represents the non-spatial planning problems, URM 
represents the unit restriction model, ARM represents the area restriction model.

Forest Model Method 1 Method 2 Method 3
Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD

400 NON 0.558 0.623 0.572 0.013 0.561 0.634 0.574 0.013 0.560 0.638 0.575 0.014
ARM 0.553 0.622 0.567 0.013 0.555 0.630 0.568 0.012 0.556 0.637 0.568 0.013
URM 0.457 0.598 0.486 0.023 0.460 0.598 0.488 0.023 0.463 0.612 0.489 0.024

1600 NON 2.217 2.602 2.267 0.083 2.222 2.616 2.266 0.074 2.224 2.635 2.267 0.072
ARM 2.127 2.577 2.201 0.080 2.136 2.587 2.197 0.064 2.137 2.607 2.202 0.066
URM 1.714 2.420 1.847 0.084 1.706 2.441 1.848 0.081 1.720 2.448 1.855 0.083

3600 NON 4.887 5.744 5.041 0.260 4.894 5.752 5.005 0.208 4.892 5.800 4.980 0.168
ARM 4.741 5.683 4.910 0.218 4.757 5.673 4.872 0.139 4.766 5.727 4.897 0.180
URM 3.859 4.692 4.288 0.174 3.814 4.687 4.280 0.182 3.866 5.338 4.285 0.181

6400 NON 8.790 10.237 9.102 0.508 8.794 10.482 9.042 0.488 8.809 10.499 9.025 0.457
ARM 8.258 10.086 8.778 0.579 8.306 10.303 8.603 0.440 8.331 10.304 8.617 0.437
URM 6.860 8.183 7.631 0.298 6.862 8.172 7.660 0.299 6.897 8.154 7.647 0.283

10000 NON 13.675 15.620 14.319 0.795 13.695 16.212 14.141 0.832 13.719 16.274 14.178 0.863
ARM 12.782 15.475 13.946 1.010 12.913 15.983 13.490 0.856 12.893 15.885 13.555 0.870
URM 10.705 12.711 12.007 0.439 10.873 12.724 12.028 0.433 10.887 12.690 12.050 0.418
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and only 1 case by Method 1. For mean solutions, the largest mean solution values were found on 
7 out of 15 cases (approximately 47%) by Method 1, and 2 out of 15 cases (approximately 13%) 
by Method 2, however the other six cases were all located by Method 3. For standard deviations, 
the smallest standard deviations values were found on 7 out of 15 cases (47%) by Method 2, and 
6 out of 15 cases (40%) by Method 3, and only 2 cases were observed by Method 1.

The average wood volume scheduled when using the non-spatial constraints was always 
superior to other cases when the spatial constraints were employed (Table 2), regardless of the 
evaluation criterions (i.e., minimum, maximum and mean). The wood volume scheduled of the 
ARM and URM problems only accounted for approximately 97.13% and 84.25% respectively of 
that of the non-spatial problems. The coefficients of variation (CV) of all the planning scenarios 
were all less than 10%, but in most cases the CV values obtained by the two enhanced search 
process of SA were both smaller than that from Method 1 (approximately 73% cases), indicating 
a smaller range of objective function values were generated.

The development of mean objective function values for each group related to the number of 
independent solutions (i.e., the order of group) were illustrated in Figs. 1a,1b. These graphs verified 
that no one particular neighborhood search technique was universally optimal. The development 
trend within each curve fluctuated intensively with the increases in the number of independent 
runs, in which the values of the differences between the minimum (zmin) and maximum (zmax) aver-
age objective values relative to the minimum average objective values (i.e., (zmax–zmin)/zmin × 100) 
varied from 0.15% to 2.28%. For most of the planning problems, at least one or more intersec-
tion points were observed in the scatter plots. For instance, four different intersection points were 
observed from the curves between Method 2 and Method 3 for the non-spatial planning problems 
of 10 000-units dataset. However, some exceptions also occurred, such as the non-spatial planning 
problems for 3600-units dataset, where the variation in scheduled timber volume using Method 1 
was significant larger than that of the other methods.

