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Abstract
A jackknife (JK), a bootstrap (BOOT), and an empirical difference estimator (EDE) of totals 
and variance were assessed in simulated sampling from three artificial but realistic complex 
multivariate populations (N = 8000 elements) organized in clusters of four elements. Intra-cluster 
correlations of the target variables (Y) varied from 0.03 to 0.26. Time-saving implementations of 
JK and BOOT are detailed. In simple random sampling (SRS), bias in totals was ≤ 0.4% for the 
two largest sample sizes (n = 200, 300), but slightly larger for n = 50, and 100. In cluster sampling 
(CLU) bias was typically 0.1% higher and more variable. The lowest overall bias was in EDE. In 
both SRS and CLU, JK estimates of standard error were slightly (3%) too high, while the boot-
strap estimates in both SRS and CLU were too low (8%). Estimates of error suggested a trend in 
EDE toward an overestimation with increasing sample size. Calculated 95% confidence intervals 
achieved a coverage that in most cases was fairly close (± 2%) to the nominal level. For estima-
tion of a population total the EDE estimator appears to be slightly better than the JK estimator.
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1 Introduction

The k-nearest neighbour technique (kNN) is used to impute values of one or more target variables 
(Y) for elements in a finite population without a direct observation of Y (Paass 1985; Aha 1997). 
Imputations are based on a set of selected auxiliary variables (X) known for all (N) elements in the 
population and correlated with Y. In a typical kNN application, a probability sample of n elements 
provides paired observations of X and Y. A population element can be a pixel in an image of the 
population or simply a fixed-sized contiguous regular spatial area suitable for a tessellation of the 
population and compatible with the scale of the target variable.

The sample of n elements is referred to as the reference set, while the N–n elements with 
no observation of Y, are referred to as the target set (Tomppo 1991). The imputed Y-value for an 
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element in the target set is a fixed known function (f) of the k Y-values in the reference set whose 
associated X-values are closest – in terms of a selected distance metric – to the X-values in the 
element to receive an imputation. The analyst chooses X, f, k, and the distance metric; usually 
through a combination of cross-validation procedures and ranking of goodness-of-fit statistics 
(McRoberts 2009).

The appeal of the kNN technique is: i) simple and flexible (non-parametric, distribution-free), 
ii) predictions of the target variable(s) for all elements in a population (suitable for mapping), iii) 
small area estimation of totals, and iv) an ability to handle multivariate imputations as easily as 
univariate imputations (Crookston and Finley 2008). The most important detractors are: i) difficulty 
in optimizing performance (bias and accuracy); ii) the curse of dimensionality, and iii) a lack of 
small area estimators of variance. 

Leave-one-out cross-validation is often used to guide the analyst towards a good choice of k, 
an appropriate function f, and a suitable distance metric. Selection of X-variables have been done 
in the context of regression modeling or with more advanced methods like simulated annealing 
and genetic algorithms (Tomppo and Halme 2004; Barth et al. 2009). Given the non-parametric 
(distribution-free) nature of kNN, and the lack of a proper joint distribution of imputations (Lin and 
Jeon 2006), one cannot infer performance at the population level from in-sample point estimates 
of bias and accuracy (Chen and Shao 2000; Baffetta et al. 2009). 

The curse of dimensionality (Scott 1992, p. 27) manifests itself by the fact that distances 
in X-space from a target element to the n reference elements become increasingly similar with 
the dimension of X. Conversely, the number of reference elements with a similar distance to a 
target element grows exponentially with the dimension of X. Or, as stated by Beyer et al. (1999), 
“when dimensionality increases, the distance to the nearest data point approaches the distance to 
the farthest data point”.

In forestry the kNN technique has appeal (Maltamo and Kangas 1998; Holmström and 
Fransson 2003; Maselli et al. 2005; LeMay et al. 2008; Breidenbach et al. 2010) due to: i) read-
ily available low-cost remotely-sensed auxiliary variables correlated with Y; and ii) difficulties 
encountered with alternative parametric and non-parametric multivariate modeling approaches 
(Koistinen et al. 2008) due to locally varying relationships between X and Y in response to vari-
ation in species, ages, forest structures, soils, and climate (Zhang and Shi 2004; Opsomer et al. 
2008; McRoberts et al. 2010), and iii) predictions of individual population elements for mapping 
and small area estimation problems (Tomppo 2006).

 A summary of a kNN inventory typically requires an estimate of precision of estimated 
strata and population totals. In early kNN applications, an estimate of precision was typically 
given as the average, over the n-reference elements, root-mean-squared error (RMSE) obtained 
in a leave-one-out cross-validation (e.g. Maltamo and Kangas 1998; Katila and Tomppo 2001). 
However, the RMSE only applies to the sampled elements and cannot be scaled to a population 
(stratum) total (Kim and Tomppo 2006; McRoberts et al. 2007). Kim and Tomppo (2006) proposed 
an ordinary kriging based estimator of the variance of element-level predictions (Cressie 1993, p. 
127) and block-kriging (Van der Meer 2012) for small area estimation problems (SAE). However, 
the underlying assumption of stationarity is rarely reasonable in forestry. As well, the application 
of ordinary kriging theory to a prediction based on the k-nearest neighbours and not a weighted 
sum of all n reference elements may lead to a bias, akin to the bias following from a tapering of a 
covariance matrix (Kaufman et al. 2008). 

McRoberts et. al (2007) was the first to propose a kNN variance estimator for a population 
total that explicitly considered the variance and covariance of all population elements in both 
simple random and cluster sampling designs. I refer to this estimator as ‘vMCR’. Computation of 
vMCR involves a double-summation over all elements included in a total. There was no formal 
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testing of vMCR but in three case studies it agreed well with bootstrapped estimates of variance 
(McRoberts et al. 2011). Computation time for vMCR can be sharply reduced by a Monte Carlo 
approximation to the double summation (McRoberts et al. 2011). vMCR can serve as a direct 
estimator of variance in SAE problems (Särndal et al. 1992).

Magnussen et al. (2009) proposed a model-based mean squared error (MSE) estimator for a 
kNN estimate of a population mean. They showed that the average element-level MSE estimator 
from a leave-one-out cross-validation underestimates the MSE of an areal mean by a significant 
margin. The applicability of their MSE to SAE problems requires further investigation. Chen and 
Shao (2000) developed a design-based estimator of variance for nearest neighbour imputations 
(k = 1), but it is only applicable to imputation of missing values in a planned survey.

Baffetta et al. (2009) proposed a design-based “empirical-difference” variance estima-
tor (vEDE) for a bias-corrected kNN estimator of a population total (mean). They viewed kNN 
imputations as proxy values for the target variable (Särndal et al. 1992, p. 221). Simulated simple 
random sampling from a population of N = 312 and relative sample sizes of 5%, 10%, 20%, and 
30%, illustrated that the estimated relative bias of vEDE declined with increasing sample size. Bias 
became unimportant (< 5%) for the three largest sample sizes with k > 3 and when the coefficient 
of determination between Y and X was less than 0.8. By construct EDE and vEDE are limited to 
direct estimation of totals and variances in SAE problems.

An alternative design-based resampling variance estimator was proposed by Magnussen 
et al. (2009). A modified balanced repeated replication (BRR) scheme (Wolter 2007, p. 117) was 
employed to obtain estimates of element-level variances and covariances and a variance estimator 
of a total (vBRR). A comparison of vEDE and vBRR in simulated sampling from seven popula-
tions (576 ≤ N ≤ 900) indicated a good performance of both estimators in simple random sampling 
(SRS) and one-stage cluster sampling (CLU). In theory vBRR is suited for design-based inference 
in SAE problems (Särndal et al. 1992).

Nothdurft et al. (2009) were among the first to use a bootstrap resampling variance estimator 
in a forest inventory kNN application (k = 1). Their primary objective was to compare variability 
in stand-level kNN imputations and in calibrated kNN empirical best linear unbiased predictors 
(EBLUP).

