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Abstract
The double normal distribution consists of two normal distributions truncated at their means and 
then combined in such a way, that points of truncation now become the overall distribution mode. 
So far, parameters of the double normal distribution have been estimated exclusively using the 
method of moments. This study evaluates the maximum likelihood method for the estimation 
of the double normal distribution parameters in Scots pine stands in Poland, and compares it to 
the results of the method of moments and the two-parameter Weibull distribution fitted using the 
maximum likelihood method and the method of moments. Presented results show that it is not 
recommended to use the maximum likelihood method of parameter fitting with Nelder-Mead 
and quasi-Newton optimization algorithms for the double normal distribution for small sam-
ples. However, it can be used for large samples, giving the fit comparable to the two-parameter 
Weibull distribution and providing parameters having sound practical and biological meaning. 
In the case of smaller samples for the double normal distribution it is recommended to apply the 
maximum likelihood method with the alternative simulated annealing optimization algorithm, 
use the method of moments or substitute the described distribution with the more flexible and 
robust Weibull distribution. For the smaller samples, the method of moments was superior to the 
maximum likelihood method.
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1 Introduction

For more than a hundred years foresters have written about how to describe stand diameter distribu-
tions using theoretical models, especially as a part of building volume and yield tables and growth 
models. Much research has been done on the utilization of various theoretical functions for diameter 
distribution modeling, such as Gram-Charlier series (Cajanus 1914), geometrical series, proposed 
by de Liocourt, an exponential form of the de Liocourt model (Meyer and Stevenson 1943; Meyer 
1952; Leak 1964), Pearson distributions (Schnur 1934), Pearl-Reed growth curves (Osborne and 
Schumacher 1935; Nelson 1964), gamma distribution (Nelson 1935), lognormal distribution (Bliss 
and Reinker 1964), beta distribution (Clutter and Bennett 1965; McGee and Della-Bianca 1967; 
Lenhard and Clutter 1971), Weibull distribution (Bailey and Dell 1973) , logit-logistic distribution 
(Wang and Rennols 2005), SB Johnson distribution (Hafley and Shreuder 1977; Siekierski 1992) 
and Birnbaum–Saunders distribution (Podlaski 2008). Recently, there were also a few results 
published on the use of the mixture distribution for the modeling of tree diameter distribution in 
stands with more complex structure (Zhang et al. 2001; Liu et al. 2002; Zasada and Cieszewski 
2005; Podlaski 2010; Podlaski 2011). Nowadays, because of its properties and advantages, one 
of the most frequently used has been the Weibull distribution, especially in its 3-parameter and, 
if necessary, truncated version (see Merganič and Sterba 2006). However, Maltamo et al. (1995) 
found 2-parameter Weibull to perform better than the 3-parameter one. Despite many successful 
applications of various functions, there is still a lot of research being done to find alternative func-
tions and parameter estimation methods that could provide a better fit of models to the data or give 
more practical interpretations of their parameters.

One example of such an effort is the double normal distribution. Bruchwald (1988) used this 
newly developed distribution for tree diameter description in a growth model for even-aged stands 
of Scots pine (Pinus sylvestris L.). Siekierski (1991) provided the description of various methods 
of parameter estimation for the double normal distribution. The double normal distribution was 
later used for tree diameter modeling of other species such as true fir (Abies alba Mill.) (Zasada 
1995), beech (Fagus sylvatica) (Rymer-Dudzińska and Dudzińska 2001), and birch (Betula) (Zasada 
2000). The described distribution was also used as an element of growth models for Scots pine 
(Bruchwald 1986; Bruchwald 1991), Norway spruce (Picea abies L.) (Bruchwald et al. 1999), true 
fir (Zasada 1999), and oak (Quercus) (Bruchwald et al. 1996), developed in Poland.