As showed in Figs. 1a,1b, the developments of mean objective function values of each group 
for specific problem were always fluctuation with the increase of group order. The fluctuations of 
mean objective function values between two consecutive orders may be very small, or even not 
significant for most cases. Therefore, the maximum objective function values of the 1000 inde-
pendent solutions for specific planning problem were employed to locate the optimal group orders 
(Fig. 2) instead of using the mean objective function values. According to Barrett et al. (1998), the 
group order at here can be treated as random variable, because of the appearance of the potential 
maximum solutions of an independent run for a specific planning problem is also a random event. 
In the viewpoint of this, the average values and standard deviation (SD) of the group orders for 
non-spatial, ARM and URM planning problems seemed to be 9.20 ± 4.46, 6.60 ± 4.72 and 7.13 ± 5.45 
respectively (presented in the form of “Mean ± SD”), but the differences between them were all not 
significant, in which the p-values of significance testing using the paired-sample t-tests ranged from 
0.13 to 0.78. For the non-spatial and URM planning problems, the optimal number of independent 
solutions generated for the three neighborhood search techniques of SA were all not sensitive to 
the problem sizes, but the optimal number of independent solutions generated of most planning 
instances should be somewhat above 250 runs (approximately 87% and 67% cases). However, 
the optimal number of independent solutions necessary all presented negative logarithmic decline 
trends with the increases of problem size when evaluated for the ARM problems. The relations 
between the optimal number of independent solutions generated (Y) and the number of forest MUs 
(X) can be fitted as: 

ARM problem with Method 1: Y = –2.376 Ln(X) + 23.788   R2 =0.730
ARM problem with Method 2: Y = –4.145 Ln(X) + 40.573   R2 = 0.849
ARM problem with Method 3: Y = –3.644 Ln(X) + 35.808   R2 = 0.780
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, where Ln() is the natural logarithmic function; R2 is the coefficient of determination between 
observation and fitting values.

The average amount of time required to locate the maximum objective function value of 
each solution at the first time (not the entire search time) for the three neighborhood search tech-
niques of SA is highly related to the problem size and constraint types (Fig. 3). The CV values of 
the computation time for all the planning problems varied from 40.06% to 292.90%, indicating 
the quality of initial solution may have significant effects on the search process of SA. For the 
non-spatial and ARM problems, the computation time increased significantly with the increases 
of problem size. However, the computation time presented a significant decline trend with the 
increases of problem size for URM problems. The reason for this phenomenon may be that the 
larger the problem size is, the more loose restricted for the planning problem, but it may be more 
easy to locate the satisfactory solution (not optimal solution), especially when the constraints 
(spatial vs. non-spatial) for one specific planning problem (i.e., Non-spatial, URM or ARM) were 
all consistent within different sizes of forest dataset. The amount of time required for the Method 2 
was usually significant longer than that of the other methods, but the differences between Method 
1 and Method 3 were difficult to distinguish.

Fig. 2. The development of the group orders in which the maximum objective function values were obtained for the 
alternative planning problems related to the number of management units within a forest dataset, when using three dif-
ferent neighborhood search techniques of simulated annealing (SA). Method 1 represents the standard version of SA 
using 1-opt moves, Method 2 represents the exchange version of SA using 2-opt moves, and Method 3 represents the 
change version of SA using 2-opt moves. Non-spatial represents the non-spatial planning problems, URM represents 
the unit restriction model, ARM represents the area restriction model.
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4 Discussion