 In a recent study of actual forest inventory kNN applications, McRoberts et al. (2011) 
compared vMCR to a jackknife (vJK) and a bootstrap (vBOOT) estimator of variance. In the case 
of SRS the differences between vMCR0.5, vJK0.5, and vBOOT0.5 were minor (< 3%). For CLU 
the agreement between vMCR and vBOOT (no vJK results for clustered data) was generally sat-
isfactory, but less so than in the SRS designs. An unexplained systematic effect of the bootstrap 
resampling protocol applied to clustered data (single-stage cluster sampling versus single-stage 
cluster sampling followed by simple random sampling within clusters (Field and Welsh 2007)) was 
manifest. With large clusters (14–18 elements) the two-stage bootstrap sampling generated vBOOT 
estimators that agreed with vMCR estimators. With small clusters the agreement was lacking. Firm 
conclusions cannot be drawn from these non-replicated case studies. The application of vJK and 
vBOOT to SAE problems requires further study.

The current lack of an extensive testing of kNN variance estimators for a population total, 
and sheer absence of tested kNN variance estimators for SAE problems, makes it difficult to make 
recommendations to practice. As a first step towards improving the situation, this study compares 
the performance (bias, accuracy, and coverage of calculated nominal 95% confidence intervals) of 
three variance estimators for a kNN estimate of a population total: vJK, vBOOT, and vEDE in simu-
lated sampling from three artificial yet realistically complex multivariate populations (N = 8000). 
Results are presented for four sample sizes in SRS and CLU. vBRR was not included because it 
is complex and still demands too much computer time to be of practical use. SAE problems are 
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beyond the scope of this study. To qualify as a suitable kNN variance estimator in SAE problems 
an estimator must first qualify as suited at the population level. A follow-up study of potentially 
suitable kNN variance estimators for SAE problems is anticipated.

In forestry, population sizes are generally large (N ≥ 104), and sample fractions are low 
(n / N ≤ 0.01), yet the number of reference elements is relatively large (n > 100). Hence, resampling 
estimators of variance for a kNN estimate of a population total can be computationally demanding 
despite a steady increase in the processing speed of desk-top computers. Fast neighbour search 
algorithms like the ‘kd-tree’ (e.g. Finley et al. 2006) in, for examples, the R-package ‘yaImpute’ 
(Crookston and Finley 2008), MATLAB®, and MATHEMATICA (Wolfram 1999), and parallel 
processing has sharply reduced the problem. Computations with graphics processor units (GPUs) 
will eventually deflate the time issue (Schenk et al. 2008). To improve the practicality of resam-
pling estimators of variance for a population total, this study details steps that will curtail the time 
needed to compute a vJK or a vBOOT estimate.

2 Material and methods

2.1 Population, sampling objectives, and notation

A finite area population U composed of N equal-area spatial elements is considered with the 
objective of estimating the total of one or more target variables (Y) from a probability sample of 
size n. A set of auxiliary variables (X) is known for every element in the population. The auxiliary 
variables have been selected on grounds of their ability to predict Y. The probability sample (s) is 
obtained, without replacement, by either SRS or CLU. The population contains M clusters of size 
m so that N = m × M with m = 1 in SRS. In SRS a sample unit is equal to a population element; in 
CLU it is a cluster of m elements. Notation is for a univariate Y but extension to a multivariate 
case requires no new theory. 

2.2 The kNN estimator

The kNN estimator of Y in the ith population element (Haara et al. 1997) can be written succinctly as

yik = wijj~i∑ yj∈s ,  i =1,…,N (1)

where summation in Eq. 1 is over the k elements (j ~ i) in the sample (s) with auxiliary variable 
values closest to Xi, and wij is the weight given to the reference element yj∈s wij =1

ji∑( ) . Euclid-
ean distances in X-space were used for the selection of the k-nearest neighbours. A standardized 
Euclidean distance metric is used throughout; i.e. the X-variables have been standardized to a 
mean of zero and a variance of one for the computation of distances in X-space. This is also the 
metric used by the ‘euclidean’ option in the R-package ‘yaImpute’ (Crookston and Finley 2008).

In practice the weights may be a function of distance that optimizes precision (McRoberts 
2009). Here wij = k–1 since the choice of weights is inconsequential for an assessment of the kNN 
variance estimators.

A kNN estimator of the population total of Y (Ty) is denoted as Tyk�  and computed as the sum 
of yik�  over the N population elements. The expected value of yik�  and Tyk�  over all possible samples 
are invariant to the sampling design (Baffetta et al. 2009).
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2.3 The jackknife kNN estimator

The jackknife kNN estimator (JK) of Ty (Efron 1982) is

Tyjk = n−1 Ty(l)
jk

l=1

n

∑ (2)

where Ty l
jk
( )
�  is the kNN estimator (pseudo-value) of Ty after deleting the lth sample unit (l = 1,…,n). 

The jackknife estimator of variance (vJK) of Tyjk�  is then (Wolter 2007, p. 153)

vâr Tyjk( ) = (n−1)

n
Ty(l)
jk − Tyjk( )2

l=1

n

∑ fpc (3)

where fpc is the finite population correction factor 1 – n × m / N. The variance estimator vJK is used 
as an estimator of the variance of Tyk�  (Wolter 2007, p. 153). Appendix A provides a time-saving 
implementation of the jackknife estimators.

2.4 The bootstrap kNN estimator

The bootstrap kNN estimator of Y in the ith population element (yi) and bth bootstrap sample is

yi, b
*k = wijj~i∑ yj∈s* b( ) ,  i =1,…,N;b =1,…,B (4)

where s*(b) is the bth bootstrap sample generated by SRS with replacement from the original 
sample of n sample units (Field and Welsh 2007). Accordingly, a bootstrap replication estimator 
of a population total is T b B, 1, ,y b

k
,
*� …=  where Ty bk,*�  is the sum of yi bk,*�  over the N population elements. 

The bootstrap estimator (BOOT) of Ty is the mean of the B bootstrap replication estimates, here 
denoted as Ty k*� . It follows that the bootstrap estimator of variance (vBOOT) of is

vâr Ty*k( ) = 1

B−1
Ty, b

*k − Ty*k( )
2

b∑ fpc (5)

As in the case of vJK, the vBOOT in Eq 5 will be used as a variance estimator for Tyk�  (Wolter 
2007, p. 195). 

In implementations of the bootstrap procedure, a replicate (b) specific N × k array of nearest 
neighbour identifiers ( N

kNN (b), see Appendix A for details) is needed for each bootstrap sample, 
making computing times for vBOOT B times longer than for Tyk� . A faster bootstrap variant of 
BOOT (called FBOOT) is detailed in Appendix A. Variances estimated with this variant are 
denoted vFBOOT. 

2.5 The empirical difference estimator

Baffetta et al. (2009) proposed a design-based bias-adjusted empirical difference estimator (EDE) 
of Ty for element sampling (m = 1). With an extension to clusters of size m ≥ 1, the EDE becomes 

TyEDE(k) = Tyk +
ej
π j

j∈s∑ (6)
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where πj is the sample inclusion probability of sample unit j (Särndal et al. 1992), and e̅j is the 
mean of the m differences between the actual and the kNN imputed values of Y in the jth sample 
unit (j = 1,…, n). In SRS m = 1 and e̅j is simply the difference (residual) for the jth sample unit. The 
associated Horvitz-Thompson type estimator of variance (vEDE) is

vâr TyEDE(k)( ) = π jh −π jπh
π jπhπ jhh∈s

∑
j∈s
∑ ejeh (7)

where πjh is the joint sample inclusion probability of sample units j and h.