So far, parameters of the double normal distribution have been estimated exclusively using 
the method of moments (Siekierski 1991), which in some cases reveals limitations. The aim of 
this study was to:

• evaluate the maximum likelihood method (MLM) for the estimation of the double normal 
distribution parameters in Scots pine stands,

• compare the maximum likelihood estimates to different variants of the method of 
moments (MOM) for the double normal distribution Siekierski (1991) and for the 
Weibull distribution,

• compare the double normal distribution to the two-parameter Weibull distribution, which 
has been the most widely used for tree diameter distribution modeling in forestry, and

• evaluate and compare the performance of the double normal and two-parameter Weibull 
distributions in estimation of parameters in cases where one has to deal with small 
samples.
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2 Material and methods

The double normal distribution consists of two normal distributions N(m, s1) and N(m, s2) truncated 
at their means “m” and then combined in such a way, that points of truncation now become the new 
distribution mode “m0“ (Fig. 1). The probability density function of this distribution, published by 
Siekierski (1991), has the following form: 
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where x is a random variable, m0 is the mode of the distribution, s1 is the standard deviation of 
the left half of the distribution, and s2 is the standard deviation of the right half of the distribution.

The cumulative distribution function (cdf) of the double normal distribution is not available 
in a closed form because Eq. 1 is not analytically integrable. However, values of the cdf can be 
determined numerically, as in the normal distribution, using the value of the “error function” (erf), 
and the following equations:

Fig. 1. A sample graph of the double normal distribution with m = 22, s1 = 4 and s2 = 7. 
Notation: m – the mean of the compound distributions that becomes an overall 
distribution mode, s1 – the standard deviation of the first compound distribution, 
which makes a left half of the overall distribution, s2 – the standard deviation of the 
second compound distribution, which makes a right half of the overall distribution; 
solid lines show the resulting double normal distribution.
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In the study the diameter distribution data of 20 well-stocked, pure, even-aged Scots pine 
(Pinus sylvestris L.) stands was provided by the Department of Dendrometry and Forest Produc-
tivity at the Faculty of Forestry in Warsaw, Poland. The sample plots were located on typical pine 
sites (coniferous forest habitat) in Bory Tucholskie in north-central Poland. Areas of plots were 
set such that they comprised a few hundred trees. The diameters at breast height (dbh) of all trees 
were measured on the sample plots with an accuracy of 1 mm. Each plot was characterized by the 
following attributes: i) average total age, determined by counting rings on stumps of felled trees 
and sample cores; ii) average height, defined using the Lorey formula (basal area weighted average 
height); iii) site index, defined as the average height of the 100 thickest trees per hectare at base 
age 100 years, and calculated using the site index model for Scots pine in Poland (Bruchwald et 
al. 2000; Cieszewski and Zasada 2002); iv) basal area (BA), mean diameter (MD) and quadratic 
mean diameter (QMD). Table 1 summarizes the univariate statistics for the data used in the analysis.

As it was already mentioned, so far, parameters of the double normal distribution have been 
estimated exclusively using the method of moments (Siekierski 1991). Moments are numerical 
characteristics of a probability distributions or population, and can be calculated as raw (simple, 
ordinary, crude) moments, calculated about the origin (zero), and central ones, calculated about the 
arithmetic mean (or other value). Since we usually don’t have information on an entire population, 
we use a sample drawn from the population to estimate population moments.

The kth ordinary moment of the probability distribution is defined as:

∫( ) ( )= −∞
+∞E X x dF x (3)k k
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Table 1. Summary statistics of the 20 sample plots used in the study.

Area Age N QMD MD HL BA SI
[ha] [years] [trees] [cm] [cm] [m] [m2 ha–1] [m]

Minimum 0.049 26 258 6.2 5.9 7.70 22.40 16.90
Maximum 0.810 123 500 28.7 28.3 23.20 31.20 27.20
Average 0.297 58 378 15.5 15.0 14.34 27.18 22.03
Std dev. 0.235 25 67 6.0 5.9 3.70 2.55 3.53

Notation: Area – size of the sample plot; Age – average stand age; N – number of trees per plot; QMD – quadratic mean 
diameter of the stand (calculated from BA and N); MD – mean diameter (arithmetic mean of breast height diameter); 
HL – average stand height calculated using the Lorey formula (basal area weighted average height); BA – basal area 
per hectare; SI – base-age 100 site index (Bruchwald et al. 2000; Cieszewski and Zasada 2002).
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The kth central moment of the probability distribution is defined as:
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where k is an integer number ≥1, E(●) is an expected value, X is a random variable, F(x) is a prob-
ability density function, xi are elements sampled from the population, m is the arithmetic mean, 
and n is the sample size (Wooldridge 2001; Vrbik 2005; Encyclopedia 2012). 