Our first hypothesis, that the performance of different heuristics might be vary when a different 
number of independent solutions was generated, appear to be supported by our results. Due to the 
stochastic behavior of some s-metaheuristics when generating candidate solutions, the resulting 
solution of heuristic method can be considered as an independent sample from a larger popula-
tion. Obviously, if the sample size was inadequate, the statistical estimates (i.e., mean value and 
standard deviation) related to the results may be far from the true values, thus the conclusions 
may be not authentic. However, if the sample size becomes too large, the statistical estimates may 
be nearer to the true values, but it would be too costly and time-consuming to implement such an 
experiment. Therefore, it is necessary to determine the optimal number of independent solutions 
generated for specific forest planning problems. Using the different neighborhood search techniques 
of SA as an example, our results showed that the mean objective function values among differ-
ent groups (solutions selected according to run time) only varied by 0.15% to 2.28%, but several 
intersection points of the most instances can be clearly observed from the curves developed for 
the three methods when applied to different forest planning problems (Figs. 1a,1b) which perfectly 
confirmed our hypothesis that no one particular neighborhood search technique was universally 
acceptable. However, one should keep in mind that the three neighborhood search techniques of 

Fig. 3. The mean and standard deviation of computation time for alternative planning problems related to the number 
of management units within a forest dataset, when using three different neighborhood search techniques of simulated 
annealing (SA). Method 1 represents the standard version of SA using 1-opt moves, Method 2 represents the exchange 
version of SA using 2-opt moves, and Method 3 represents the change version of SA using 2-opt moves. Non-spatial 
represents the non-spatial planning problems, URM represents the unit restriction model, ARM represents the area 
restriction model.
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SA all have the similar search behavior, especially for the accepting mechanism of inferior solu-
tions. Therefore, the effects of the number of independent solutions generated on the conclusions 
of different heuristics algorithm, such as tabu search, threshold accepting and genetic algorithms, 
need further investigated in the future.

Our second hypothesis, that the number of independent solutions generated might be related 
to the problem size, was partly supported by our results. As one considered for a special planning 
problem, the larger the problem size, the more feasible combinations there would be, the larger 
the solution space would be, the more difficult would be to find the optimal solution, and therefore 
the more number of independent solutions generated may be needed to obtain reliable results. 
Therefore, the number of independent solutions generated may be logically related to the problem 
size. However, our results showed that the optimal number of independent solutions generated of 
the three neighborhood search techniques for non-spatial and URM problems were all not sensi-
tive to the problem size, but the optimal optimization number presented a negative logarithmic 
decline trend with the increases of problem size for ARM problems (Fig. 2). In addition, previously 
researches also showed that the problem size may affect the solution qualities of heuristics. Crowe 
and Nelson (2005), for an example, reported that a weak decline trend between larger problem size 
and poorer mean solution qualities was observed in the area-restricted harvest scheduling problem. 
However, since the complexity of the constraints (the spatial aspect in particular), we did not solve 
the problems using the traditional MIP method to evaluate the quality of solutions in our study. 
Of course, some modifications have been put forward, such as path formulation, bucket formula-
tion and generalized management unit formulation (e.g., Tóth et al. 2013), which can improve the 
ability of MIP methods to solve forest spatial planning problems.

The final hypothesis, that the type of adjacency constraints may also affect the optimal 
number of independent solutions generated, appears to be not supported by our results. The aver-
age optimal number (i.e., group order) of independent solutions for non-spatial, ARM and URM 
problems were 9.20 ± 4.46, 6.60 ± 4.72 and 7.13 ± 5.45 respectively, but the differences between 
them were all not significant (i.e., 0.13 < p < 0.78; Fig. 2). However, the type of adjacency constraints 
have significant effects on the economic benefits as would be expected. Results showed that the 
economic benefits were reduced significantly when spatial constraints were integrated into the 
planning models, which has already been stated by other authors (Boston and Bettinger 2001). In 
our case study, the harvest levels for ARM and URM problems were approximately 97.1% and 
84.3% of similar non-spatial problems (Table 2). The obvious reason for this pattern is that as 
planning problems become more constrained, some harvesting options that violated the adjacency 
and green-up constraints would be prevented in nature. However, a set of stand- (e.g., site index 
and tree species) and forest-level variables (e.g., land size and age class distributions) may have 
significant effects on this pattern. For example, Borges et al. (2015b) affirmed that the formula-
tions using a predefined variable length and the height information from the growth simulator for 
the green-up constraints can significantly diminish the differences between the spatial and non-
spatial planning problems when compared that with the formulations using the predefined fixed 
length green-up time. Zhu and Bettinger (2008) found that landowners with small-sized forests 
that covered with young initial age class distribution would be significantly more affected by the 
spatial constraints. Therefore, forest managers and planners should carefully evaluate the effects 
of these forest- and stand-level variables on the various services and goods of forest ecosystems 
when employed in a specific region.