2.6 Estimator performance

The kNN, JK, BOOT, FBOOT, and EDE estimators of Ty are assessed for bias in simulated SRS 
(m = 1) and CLU (m = 4) from three artificial yet realistic populations (see 2.8). Bias is estimated 
as the difference between the mean of 400 replicated kNN estimates of a total and the known true 
total (see 2.7). For ease of comparison the bias is expressed in percent of a true total.

Variance estimates obtained with vJK, vBOOT, vFBOOT, and vEDE were compared to the 
corresponding empirical estimate of variance (vEMP) of replicated estimates of a kNN total (see 
2.7). Normal quantile 95% confidence intervals for estimated population totals, calculated from vJK 
and vEDE estimates of variance, are assessed for their coverage (relative frequency with which a 
calculated confidence interval includes Ty). Accelerated and bias-corrected normal quantiles were 
used to estimate coverage of bootstrap intervals (Efron and Tibshirani 1993, p. 188).

The distributions of replicated estimates of a total (see 2.7) were tested for normality at 
the 5% level with an Anderson-Darling (AD) test (Anderson and Darling 1952), and differences 
between estimated and actual totals (bias) were tested under the null hypothesis of a zero mean 
normal distribution (AD test). Distributions of estimated JK, BOOT, FBOOT, and EDE totals were 
tested for equality to the distribution of Tyk�  (AD test).

The replicate mean of vJK, vBOOT, vFBOOT, and vEDE estimates of variance was com-
pared to vEMP and tested for equality with an AD test using a bootstrap distribution of 400 paired 
differences. 

2.7 Sampling designs

Sample size in SRS was n = 50, 100, 200, and 300 (m = 1), and in CLU sampling n = 20, 30, 50, and 
100 (m = 4). With a population size (N) of 8000 (see 2.8) the sample fractions for SRS were: 0.00625, 
0.0125, 0.025, and 0.0375. Under CLU they were: 0.01, 0.015, 0.025, and 0.05. The number of 
nearest neighbours (k) tested was k = 1, 2, 4, 6, 8, 10, and 12. Each of the 2 (m) × 4 (n) × 7 (k) = 56 
designs was replicated nrep = 400 times followed by a computation of estimator specific kNN totals 
and variances. The number of bootstrap replications (B) within each of the 400 replications was 
fixed at 60. A study of Monte-Carlo errors (Koehler et al. 2009) suggested that 400 replications 
sufficed to declare two distributions of estimated variances significantly different at the 5% level 
when their means differed by 10% or more (AD test).

2.8 Case studies

Three artificial multivariate populations (POP1, POP2, and POP3) of size N = 8000 elements 
were generated from known marginal distributions of X and Y and a target correlation coefficient 
between the variables in X and Y.



7

Silva Fennica vol. 47 no. 1 article id 925 · Magnussen · An assessment of three variance estimators…

There are three Y-variables (Y1, Y2, and Y3) in each population, three X-variables in POP1 
(X1, X2, and X3), and four in POP2 and POP3 (X1, X2, X3, and X4). The marginal distributions of 
variables in the three populations were complex in order to reflect scenarios with skewed, multi-
modal, and non-Gaussian distributions in forest inventory applications as seen in actual inventory 
data (LeMay et al. 2008; Magnussen et al. 2009). Details of the populations are in Appendix B. 
The data used in this study can be accessed at http://www.silvafennica.fi/article/925.

It is recognized that the size of the simulated populations are orders of magnitude smaller than 
in practical kNN applications (Katila 2006; Bernier et al. 2010). Yet, the bias of a kNN estimator 
appears to be largely a function of sample size, and not population size (Katila 2006; McRoberts 
et al. 2011). A doubling of N would have added just 1% to the marginal variance of the target vari-
ables. A further doubling would have added less than 0.5% to the variances. Finally, the accuracy 
of the tested variance estimators is governed by intrinsic properties and sample sizes more than 
population size and sample fractions (Särndal et al. 1992). On an absolute scale, the studied sample 
sizes – like those in practice ‒ are small and should vouch for the practical relevance of the study.

3 Results

3.1 Choice of k

The k-value that resulted in the lowest RMSE varied from a low of 4 in POP1 to a high of 8 (POP2 
with SRS and POP3 with CLU). The intermediate value of 6 was best in POP2 with CLU and POP3 
with SRS. However, the effect of k on RMSE was modest once k was equal to or greater than 4. 
A common choice of k = 6 would not have changed the results by much. 

Henceforth results are only reported for the k-value for which the average (across Y-variables) 
relative RMSE (in percent of the actual total) of a kNN total Tyk  was lowest. 

3.2 Bias

Under a SRS design the kNN estimator of a total had a bias ≤ 0.3% in POP1 and POP3 (Table 1). 
In POP2 bias approached 1% for Y1 and the two smallest sample sizes (50, 100). Apart from these 
two cases, there was no apparent effect of sample size. Results for JK, BOOT and FBOOT were 
almost identical. Bias for non-reported k-values were not materially different. Bias of Ty kEDE,

  was 
in 7 out of 10 cases less than the bias of Tyk . On average, EDE reduced the bias in Tyk  by approxi-
mately 33%; in just two cases (out of 36) did EDE results suggest a slightly larger bias than in Tyk . 

Results for CLU followed trends seen in SRS except for a larger variation, and a tendency 
towards a larger bias for the two smallest sample sizes (Table 2). A bias between 0.5% and 1.0% 
was encountered in 9 out of 36 cases in Tyk  and Ty kEDE,

 . In POP1 EDE was slightly less efficient in 
reducing bias than in POP2 and POP3. Fortunately, the squared bias was much smaller than the 
associated variance. Hence, inferences based on estimated variances will be approximately valid 
(Cochran 1977, p. 12).

The distribution of the 400 replicated estimates of a kNN totals were approximately normal 
in SRS designs (P-values in AD-tests were above 0.10 in 137 out of 144 cases). Under CLU there 
was no rejection of the hypotheses of a Gaussian sampling distribution of estimated totals.

http://www.silvafennica.fi/article/925
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3.3 Standard errors 

The jackknifed estimates of standard error vJK0.5 were, in SRS, close to vEMP0.5 (Table 3), the 
difference was just 1% in half the scenarios. The hypotheses of equal variances (vJK = vEMP) were 
not rejected at the 5% level of significance. Yet distributions of standardized estimates of vJK were 
significantly different from a normal distribution in all but four cases. 

SRS standard errors estimated from vBOOT were, on average, with n = 50 approximately 8% 
lower than vEMP0.5. Four of nine vBOOT0.5 with n = 50 were significantly smaller than vEMP0.5. 
For larger sample sizes, underestimation was approximately 3% but not significantly different 
from vEMP0.5. 

Table 1. Relative bias (RB%) of kNN and EDE estima-
tors of totals in SRS (m = 1). RB% = (estimate – actual) 
/ actual × 100. Results are for the k-value (kopt) that mini-
mized the RMSE of an estimated total.

POP (kopt) n kNN EDE
Y1 Y2 Y3 Y1 Y2 Y3

POP1 50 –0.1 0.2 0.2 –0.0 0.0 0.2
(4) 100 –0.3 –0.1 –0.4 0.1 –0.2 –0.3

200 –0.4 –0.1 –0.3 0.0 0.0 0.3
300 –0.3 0.1 –0.2 0.1 0.1 –0.2

POP2 50 –0.8 –0.2 –0.4 0.3 0.4 0.4
(8) 100 –0.6 0.3 –0.5 –0.3 0.1 0.2

200 –0.2 0.1 –0.4 0.1 0.2 –0.0
300 –0.1 0.2 –0.3 0.1 0.1 0.1

POP3 50 0.3 0.2 0.2 0.3 0.1 0.1
(6) 100 0.5 0.3 0.0 0.4 0.3 0.2

200 –0.4 –0.2 0.3 –0.1 0.0 0.2
300 –0.4 0.0 0.3 0.1 0.1 –0.2

Table 2. Relative bias (RB%) of kNN and EDE estima-
tors of totals in CLU (m = 4). RB% = (estimate – actual) 
/ actual × 100. Results are for the k-value (kopt) that mini-
mized the RMSE of an estimated total.