Note, that the first raw moment is the mean, the second central moment equals variance, and 
third moment corresponds to the distribution skewness. Sample moments are function of means of 
various powers of xi derived from a sample, thus they are random variables. Theoretical moments 
(moments of the probability distribution) are related to the population, so they are non-random 
functions of the variable distribution and they are calculated from its parameters. Each kth central 
moment can be expressed as a function of raw moments of the order ≤ k. 

The method of moments is a technique for obtaining estimators of the distribution param-
eters that is based on matching the sample moments with the corresponding distribution moments 
and solving for a system of k equations with k unknowns. The method of moments in some cases 
reveals limitations. For example, the estimates given by the method of moments can be outside of 
the parameter space, especially for small samples. Moreover, estimates by the method of moments 
don’t take into account all information included in the sample. The MOM produces in most cases 
unbiased estimators, however they may not be the most efficient ones. 

An alternative to the method of moments is the maximum likelihood method, first described 
by Fisher in 1922. It is a general method of parameter estimation for the population attribute distri-
bution that maximizes the likelihood function of the sample (Fisher 1922). The likelihood function 
L of the n-element sample x1, x2, ..., xn, is the joint probability function p(x1, x2, ..., xn), where x1, 
x2, ..., xn are the independent instances of a discrete random sample or a joint probability density 
function f(x1, x2, ..., xn), when x1, x2, ..., xn are detailed values of the continuous random variable. 
Likelihood function L can be written in the following parametrical form:
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where y is a complete set of the density function parameters to be found. This function determines 
the chance of an occurrence that y is a „true” set of unknown parameters in such a situation, when 
the exact series of results x1, x2, …, xn was obtained in the sample. The best estimation of the 
parameters occurs for such a value of y that the likelihood function reaches its maximum. Such 
parameters are called maximum likelihood estimates or MLE. If the likelihood function can be 
differentiated, such conditions are fulfilled if:
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In practice, the maximum likelihood method maximizes the log of the likelihood function or, 
equivalently, minimizes the negative log of the likelihood function, for which the extremes are the 
same as for the original likelihood function L:
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The set of parameters y is usually estimated by minimizing the negative log-likelihood using some 
iterative method available in most statistical packages and languages.

In the presented study the distribution parameters for the double normal and for the Weibull 
distributions were estimated using the maximum likelihood method implemented using an optimi-
zation based on Nelder-Mead and quasi-Newton algorithms. The alternative simulated annealing 
optimization algorithm has also been applied for small samples. The initial values for the double 
normal distribution were calculated based on the analysis of the complete data compared to the 
mean m0, s1 and s2 parameter values estimated for each sample plot from repeated samples. The 
starting value of m0 was set to 90% of the sample mean, s1 to 70% of the standard deviation of the 
sample and s2 to the standard deviation of the sample increased by 30%. The initial parameters of 
the Weibull distribution were calculated based on the mean and standard deviation of the sample 
using the weibullpar function from the mixdist package of the R software (Macdonald 2010). 

Parameters of the double normal distribution were also fit by means of the method of moments 
(Siekierski 1991). The following variants of the MOM were used: MOM3, using first three moments 
of the sample (Eqs. 9, 10 and 11), and MOM2, using two first moments of the sample (Eqs. 9 
and 10) and the distribution mode estimated using the approximate formula: m0 = m – 4.8·(m – me), 
where me equals to the median. First three moments were calculated according to the following 
equations (Siekierski 1991):
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where mk is a kth moment, m corresponds to the arithmetic mean of the truncated normal distribu-
tions (m0 of the joined double normal distribution), and sj equals to the standard deviation of the 
left and right tail of the double normal distribution. 