Neighborhood search techniques of s-metaheuristic have been employed for a long term, 
however the conclusions on the performances of them are always discrepant. For example, Caro et 
al. (2003), Heinonen and Pukkala (2004) and Dong et al. (2015) all have confirm that the change 
version of 2-opt moves were significant superior to the conventional 1-opt moves for alternative 
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planning problems and forest datasets, however Bachmatiuk et al. (2015) recently found that 
changing simultaneously the prescription in more than one MU did not improve the performance 
of SA when the combinatorial problem became very large (213 116 decision choices) which were 
perfectly in line with our results for the Non-spatial and ARM planning problems when evaluated 
for Method 1 and Method 3 in regardless of the size of forest dataset. However, to our best knowl-
edge, few papers have directly compared the performances of the change and exchange version of 
2-opt moves, the work of Dong et al. (2016) was an exception. They reported that the performance 
of the exchange version of 2-opt moves was significant superior to the change version of 2-opt 
moves when evaluated for SA algorithm in a maximum opening size problem. Particularly, they 
further found that the performances of the reversion search strategy between 1-opt moves and 
the exchange version of 2-opt moves was the best. Different with the above mentioned strategies, 
Borges et al. (2014) provided some new methods of introducing biased probabilities in the MU 
selection, and found that they can generated higher average and maximum objective function 
values when compared them with the conventional method that assumed uniform probabilities 
(i.e., randomly). Hence, the effects of these neoteric search strategies on the optimal number of 
independent solutions generated and their relations with problem size still need further research.

In addition to increasing the number of independent solutions to improve the probability 
that heuristics will locate the optimal solution to a problem, implementing a longer run (i.e., more 
iteration in each independent run) for single solution may be another efficient strategy to generate 
a higher quality solution. Crews (2014), for an example, investigated the performances of longer 
single runs and many multiple shorter runs in improving the probability of SA and threshold accept-
ing (TA) when applied to the traveling salesman problem. The results indicated that in a majority 
of cases, a longer single run was significantly superior to multiple shorter runs, but there were 
still some cases in which the multistart method outperformed single runs. However, the effects of 
a longer runs of single solution on forest harvest-scheduling problems and when used with other 
heuristic algorithms still needs further research.

5 Conclusions

With the results in our case study, we can conclude that the number of independent solutions 
required for solving a problem using a heuristic can have a clear effect on conclusions of the 
performance of the heuristic, as demonstrated when different neighborhood search techniques of 
SA were applied to three increasing difficult planning problems. In other words, no one particular 
set of assumptions concerning the SA search process could be universally accepted as the most 
appropriate for these harvest scheduling problems. The independent solutions generated using 
alternative neighborhood search techniques of SA for the ARM harvest scheduling problem 
were described by negative logarithmic decline trends with increases in problem size, however 
the trends were not sensitive to problem size for the non-spatial and the URM harvest schedul-
ing problems. In addition, the types of adjacency constraints do moderately affect the number of 
independent solutions that seem necessary, but the differences between them are not significant 
(i.e., 0.13 < p < 0.78). Our results enlighten discussions centered on heuristic search assumptions, 
and suggest that comparisons of different neighborhood search techniques may be confounded if 
the number of independent solutions generated are not similar. For the problems under study, our 
hypotheses were only evaluated for the three widely used neighborhood search techniques of an 
s-metaheuristic, while the conclusions might be different for instances with larger number of moves 
or biased probabilities in the MU selection process, which we have left for further research in the 
future. In addition, while the mechanisms for accepting inferior solutions among the three alterna-
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tive SA methods are indistinguishable, they are different from other heuristic processes, thus the 
conclusions may be not suitable for the comparison studies among different heuristic algorithms 
(e.g., tabu search, genetic algorithms).
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