POP (kopt) n kNN EDE
Y1 Y2 Y3 Y1 Y2 Y3

POP1 20 –0.0 0.2 0.5 0.5 0.1 0.6
(4) 30 –1.0 –0.2 –0.5 –0.6 –0.2 –0.6

50 –0.5 0.1 –0.3 –0.1 –0.3 –0.1
100 –0.4 –0.2 –0.1 –0.1 –0.2 –0.1

POP2 20 –0.4 0.6 –0.3 –0.1 0.6 0.2
(6) 30 –0.1 0.0 0.3 0.2 –0.1 –0.0

50 –0.2 –0.0 0.4 –0.0 –0.2 –0.0
100 –0.2 –0.0 –0.4 –0.1 –0.2 –0.1

POP3 20 –0.5 –0.6 0.4 –0.5 –0.7 0.2
(8) 30 –1.1 –1.0 0.9 –0.7 –0.9 0.3

50 –0.4 –0.2 0.6 –0.1 0.0 –0.1
100 –0.3 0.0 0.2 0.2 0.2 –0.5
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SRS standard errors estimated from vFBOOT were generally smaller than vEMP0.5 estimates. 
With n = 50 the average underestimation reached 4%, and there were four cases with a statistically 
significant underestimation. For larger n the underestimation was, approximately 2%. The null 
hypotheses of no difference between vBOOT and vFBOOT were not rejected at the 5% level of 
significance. vFBOOT was 22 times out of 36 closer to vEMP than was vBOOT.

SRS standard errors obtained from vEDE were slightly conservative with an overestimation 
that increased with sample size from 3% with n = 50 to 7% with n = 300 (Table 3). However, only 
one estimate (POP1, Y1, n = 50) was found to be statistically significantly different from vEMP0.5. 

Trends in standard errors estimated under a CLU design (Table 4) were, by and large, similar 
to those reported for SRS.

For SRS and CLU designs with equal element sample sizes (nSRS = 200, nCLU = 50) the 
standard errors of a CLU design were larger than for a SRS design; the design effect of CLU (i.e. 
the ratio of CLU to SRS sampling variances for designs with equal number of sampled elements 
(Särndal et al. 1992, p. 53)) was approximately 1.1 for all estimators of variance.

3.4	Coverage	of	confidence	intervals

Coverage rates of computed 95% confidence intervals are in Tables 5 and 6. Overall, jackknife 
intervals tend to be slightly too wide, while those of BOOT, FBOOT and EDE are slightly too 
narrow. With 400 Monte-Carlo replications, a departure of 2.1% from the nominal value is statisti-
cally significant at the 5% level of significance (t-test). Table 5 reports only 4 significant deviations 
out of 144 entries. Under the null hypothesis the expected number is 7 (144 × 0.05). Accordingly, 
the simultaneous null hypothesis was not rejected (Miller 1981, p. 9). 

For the CLU designs (Table 6), there were 20 cases out of 144 where the coverage was either 
significantly above (3 cases) or below (17 cases) the nominal level. Significant departures were 
concentrated in bootstrap intervals. Without the accelerated bias-correction of bootstrap confidence 

Table 3. Estimates of relative standard error (se%) in SRS. (se% = standard error of total ÷ total × 
100). An estimate significantly different from its empirical counterpart at the 5% level (AD-test) 
is indicated in gray.

Variance 
estimator

POP1 (kopt = 4) POP2 (kopt = 8) POP3 (kopt = 6)
n = 50 100 200 300 50 100 200 300 50 100 200 300

vEMP Y1 9.7 6.4 4.2 3.4 6.4 4.5 3.1 2.2 8.0 5.1 3.6 2.9
Y2 9.2 6.0 4.0 3.4 7.0 4.4 3.2 2.5 8.0 5.5 3.7 3.0
Y3 9.8 6.9 5.0 3.8 5.8 3.7 2.8 2.1 9.5 6.2 4.2 3.3

vJK Y1 9.7 6.6 4.6 3.6 6.9 4.6 3.1 2.4 7.9 5.4 3.7 3.0
Y2 9.2 6.4 4.4 3.6 7.0 4.7 3.2 2.6 8.2 5.6 3.8 3.1
Y3 9.8 7.3 5.1 4.1 5.8 4.0 2.8 2.2 9.8 6.2 4.3 3.5

vBOOT Y1 8.7 5.9 4.1 3.3 6.5 4.3 2.9 2.3 7.3 5.0 3.5 2.8
Y2 8.4 5.8 4.0 3.2 6.5 4.5 3.0 2.4 7.6 5.1 3.6 2.9
Y3 9.5 6.6 4.6 3.7 6.4 3.7 2.6 2.1 8.1 5.7 4.0 3.2

vFBOOT Y1 8.8 6.1 4.2 3.4 6.1 4.2 2.9 2.3 7.3 5.1 3.5 2.8
Y2 8.8 6.0 4.2 3.4 6.4 4.5 3.0 2.4 7.6 5.2 3.6 2.9
Y3 9.7 6.7 4.8 3.8 6.1 3.7 2.6 2.1 8.2 5.8 4.1 3.3

vEDE Y1 9.5 6.6 4.6 3.7 6.7 4.5 3.1 2.5 7.8 5.4 3.8 3.1
Y2 9.3 6.4 4.5 3.7 6.8 4.6 3.2 2.6 8.0 5.5 3.9 3.0
Y3 10.6 7.3 5.1 4.1 6.0 4.1 2.9 2.3 9.8 6.2 4.3 3.5
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Table 4. Estimates of relative standard error (se%) in CLU. (se% = standard error of total ÷ total × 
100). An estimate significantly different from its empirical counterpart at the 5% level (AD-test) 
is indicated in gray.

Variance 
estimator

POP1 (kopt = 4) POP2 (kopt = 6) POP3 (kopt = 8)
n = 20 30 50 100 20 30 50 100 20 30 50 100

vEMP Y1 8.2 6.3 5.0 3.4 5.2 4.2 3.0 2.2 6.3 5.0 3.7 2.4
Y2 8.1 6.0 4.9 3.3 5.9 4.4 3.5 2.2 6.5 5.3 4.0 2.6
Y3 9.4 6.8 5.6 3.3 4.9 3.9 3.0 2.1 7.1 5.5 4.1 3.0

vJK Y1 8.2 6.4 4.9 3.3 5.5 4.3 3.2 2.2 6.2 4.9 3.8 2.6
Y2 8.0 6.4 4.8 3.3 5.7 4.6 3.4 2.3 6.4 5.2 3.9 2.7
Y3 8.9 7.0 5.4 3.7 4.9 3.9 3.0 2.1 7.2 5.7 4.4 3.1

vBOOT Y1 7.7 6.1 4.7 3.2 5.1 4.1 3.0 2.1 5.7 4.7 3.6 2.5
Y2 7.4 6.0 4.5 3.1 5.6 4.4 3.3 2.3 5.9 4.9 3.7 2.6
Y3 8.3 6.5 5.1 3.5 4.8 3.8 2.9 2.1 6.6 5.4 4.1 2.9

vFBOOT Y1 7.7 6.1 4.6 3.2 5.0 4.0 3.0 2.0 5.7 4.7 3.6 2.5
Y2 7.5 6.0 4.5 3.1 5.4 4.4 3.2 2.2 5.9 4.9 3.7 2.6
Y3 8.3 6.6 5.0 3.6 4.7 3.8 2.8 2.0 6.6 5.4 4.1 2.9

vEDE Y1 8.3 6.6 5.1 3.5 5.4 4.4 3.3 2.2 6.1 5.0 3.8 2.6
Y2 8.0 6.4 4.9 3.4 5.7 4.7 3.5 2.3 6.2 5.1 3.9 2.7
Y3 9.1 7.3 5.7 3.9 5.3 4.3 3.3 2.1 7.4 5.9 4.5 3.2

Table 5. Achieved coverage rates (%) of nominal 95% confidence intervals under SRS. Statistical 
significant (5% level) departures from the nominal level are in gray.