Also, for comparison, parameters of the two-parameter Weibull distribution were fit by 
means of the method of moments using two first moments of the sample (MOM2W), as described 
e.g. by Al-Fawzan (2000), Gove 2003 or Lei (2008). The kth moment of the Weibull distribution 
is expressed by the following equation:

= 





Γ +





m
b

k
c

1 1 (12)k

k
c

where: b – scale parameter, c – shape parameter of the distribution, Γ – gamma function. Thus, the 
first and the second moments of the distribution (m1 and m2) were calculated as follows:
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By dividing m2 (Eq. 14) by the square of m1 (Eq. 13), and taking the square root of this ratio, we 
obtain the coefficient of variation (CV), which relies exclusively on the c parameter:

=
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Eq. 15 was solved using the root-finding bisection procedure (Forsythe et al. 1977) to obtain the 
estimate of ĉ. The scale parameter b was finally obtained using the following equation (Shifley 
and Lentz 1985; Gorgoso et al. 2007):

=
Γ +





b m
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Parameters were also calculated using the simplified method of moments described by García 
(1981).

In all cases the goodness-of-fit was tested using the Kolmogorov-Smirnov test (Dn statistic).
Sample plots used in the study consisted of a few hundred trees. This fact dramatically limits 

practical conclusions obtained from analyses, since in forest inventory foresters usually deal with 
much smaller numbers of measurements per plot. To address this problem, analyses were also 
performed using random subsets of 10 and 50 measurements taken 100 times from each sample 
plot. Samples drawn for each plot were characterized using the number of failed estimations at 
0.05 significance level and the average Kolmogorov-Smirnov Dn statistic. 

All analyses were performed using programs written in the R language (Ihaka and Gentle-
man 1996, see an example code for the maximum likelihood method for fitting parameters of the 
double normal distribution and the method of moments for the parameters of the Weibull distribu-
tion in the Appendix). 

3 Results

When analyzing all trees from sample plots, the hypothesis that empirical distributions match 
distributions with fitted parameters could not be rejected in any analyzed case. The maximum 
likelihood method for the double normal distribution was superior to the both variants of the 
method of moments in 9 out of 20 analyzed plots, however the differences were very small, 
sometimes almost negligible. The method of moments for the Weibull distribution was superior 
to the maximum likelihood method in 14 out of 20 analyzed plots, however, as in the case of the 
double normal distribution, the differences were very small, sometimes almost negligible. Results 
obtained from the simplified method of moments by García (1981) were practically identical to 
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the classical method (Eqs. 13–16), so they were not reported nor analyzed separately. The double 
normal distribution slightly overtook the Weibull distribution in 9 cases out of 20 plots (regardless 
the fitting method). The average values of the Dn statistic of the Kolmogorov-Smirnov test were 
slightly higher for the double normal distribution than for the Weibull distribution, which indicates 
a slightly poorer overall performance (overall fit) of this distribution. The best overall performance 
revealed the Weibull distribution with parameters fit using the method of moments. Detailed values 
of the Dn statistic for various methods of parameter fitting for the double normal distribution and 
the Weibull distribution are presented in Table 2. The typical graphs of the fitted distributions are 
presented in Figs. 2 and 3. In both cases the double normal distribution is more positively skewed 
and has higher maximum frequency for the modal value than the Weibull distribution. The double 
normal distribution is inferior to the Weibull distribution in cases when the distribution becomes 
symmetrical or negatively skewed. 

As the sample size decreases, the average goodness-of-fit decreases (Tables 3 and 4). For 
medium-size samples of 50 trees the best results were obtained for the Weibull distribution with 
parameters fitted using the maximum likelihood method. The Weibull distribution was superior to 
the double normal distribution on average in 16 cases out of 20. The maximum likelihood method 
gave on average a better fit than the method of moments, however it occasionally failed to converge. 