Variance 
estimator

POP1 (kopt = 4) POP2 (kopt = 8) POP3 (kopt = 6)
n = 50 100 200 300 50 100 200 300 50 100 200 300

vJK Y1 95 95 96 95 95 95 95 97 95 95 97 97
Y2 95 95 97 96 96 96 95 95 97 95 96 95
Y3 96 96 95 95 95 96 96 96 93 95 94 97

vBOOT Y1 94 95 95 95 95 96 93 96 93 96 96 96
Y2 93 95 97 93 95 95 95 96 97 95 96 93
Y3 96 94 95 94 94 96 95 95 93 96 94 96

vFBOOT Y1 93 94 96 95 94 94 93 94 94 96 95 96
Y2 94 95 96 93 94 96 93 94 96 94 95 96
Y3 96 94 95 94 93 95 95 94 94 94 93 96

vEDE Y1 94 96 96 93 95 95 96 96 94 94 96 97
Y2 95 94 97 94 95 95 95 94 96 95 94 93
Y3 95 95 94 95 94 95 94 95 92 94 96 95
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intervals, the rate of significant departures would have been higher. Jackknife and EDE intervals 
achieved an average coverage of 0.95 with an almost perfect balance between over- and under-
coverage. The BOOT intervals were, on average, too short with a mean coverage of 0.94. FBOOT 
intervals were the worst with a mean coverage of 0.93. 

4 Discussion

In forestry kNN applications, the preferred values of k are typically greater than the values of 4 
to 8 reported in this study (Maltamo and Kangas 1998; Tomppo and Halme 2004; Maselli et al. 
2005; Falkowski 2010; McRoberts 2011). This is to be expected, since the number of auxiliary 
X-variables in many kNN applications is considerably greater than three, and because the optimal 
k is tied to the dimension of the feature space of X (Singh et al. 1993). Under ideal conditions with 
symmetric distributions of independent p-dimensional X variables significantly correlated with Y, 
the optimal k should not be far from 2 p (Stage and Crookston 2007). Under such favorable condi-
tions, and a sufficiently large reference set, a majority of kNN imputations have a balance in kNN 
X-values above and below the X-value of a target element. A necessary requirement for accurate 
imputations (Chen and Shao 2000). A lower than optimal k-values may be preferred for mapping 
purposes where it can be important to preserve, as far as possible, the variance in observed sample 
values of Y (Meng et al. 2007).

The comparatively low dimension (three) of the feature space in this study does not limit the 
practical relevance of the study. A high-dimensional X-space suffers from the mentioned ‘curse-
of-dimensionality’ which sets the stage for inefficient selections of nearest neighbours, and hence 
loss of precision. Efforts towards reducing the dimension of X (Kim and Tomppo 2006; Magnussen 
et al. 2009) should precede variable selection, optimization of the distance metric, and searches 
for an ‘optimal’ weighting of X-variables (Katila and Tomppo 2001; Sironen et al. 2001; Tomppo 
and Halme 2004; Breidenbach et al. 2010; Latifi et al. 2010). 

The kNN estimator is biased (Stroup and Mulitze 1991; Snapp and Venkatesh 1998; Chen 
and Shao 2000), but this study confirmed that the risk of a practically important bias (in a kNN 
population total) in forestry applications with a reference set greater than 200 appears to be low 

Table 6. Achieved coverage rates (%) of nominal 95% confidence intervals under CLU. Statistical 
significant (5% level) departures from the nominal level are in gray.

Variance 
estimator

POP1 (kopt = 4) POP2 (kopt = 6) POP3 (kopt = 8)
n = 20 30 50 100 20 30 50 100 20 30 50 100

vJK Y1 95 95 95 93 95 94 96 95 94 95 95 96
Y2 94 95 93 96 94 97 95 96 96 94 93 96
Y3 93 95 94 97 94 95 95 94 95 96 96 96

vBOOT Y1 94 94 94 93 94 95 96 95 92 95 95 97
Y2 92 95 93 95 94 97 94 97 95 94 93 98
Y3 92 93 93 97 94 94 97 94 94 96 95 95

vFBOOT Y1 93 94 94 94 93 93 93 93 93 95 96 96
Y2 92 95 93 94 94 96 94 97 93 93 93 97
Y3 93 95 92 97 95 94 94 93 93 95 96 96

vEDE Y1 95 96 96 93 94 93 96 93 93 96 95 96
Y2 95 96 94 95 93 96 95 95 94 93 93 96
Y3 93 96 95 97 94 95 95 95 96 95 96 96
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(Fehrmann et al. 2008; Magnussen et al. 2010b; McRoberts 2011). The EDE estimator can, as 
expected (Baffetta et al. 2009), achieve an effective reduction in the bias of a kNN population total. 
The effectiveness of EDE to reduce bias appears to vary among populations and variables. Bias 
could be an issue in CLU designs with sample sizes < 30 clusters. Yet Magnussen et al. (2010a) did 
not report an increase in bias of the classic kNN estimator when the reference data were obtained 
under a CLU design. Further studies are needed to clarify the efficacy of EDE in bias reduction 
under a CLU design.

Sampling distributions of kNN estimates of a population total (mean) obtained with kNN, 
JK, BOOT, and FBOOT, appeared to be approximately Gaussian which is one condition for obtain-
ing correct quantile-based confidence intervals (Casella and Berger 2002, p. 240). With the low 
number of Monte-Carlo replications, it was not possible to detect differences among the resampling 
distributions of estimated population parameters. 

Widely available low-cost auxiliary information correlated with the variables of interest (Y), 
ease of implementation (Crookston and Finley 2008), and provision of element level predictions 
of Y are important factors behind the popularity of the kNN technique in forestry (Franco-Lopez 
et al. 2001; Holmström and Fransson 2003). In applications of the kNN technique, it is usually 
required that an estimate of a population (stratum) total (mean) be accompanied by an estimate 
of variance; preferably an MSE, given the biased nature of a kNN estimator. A generally modest 
level of bias in kNN estimates supported by a reasonably large number of reference units, means 
that estimates of variance can be used in lieu of an MSE (Cochran 1977, p. 15).

The vEDE proposed by Baffetta et al. (2009) is easy and fast to compute for any probability 
design. Alternative variance estimators for the kNN are either derived from models of element-level 
variance and covariance (McRoberts et al. 2007; Magnussen et al. 2009) or computer-intensive 
resampling techniques (Magnussen 2009; McRoberts et al. 2011). In a small-scale testing (N = 312) 
of vEDE, estimates of RMSEs were only slightly biased (< 4%) when sample sizes were above 
20 and the coefficient of determination in a multiple linear regression of the six auxiliary X vari-
ables and Y was between 0.2 and 0.6 (Baffetta et al. 2009). A second testing of vEDE in SRS with 
two actual and three somewhat larger, artificial populations ( 567 ≤ N ≤ 900) by Magnussen et al. 
(2010a) confirmed that vEDE was close to the Monte-Carlo estimates of variance. A third confir-
mation was provided by this study and will hopefully encourage application. Although vEDE also 
performed well in CLU, further testing may be needed with larger clusters (m > 4) and possibly a 
stronger intra-cluster correlation. Since vEDE is computed as a Horvitz-Thompson estimator of 
variance (Thompson 1992, p. 49) it can fail with small sample sizes (e.g. < 30) as in SAE applica-
tions (Fuller 2009, p. 311).

Although vJK, on average, was slightly better than vEDE at matching the empirical vari-
ances, the non-trivial burden of computing n leave-one-out estimates of a kNN total (mean) still 
weighs in favour of vEDE, despite the demonstrated opportunity to accelerate vJK computations. 
As computation speed improves, the reason to choose vEDE over vJK may dissipate (Schenk et 
al. 2008).

The performance of vJK was similar in SRS and CLU, although slightly more variable in the 
latter. We saw no sign that the level of intracluster correlation influenced the results. It remains to 
test vJK in designs with clusters of more than four elements. The success of the jackknife estima-
tors supports the assumption linked to a jackknife estimator, that bias in a kNN estimator of a total 
can be written as a quadratic function of sampled Y-values (Wolter 2007, p. 153).

Attempts at accelerating computation of vJK even further, by estimating the effect of leaving 
out a sample unit on a kNN total from changes in the marginal frequencies with which elements 
1,…,n × m enters the total, failed due to an unacceptable level of bias in estimated variances (> 30%). 
The large bias suggests that the joint-inclusion probability of membership in a nearest neighbour 
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clique of size k is distinctly different from the product of marginal inclusion probabilities (Baffetta 
et al. 2009).

The kNN bootstrap variance estimator was also employed by McRoberts et al. (2011) who 
compared it to a parametric estimator (vMCR) of variance (McRoberts et al. 2007). In SRS designs 
there was good agreement between the two estimators, lending support to the assumption in vMCR: 
the variance of a single kNN imputation is (approximately) the variance of the Y-values of the 
k-nearest reference elements. For clustered data, the performance of the bootstrap appeared to 
depend on whether elements in a cluster were resampled or not (Field and Welsh 2007). For large 
clusters (m ≥ 8) a resampling of clusters followed by a resampling of elements within the cluster 
produced a stronger agreement with vMCR than a single stage resampling of clusters. It was not 
possible to explain the effects of the bootstrap procedure. Without the positive results with vEDE 
and vJK, vMCR would also have been studied.

In this study the performance of vBOOT and vFBOOT in SRS and CLU designs was 
comparable but slightly inferior to that of vEDE and vJK. Accelerating the computation of the 
bootstrap variance – by replacing nearest neighbours missed in a bootstrap sample with their 
nearest neighbour in the bootstrap sample – sharply reduced the time to compute a variance. For 
large populations and sample sizes vFBOOT will be faster than vJK and our results suggest that 
for sufficiently large n the two estimators will produce similar estimates.

Confidence intervals provide an intuitive summary of the uncertainty associated with an 
estimate obtained from a probability sample (Beal 1989). The combination of a low level of bias 
in a kNN estimate of a population total, an approximate Gaussian sampling distribution, and a 
consistent estimate of variance, sets the stage for computing a confidence interval with an expected 
coverage close to the nominal level (e.g. 95%). Results from SRS confirmed this, but results 
from the CLU simulations reiterated the importance of choosing a consistent variance estima-
tor. The analyst apparently has a greater chance of a correct coverage with confidence intervals 
computed from vJK or vEDE than with intervals computed from vBOOT or vFBOOT. Standard 
percentile bootstrap confidence intervals would, in a majority of cases, have shown a significant 
under-coverage. Thus bias-corrected accelerated percentile intervals (Efron and Tibshirani 1993, 
p. 188) are recommended for bootstrap kNN estimators. For sample fractions greater than 0.1 a 
JK confidence intervals can be improved by a finite population correction (Wolter 2007, p. 167).

This study emulated a realistic testing of kNN variance estimators in simulated SRS and 
CLU sampling with a larger population size than seen in other published studies. To make the 
simulations realistic and relevant to forestry, considerable effort was directed towards creating 
realistic populations with a cluster structure. Advancements in creating multivariate distributions 
with copulas (Srinivas et al. 2006; Fischer 2010) greatly facilitated the task. Further realism could 
come from adding outliers which are known to occur in inventory samples (McRoberts 2009). 
However, addition of outliers, although simple to do, would balloon the number of scenarios and 
push computing times to impractical levels. A study on the robustness of kNN estimators of totals 
and variance (Wang and Raftery 2002) against outliers is needed.

Application of kNN for SAE of totals is important. The demonstrated suitability of vJK and 
vBOOT for estimating the variance of a kNN population total means that they should be inves-
tigated for their usefulness in SAE problems. A priori EDE and vEDE are expected to fail with 
small number of reference units in the area of interest 



14

Silva Fennica vol. 47 no. 1 article id 925 · Magnussen · An assessment of three variance estimators…

References

Aha W.D. (1997). Lazy learning. Kluwer, Dordecht. 165 p.
Anderson T.W., Darling D.A. (1952). Asymptotic theory of certain “goodness of fit” criteria based 

on stochastic processes. Annals of Mathematical Statistics 23: 193–212.
Baffetta F., Fattorini L., Franceschii S., Corona P. (2009). Design-based approach to the kNN 

technique for coupling field and remotely sensed data in forest surveys. Remote Sensing of 
Environment 113: 463–475.

Barth A., Wallerman J., Ståhl G. (2009). Spatially consistent nearest neighbor imputation of forest 
stand data. Remote Sensing of Environment 113: 546–553.

Beal S.L. (1989). Sample size determination for confidence intervals on the population mean and 
on the difference between two population means. Biometrics 45: 969–977.

Bernier P.Y., Daigle G., Rivest L.P., Ung C.H., Labbé F., Bergeron C., Patry A. (2010). From plots 
to landscape: a k-NN-based method for estimating stand-level merchantable volume in the 
Province of Québec, Canada. Forestry Chronicle 86: 461–468.

Beyer K., Goldstein J., Ramakrishnan R., Shaft U. (1999). When is “nearest neighbor” meaning-
ful? In: Beeri C., Buneman P. (eds.). Proceedings of the international conference on database 
theory – ICDT’99. Springer, Berlin. p. 217–235.

Breidenbach J., Nothdurft A., Kändler G. (2010). Comparison of nearest neighbour approaches 
for small area estimation of tree species-specific forest inventory attributes in central Europe 
using airborne laser scanner data. European Journal of Forest Research 129: 833–846.

Casella G., Berger R.L. (2002). Statistical inference. Duxbury Press, Pacific Grove. 660 p.
Chen J., Shao J. (2000). Nearest neighbour imputation for survey data. Journal of Official Statistics 

46: 113–131.
Cochran W.G. (1977). Sampling techniques. Wiley, New York. 380 p.
Cressie N.A.C. (1993). Statistics for spatial data. Revised edition. Wiley, New York. 900 p.
Crookston N.L., Finley A.O. (2008). yaImpute: an R package for kNN imputation. Journal of 

Statistical Software 23: 16.
Efron B. (1982). The jackknife, the bootstrap, and other resampling plans. Conference Board of 

Mathematical Science / National Science Foundation, Philadelphia. 92 p.
Efron B., Tibshirani R.J. (1993). An introduction to the bootstrap. Chapman & Hall, Boca Raton. 

436 p.
Falkowski M.J. (2010). Landscape-scale parameterization of a tree-level forest growth model: 

a k-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of 
Forest Research 40: 184–199.

Fazar W. (1959). Program evaluation and review technique. The American Statistician 13: 10–16.
Fehrmann L., Lehtonen A., Kleinn C., Tomppo E. (2008). Comparison of linear and mixed-effect 

regression models and a k-nearest neighbour approach for estimation of single-tree biomass. 
Canadian Journal of Forest Research 38: 1–9.

Field C.A., Welsh A.H. (2007). Bootstrapping clustered data. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology) 69: 369–390.

Finley A.O., McRoberts R.E., Ek A.R. (2006). Applying an efficient k-nearest neighbor search to 
forest attribute imputation. Forest Science 52: 130–135.

Fischer M. (2010). Multivariate copulae. In: Kurowicka D., Joe H. (eds.). Dependence modeling. 
World Scientific Singapore. p. 19–36.