Table 2. Detailed values of the Dn statistics for various distributions and methods 
of fitting. MLE denotes the maximum likelihood method, MOM3 – method 
of moments based on first three moments of the sample, MOM2 – method 
of moments based on first two moments of the sample and the distribution 
mode estimated using the approximate formula: mode = mean – 4.8 · (mean 
– median), MOM2W – method of moments based on first two moments of 
the sample. Lower value of the Dn statistics denote better fit. The best fit is 
marked with bold numbers.

Double normal Weibull
Plot MLE MOM3 a) MOM2 a) MLE MOM2W

BT112 0.0356 0.0327 0.0327 0.0324 0.0317
BT113 0.0347 0.0285 0.0285 0.0294 0.0282
BT114 0.0452 0.0542 0.0542 0.0568 0.0613
BT115 0.0391 0.0490 0.0490 0.0373 0.0412
BT116 0.0385 0.0413 0.0413 0.0422 0.0428
BT117 0.0344 0.0355 0.0355 0.0380 0.0378
BT118 0.0453 0.0294 0.0294 0.0255 0.0249
BT119 0.0244 0.0399 0.0399 0.0384 0.0343
BT120 0.0572 0.0396 0.0396 0.0345 0.0321
BT121 0.0277 0.0441 0.0441 0.0379 0.0375
BT122 0.0317 0.0355 0.0355 0.0310 0.0310
BT123 0.0315 0.0310 0.0310 0.0212 0.0211
BT124 0.0253 0.0197 0.0197 0.0275 0.0271
BT125 0.0221 0.0261 0.0261 0.0474 0.0406
BT126 0.0394 0.0476 0.0476 0.0552 0.0462
BT127 0.0322 0.0283 0.0283 0.0264 0.0302
BT128 0.0340 0.0323 0.0323 0.0289 0.0298
BT129 0.0391 0.0349 0.0349 0.0397 0.0386
BT130 0.0361 0.0354 0.0354 0.0273 0.0277
BT131 0.0499 0.0390 0.0390 0.0315 0.0270
Avg. 0.0362 0.0362 0.0362 0.0354 0.0346

a) Values of the Dn statistics for MOM2 and MOM3 are not identical, but the differences exist 
below the resolution of the presentation of results.



9

Silva Fennica vol. 47 no. 2 article id 956 · Zasada · Evaluation of the double normal distribution…

Fig. 2. A sample graph of the double normal distribution (solid line) outperforming the 
Weibull distribution (dashed line) for the plot BT119 (histogram).

Fig. 3. A sample graph of the Weibull distribution (dashed line) outperforming the double 
normal distribution (solid line) for the plot BT130 (histogram).
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For the double normal distribution the method of moments gave on average a better fit than the 
maximum likelihood method, and the MOM3 variant (parameters fitted using first three moments 
of the sample) was better than the MOM2 one (method based on two first moments of the sample 
and the distribution mode estimated using the approximate formula), but comparison of detailed 
values for particular plots is not clear. The detailed values of the Dn statistic and the number of 
cases when the hypothesis of matching empirical and theoretical distributions was rejected are 
presented in Table 3.

A further decrease in performance was observed for small samples of 10 trees (Table 4). 
In this case the worst appeared to be the double normal distribution, especially its variant with 
parameters fitted using the maximum likelihood method, which not only had the average value of 
the Dn statistic indicating lack of fit for 43% of samples at 0.05 significance level, but also in many 
cases did not reach the convergence of fitting. The Weibull distribution was able to provide a good 
fit to the data almost every time for each sample, and was followed by the method of moments for 
the double normal distribution, which did not provide good fitting only in a few cases. The aver-
age value of the Dn statistic for the double normal distribution and maximum likelihood method 
was more than two times higher than for the method of moments and for the Weibull function.