Franco-Lopez H., Ek A.R., Bauer M.E. (2001). Estimation and mapping of forest stand density, 
volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environ-
ment 77: 251–274.



15

Silva Fennica vol. 47 no. 1 article id 925 · Magnussen · An assessment of three variance estimators…

Fuller W.A. (2009). Sampling statistics. Wiley, New York. 454 p.
Haara A., Maltamo M., Tokola T. (1997). The k-nearest-neighbour method for estimating basal 

area diameter distribution. Scandinavian Journal of Forest Research 12: 200–208.
Holmström H., Fransson J.E.S. (2003). Combining remotely sensed optical and radar data in kNN-

estimation of forest variables. Forest Science 49: 409–418.
Katila M. (2006). Empirical errors of small area estimates from the multisource national forest 

inventory in eastern Finland. Silva Fennica 40: 729–742.
Katila M., Tomppo E. (2001). Selecting estimation parameters for the Finnish multisource National 

Forest Inventory. Remote Sensing of Environment 76: 16–32.
Kaufman C.G., Schervish M.J., Nychka D.W. (2008). Covariance tapering for likelihood-based 

estimation in large spatial data sets. Journal of the American Statistical Association 103: 
1545–1555.

Kim H.J., Tomppo E. (2006). Model-based prediction error uncertainty estimation for k-nn method. 
Remote Sensing of Environment 104: 257–263.

Koehler E., Brown E., Haneuse J.-P.A. (2009). On the assessment of Monte Carlo error in simu-
lation-based statistical analyses. The American Statistician 63: 155–162.

Koistinen P., Holmström L., Tomppo E. (2008). Smoothing methodology for predicting regional 
averages in multi-source forest inventory. Remote Sensing of Environment 112: 862–871.

Latifi H., Nothdurft A., Koch B. (2010). Non-parametric prediction and mapping of standing timber 
volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived 
predictors. Forestry (Oxford) 83: 395–407.

LeMay V., Maedel J., Coops N.C. (2008). Estimating stand structural details using nearest neigh-
bor analyses to link ground data, forest cover maps, and Landsat imagery. Remote Sensing 
of Environment 112: 2578–2591.

Lin Y., Jeon Y. (2006). Random forests and adaptive nearest neighbor methods. Journal of the 
American Statistical Association 101: 578–590.

Magnussen S. (2009). A balanced repeated replication estimator of sampling variance for apparent 
and predicted species richness. Forest Science 55: 189–200.

Magnussen S., Köhl M. (2006). A better alternative to Wald’s test-statistic for simple goodness-
of-fit tests under one-stage cluster sampling. Forest Ecology and Management 221: 123–132.

Magnussen S., McRoberts R.E., Tomppo E. (2009). Model-based mean square error estimators 
for k-nearest neighbour predictions and applications using remotely sensed data for forest 
inventories. Remote Sensing of Environment 113: 476–488.

Magnussen S., McRoberts R.E., Tomppo E. (2010a). A resampling variance estimator for the 
k-nearest neighbours technique. Canadian Journal of Forest Research 40: 648–658.

Magnussen S., Tomppo E., McRoberts R.E. (2010b). A model-assisted k-nearest neighbour approach 
to remove extrapolation bias. Scandinavian Journal of Forest Research 25: 174–184.

Maltamo M., Kangas A. (1998). Methods based on k-nearest neighbor regression in the predic-
tion of basal area diameter distribution. Canadian Journal of Forest Research 28: 1107–1115.

Maselli F., Chirici G., Bottai L., Corona P., Marchetti M. (2005). Estimation of Mediterranean 
forest attributes by the application of k-NN procedures to multitemporal Landsat ETM plus 
images. International Journal of Remote Sensing 26: 3781–3796.

McRoberts R.E. (2009). Diagnostic tools for nearest neighbors techniques when used with satellite 
imagery. Remote Sensing of Environment 113: 489–499.

McRoberts R.E. (2011). Estimating forest attribute parameters for small areas using nearest neigh-
bors techniques. Forest Ecology and Management 272: 3–12.

McRoberts R.E., Tomppo E.O., Finley A.O., Heikkinen J. (2007). Estimating areal means and 
variances of forest attributes using the k-nearest neighbors technique and satellite imagery. 



16

Silva Fennica vol. 47 no. 1 article id 925 · Magnussen · An assessment of three variance estimators…

Remote Sensing of Environment 111: 466–480.
McRoberts R.E., Cohen W.B., Næsset E., Stehman S.V., Tomppo E.O. (2010). Using remotely 

sensed data to construct and assess forest attribute maps and related spatial products. Scandi-
navian Journal of Forest Research 25: 340–367.

McRoberts R.E., Magnussen S., Tomppo E.O., Chirici G. (2011). Parametric, bootstrap, and jack-
knife variance estimators for the k-Nearest Neighbors technique with illustrations using forest 
inventory and satellite image data. Remote Sensing of Environment 115: 3165–3174.

Meng Q.M., Cieszewski C.J., Madden M., Borders B.E. (2007). K nearest neighbor method for 
forest inventory using remote sensing data. GISciences & Remote Sensing 44: 149–165.

Miller R.G.J. (1981). Simultaneous statistical inference. Second Edition. Springer, New York. 293 p.
Nelsen R.B. (1999). An introduction to copulas. Springer, New York. 216 p.
Nothdurft A., Saborowski J., Breidenbach J. (2009). Spatial prediction of forest stand variables. 

European Journal of Forest Research 128: 241–251.
Opsomer J.D., Claeskens G., Ranalli M.G., Kauermann G., Breidt F.J. (2008). Non-parametric 

small area estimation using penalized spline regression. Journal of the Royal Statistical Society, 
Series B (Statistical Methodology) 70: 265–286.

Paass G. (1985). Statistical record linkage methodology: state of the art and future prospects. Bul-
letin of the International Statistical Society. Proceedings of the 45th Session. ISI, Voorburg NL.

Särndal C.E., Swensson B., Wretman J. (1992). Model assisted survey sampling. Springer, New 
York. 1–694 p.

Schenk O., Christen M., Burkhart H. (2008). Algorithmic performance studies on graphics process-
ing units. Journal of Parallel and Distributed Computing 68: 1360–1369.

Scott D.W. (1992). Multivariate density estimation: theory, practice and visualization. Wiley, New 
York. 317 p.

Singh A.C., Mantel H., Kinack M., Rowe G. (1993). Statistical matching: use of auxiliary infor-
mation as an alternative to the conditional independence assumption. Survey Methodology 
19: 59–79.

Sironen S., Kangas A., Maltamo M., Kangas J. (2001). Estimating individual tree growth with 
the k-nearest neighbour and k-most similar neighbour methods. Silva Fennica 35: 453–467.

Snapp R.R., Venkatesh S.S. (1998). Asymptotic expansions of the k nearest neighbor risk. Annals 
of Statistics 26: 850–878.

Srinivas S., Menon D., Prasad A.M. (2006). Multivariate simulation and multimodal dependence 
modeling of vehicle axle weights with copulas. Journal of Transporation Engineering 132: 
945–955.

Stage A.R., Crookston N.L. (2007). Partitioning error components for accuracy-assessment of 
near-neighbor methods of imputation. Forest Science 53: 62–72.

Stroup W.W., Mulitze D.K. (1991). Nearest neighbor adjusted best linear unbiased prediction. The 
American Statistician 45: 195–200.

Thompson S.K. (1992). Sampling. Wiley, New York. 343 p.
Tomppo E. (1991). Satellite image-based national forest inventory of Finland. In: Proceedings of 

the symposium on global and environmental monitoring, techniques and impacts. International 
Archives of Photogrammetry and Remote Sensing. ISPRS, Victoria BC. p. 419–424. 

Tomppo E. (2006). The Finnish multi-source national forest inventory – small area estimation 
and map production. In: Kangas A., Maltamo M. (eds.). Forest inventory – methodology and 
applications. Springer, Dordrecht, NL. p. 195–224.