Table 3. Detailed values of the Dn statistics and number of cases when the hypothesis about matching the 
empirical and theoretical distributions was rejected for various distributions and methods of fitting for 100 
samples of 50 trees. For explanations of the abbreviations see Table 2. MLE(S) – the maximum likelihood 
method with simulated annealing optimization algorithm. The best fit without MLE(S) method is marked 
with bold numbers, and with the MLE(S) – with underlined numbers.

Plot Double normal Weibull
MLE 0.05 MLE(S) 0.05 MOM3 0.05 MOM2 0.05 MLE 0.05 MOM2W 0.05

BT112 0.0973 7 0.0753 0 0.0811 0 0.0890 0 0.0674 0 0.0660 0
BT113 0.0967 8 0.0715 0 0.0698 0 0.0756 0 0.0670 0 0.0652 0
BT114 0.1054 7 0.0845 4 0.1533 0 0.0859 0 0.0855 1 0.0894 0
BT115 0.0906 2 0.0798 2 0.0985 0 0.0793 0 0.0802 0 0.0771 0
BT116 0.1329 12 0.0752 0 0.0733 0 0.0789 0 0.0670 0 0.0729 0
BT117 0.1352 14 0.0773 0 0.0867 0 0.0847 0 0.0757 0 0.0752 0
BT118 0.1168 9 0.0773 1 0.0691 0 0.0741 0 0.0697 0 0.0711 0
BT119 0.1078 6 0.0776 0 0.1251 0 0.0910 0 0.0789 0 0.0781 0
BT120 0.1563 18 0.0799 0 0.0877 0 0.0900 0 0.0758 0 0.0794 0
BT121 0.1193 12 0.0720 0 0.0753 0 0.0791 0 0.0687 1 0.0706 0
BT122 0.1738 20 0.0735 0 0.0785 0 0.0776 0 0.0660 0 0.0690 0
BT123 0.1794 22 0.0726 0 0.0890 0 0.0753 0 0.0627 0 0.0608 0
BT124 0.1350 15 0.0718 1 0.0978 0 0.0693 0 0.0703 2 0.0683 0
BT125 0.0756 2 0.0857 1 0.0743 0 0.0726 0 0.0768 1 0.0747 0
BT126 0.0825 1 0.0750 1 0.0896 0 0.0819 0 0.0889 2 0.0914 0
BT127 0.0838 2 0.0709 0 0.0783 0 0.0829 0 0.0723 0 0.0700 0
BT128 0.1013 5 0.0740 0 0.0778 0 0.0830 0 0.0684 0 0.0748 0
BT129 0.0971 5 0.0735 0 0.0855 0 0.0886 0 0.0769 1 0.0683 0
BT130 0.0946 5 0.0767 0 0.0697 0 0.0774 0 0.0716 0 0.0743 0
BT131 0.1133 8 0.0780 0 0.0912 0 0.0829 0 0.0727 0 0.0769 0
Avg. 0.1147 0.0761 0.0876 0.0809 0.0731 0.0737
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4 Discussion and conclusions

Maximum likelihood estimates can be heavily biased for small samples. Also, the parameter opti-
mality property may not apply for small samples. In the presented study this was proven mostly 
for the double normal distribution, especially fitted to the data from 10-tree samples. Also, the 
maximum likelihood method appeared to be sensitive to the choice of starting values, again – mostly 
in the case of the double normal distribution. Even using starting values initially approximated by 
the method of moments did not assure a good fit to the data.

For big samples, the performance (measured by the Dn Kolmogorov statistic) of the analyzed 
distributions was comparable. The Weibull distribution was superior to the double normal one. The 
maximum likelihood method for the Weibull distribution appeared to be superior to the method 
of moments, which confirms results obtained by Shiver (1988). At the same time the MLM failed 
to converge in a few cases. After replacing the default Nelder-Mead (NM) optimization method 
with the simulated annealing (SANN) approach (chosen after checking also other possible fitting 
methods such as quasi-Newton (qN), gradient and box constraints) the overall Dn statistics did 
not improve, but the algorithm achieved the convergence in most cases. The maximum likeli-
hood method of parameter estimation applied to the double normal distribution always gave the 
poorest performance. This was a surprising outcome taking into account results obtained from 
the Weibull distribution. After detailed check of the parameters it was noticed that worse overall 
fit statistics are caused mainly by the unrealistic parameter values which denote the failure of the 

Table 4. Detailed values of the Dn statistics and number of cases when the hypothesis about matching the 
empirical and theoretical distributions was rejected for various distributions and methods of fitting for 100 
samples of 10 trees. For explanations of the abbreviations see Table 2. The best fit is marked with bold 
numbers.