Tomppo E., Halme M. (2004). Using coarse scale forest variables as ancillary information and 
weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sensing of 
Environment 92: 1–20.



17

Silva Fennica vol. 47 no. 1 article id 925 · Magnussen · An assessment of three variance estimators…

Van der Meer F. (2012). Remote-sensing image analysis and geostatistics. International Journal 
of Remote Sensing 33: 5644–5676.

Wang N., Raftery A.E. (2002). Nearest-neighbor variance estimation (NNVE): Robust covariance 
estimation via nearest-neighbor cleaning. Journal of the American Statistical Association 97: 
994–1019.

Wolfram S. (1999). The Mathematica book. Wolfram Media / Cambridge University Press, Cham-
paign, IL. 1470 p.

Wolter K.M. (2007). Introduction to variance estimation. Springer, New York. 447 p.
Zhang L., Shi H. (2004). Local modeling of tree growth by geographically weighted regression. 

Forest Science 50: 225–244.

Total of 71 references

Appendix A 

A time-saving implementation of the jackknife estimators 

To compute Tyjk�  and vJK, the search for the k-nearest neighbours does not have to be repeated for 
each of the n rounds of delete-one-sample-element. Instead, a one-time search for the k + m nearest 
neighbours is carried out. From this search an N × (k + m) array ( N

k mNN + ) of nearest neighbour iden-
tifiers is assembled. Column positions (1,…, k + m) in N

k mNN +  indicates distance ranks (1 = nearest, 
k + m = most distant). To identify elements needed to calculate Ty l

jk
( )
� , l = 1,…,n one first eliminates 

the m elements in the lth sample unit from N
k mNN +  then takes the first k columns from the ensuing 

ragged array of identifiers. In most programming languages the elimination is very fast and can be 
done by a single call to an array operator. The search for m additional nearest neighbours increased 
computing time, but overall the time-savings compared to a direct (brute force) implementation of 
the JK estimator were impressive (25%–45%) for the scenarios presented here.

Computationally faster bootstrap estimators 

The proposed faster kNN bootstrap estimators (FBOOT and vFBOOT) used, in all B bootstrap 
replications, the same N × k array of nearest neighbours ( N

kNN ) that was used to compute Tyk� . If, 
for a given target element yl and a current bootstrap sample, only k′ < k of the nearest reference 
elements can be found in the lth row of N

kNN , the missing k – k′ elements are to be replaced by the 
elements in the bootstrap sample with an X-value closest to the X-value of yl. The implementation 
requires – for each target element – a maximum of k – k′ nearest neighbour searches in a total of 
n × m reference elements. Computing vFBOOT was, on a modern day desk-top computer, at least 
four times faster than computing vBOOT. The gain in processing speed comes at the expense of 
an increase in the average distance ranks of the k neighbours used to compute yi bk,*� . This could 
deteriorate the performance of FBOOT and vFBOOT relative to BOOT and vBOOT. 

Appendix B

Details of populations POP1, POP2 and POP3

In POP1, Y1, Y2, and Y3 were marginally distributed as a 25:50:25 mixture of three two-parameter 
gamma distributions with parameters (10, 8), (30, 12), and (50, 16) in Y1, non-central chi-squared 
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distributions with parameters (4.5, 0.2), (9, 0.5), and (14, 1) in Y2, and two-parameter gamma 
distributions with parameters (8, 200), (4, 200), and (2, 200) in Y3. The marginal distributions of 
X1, X2, and X3 were 50:50 mixtures of two triangular distributions with parameters (min, max, 
mode) of (10, 50, 30) and (20, 60, 50) for X1, (40, 100, 70) and (50, 110, 100) for X2, and (80,120, 
110) and (90, 130, 120) for X3.

In POP2, Y1, Y2, and Y3 were marginally distributed as truncated skew-normal distributions 
with parameters (300, 400, 0.2), (25, 30, 0.1), and (600, 500 1), respectively. The right-truncation 
was fixed at ytrunc so that P(y ≤ ytrunc) � 0.80 in the non-truncated skew-normal distributions. Mar-
ginal distributions of the four X-variables in POP2 and POP3 were PERT-distributions (a scaled 
beta distribution, Fazar 1959) on the interval [0, 256] with parameters (175, 2) for X1, (125, 3) for 
X2, (75, 2) for X3, and (25, 3) for X4.

In POP3 Y1, Y2, and Y3 had marginally uniform distributions on the intervals (0, 80), (0, 
40), and (0, 4000). The X-variables were marginally distributed as triangular distributions on the 
interval (0, 256) with modes at 175 (X1), 125 (X2), 75 (X3), and 25 (X4).

The target pair-wise correlation coefficients among the variables in the three populations are 
in Table B1. Generation of the 8000 multivariate correlated random variables was done using the 
copula technique with a multivariate Gaussian copula defined by the target correlation structures 
in Table B1 (Nelsen 1999; Srinivas et al. 2006; Fischer 2010).

A cluster structure with clusters of size (m) was incorporated in the three populations by: 
i) adding a uniform distributed (0,1) random variable (u) to the three populations; ii) specifying a 
target correlation ρ between u and the X- and Y-variables in a population; iii) sorting the population 
elements on their u-values; iv) adding an element identifier variable ω (ω = 1,…, N) to the sorted 
population values; and v) adding a cluster identifier γ (γ = 1,…, M) defined as [ω × m–1] where [x] is 

Table B1. Pair-wise variable target correlations in the three populations 
(POP1, POP2, and POP3). Realized correlations between two different 
variables in the randomly generated populations of 8000 elements may 
deviate by up to 0.02 from the target.

X1 X2 X3 X4 Y1 Y2 Y3

POP1
X1 1.00 0.80 0.40 - 0.10 0.20 0.05
X2 1.00 0.50 - 0.40 0.30 0.00
X3 1.00 - 0.20 0.20 0.30
Y1 1.00 0.70 0.60
Y2 1.00 0.20
POP2
X1 1.00 0.50 0.50 0.20 0.50 0.30 0.20
X2 1.00 0.50 0.50 0.20 0.50 0.30
X3 1.00 0.50 0.50 0.20 0.50
X4 1.00 0.50 0.50 0.20
Y1 1.00 0.50 0.50
Y2 1.00 0.50
POP3
X1 1.00 0.70 0.50 –0.20 0.40 0.30 0.00
X2 1.00 0.60 –0.20 0.50 0.50 –0.10
X3 1.00 0.30 0.30 0.20 0.10
X4 1.00 –0.20 –0.20 0.10
Y1 1.00 0.70 –0.70
Y2 1.00 –0.50
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the smallest integer larger than or equal to x. In POP1 ρ was fixed at 0.4 resulting in an intra-cluster 
correlation coefficient (ρclu) (Cochran 1977, p. 209) that varied between 0.12 (Y1) and 0.14 (Y2). 
In POP2 ρ was 0.5 which generated a ρclu of 0.24 (Y1), 0.25 (Y2), and 0.26 (Y3). A weak ρ of 0.22 
was the target for POP3 resulting in a ρclu between 0.03 (Y1) and 0.05 (Y3). The achieved values of 
ρclu are in line with reported values for forest inventory cluster plots Magnussen and Köhl (2006).


	An assessment of three variance estimators for the k-nearest neighbour technique
	1 Introduction
	2 Material and methods
	2.1 Population, sampling objectives, and notation
	2.2 The kNN estimator
	2.3 The jackknife kNN estimator
	2.4 The bootstrap kNN estimator
	2.5 The empirical difference estimator
	2.6 Estimator performance
	2.7 Sampling designs
	2.8 Case studies

	3 Results
	3.1 Choice of k
	3.2 Bias
	3.3 Standard errors
	3.4 Coverage of confidence intervals

	4 Discussion
	References
	Appendix A
	Appendix B