Plot Double normal Weibull
MLE 0.05 MLE(S)  0.05 MOM3 0.05 MOM2 0.05 MLE 0.05 MOM2W 0.05

BT112 0.3519 45 0.1857 6 0.1678 1 0.1755 1 0.1472 0 0.1391 0
BT113 0.3210 37 0.2050 12 0.1555 2 0.1562 1 0.1387 0 0.1379 1
BT114 0.4111 53 0.2461 15 0.2076 4 0.1735 0 0.1577 0 0.1590 1
BT115 0.3605 39 0.1953 4 0.1823 2 0.1675 0 0.1482 0 0.1529 0
BT116 0.3478 40 0.1891 3 0.1745 2 0.1698 1 0.1394 0 0.1408 0
BT117 0.3947 50 0.2154 9 0.1894 4 0.1786 3 0.1528 2 0.1466 0
BT118 0.3348 38 0.1868 3 0.1530 2 0.1556 1 0.1478 0 0.1407 2
BT119 0.3604 44 0.2275 7 0.1867 3 0.1722 3 0.1536 0 0.1499 1 
BT120 0.4047 50 0.2154 7 0.1698 3 0.1708 2 0.1510 1 0.1466 0
BT121 0.3522 42 0.2059 3 0.1690 1 0.1724 1 0.1290 0 0.1358 0
BT122 0.4264 56 0.1979 9 0.1782 2 0.1688 0 0.1473 0 0.1362 1
BT123 0.3514 39 0.2031 9 0.1742 1 0.1567 1 0.1419 0 0.1382 1
BT124 0.3946 50 0.1671 2 0.1657 1 0.1576 0 0.1325 0 0.1350 0
BT125 0.3530 40 0.1739 4 0.1642 2 0.1677 2 0.1611 0 0.1485 1
BT126 0.3227 36 0.1791 3 0.1806 3 0.1619 0 0.1636 0 0.1536 0
BT127 0.3840 49 0.1700 0 0.1451 0 0.1478 0 0.1565 0 0.1488 0
BT128 0.3413 38 0.1839 1 0.1616 5 0.1607 3 0.1626 1 0.1402 0
BT129 0.3259 35 0.1923 6 0.1644 2 0.1725 1 0.1648 0 0.1388 0
BT130 0.3322 38 0.1894 7 0.1716 2 0.1812 1 0.1668 1 0.1447 2
BT131 0.3324 36 0.1849 4 0.1669 1 0.1636 1 0.1586 2 0.1524 2

Avg. 0.3602 0.1958 0.1714 0.1665 0.1511 0.1443 
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fitting algorithm. Changing initial parameters did not improve fitting statistics, but optimization 
algorithm replaced with the SANN method gave desirable results: average fit statistics as well as 
the number of cases with unrealistic values decreased. The maximum likelihood method for the 
double normal distribution gave in this case better results than the method of moments, but worse 
than both analyzed methods of parameter calculations for the Weibull distribution. It outperformed 
the Weibull distribution only in the case of two plots (see values in the MLE(S) column in Table 3). 

The trends of decreasing goodness-of-fit and increasing number of failed fits continued for 
smaller samples and finally practically disqualified the maximum likelihood method of parameter 
estimation for the double normal distribution. It was not possible to obtain a fit of the distribu-
tion to the data for most of the analyzed plots. Much more robust appeared to be the method of 
moments, which was able to provide satisfactory fits for medium-size, and also in many cases for 
the small-size samples. 

In the case of the samples consisting of 10 element, poor performance of the maximum 
likelihood method applied to the double normal distribution can be caused by such factors as: 
small sample size, giving not enough information to fit the correct parameters, wrong choice of 
the starting parameters, failure in finding reasonable values of parameters and the optimization 
method applied in the MLM. In order to find the source of the problems, the extensive analysis 
was done, following the scheme described for 50-element samples. 

First, the detailed values of parameters were checked. In many cases their values were clearly 
wrong (e.g. negative means and standard deviations), which denotes problems with the fitting 
process. In order to check whether the problem exists because of the inappropriate starting values 
of parameters, they were replaced with the values i) calculated using the method of moments from 
the sample and ii) calculated using the method of moments from the complete plot data. None of 
the approaches significantly changed the results: the average Dn statistics, as well as the number 
of failed fits, were the same. 

Then, the influence of the optimization algorithm on the results was tested. The default NM 
and qN methods were replaced with the simulated annealing (SANN) method. The application of 
this algorithm lowered the average Dn statistics by about a half, but still placed the double normal 
distribution with parameters fitted using MLM behind the method of moments and the Weibull 
distribution. The number of failed fits (unrealistic parameters, mostly negative standard deviations 
of the left part of the distribution) significantly decreased (see values in the MLE(S) column in 
Table 4).

Clearly, one of the major factors influencing the results obtained for the double normal dis-
tribution analysis using small samples is the choice of the optimization method used in the MLM. 
Simulated annealing algorithm was much more resistant to the bad choice of starting values caused 
by a small sample size than the NM and qN. However, at the same time, the SANN approach 
appeared to be more time consuming than other methods. Another factor influencing the fitting 
process is the choice of the initial parameters. This is especially complicated process when small 
samples, providing very variable values, are taken into account. One of the solutions of this issue 
is the use of the method described by Mehtätalo et al. (2011).

Presented results discourage from using the maximum likelihood method of parameter fitting 
for the double normal distribution for small samples using NM and qN optimization methods. It 
can be used for larger samples, giving the fit comparable to the Weibull distribution, and providing, 
similarly to the Weibull distribution, parameters having sound practical and biological meaning. 
In case of smaller samples for the double normal distribution it is recommended to apply SANN 
optimization method, use the method of moments or substitute the described distribution with the 
more flexible and robust Weibull distribution.

The results presented in this study confirm that the most efficient procedure for fitting the 
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parameters of the diameter distribution is to use the maximum likelihood method with initial values 
of parameters calculated using the method of moments from the sample data. This approach has 
proved to be useful for both analyzed distributions. It was also concluded that it is very important 
to choose a robust optimization algorithm of the applied MLM. This is especially important for 
small and medium samples, where SANN was much slower, but at the same time much more reli-
able than the NM and qN methods.
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Appendix

#
# Sample R code for the double normal and Weibull distributions
#
# Probability density function of the 2-normal distribution
#

ddoublenormal <- function(x,m,s1,s2){
  tty1 <- sqrt(2/pi)*(1/(s1+s2))*exp((-(x-m)^2)/(2*s1^2))
  tty2 <- sqrt(2/pi)*(1/(s1+s2))*exp((-(x-m)^2)/(2*s2^2))
  tty  <- ifelse(x<=m,tty1,tty2)
  return(tty)
}

#
# ML fitting using “optim” function 
# for the double normal distribution
#
# x is a vector of diameter measurements
#

x <- (read.table(“bt112.dat”, header=F))$V1      
loglike<-function(p) -2*sum(log(ddoublenormal(x,p[1],p[2],p[3])))
startm <- mean(x)*0.9
starts1 <- sd(x)*0.7
starts2 <- sd(x)*1.3
optim(c(startm,starts1,starts2),loglike)

#
# ML fitting can be alternatively done 
# using “mle” function from the stats4 package
# “mle” calls “optim”, so results are identical
#

x <- (read.table(“bt112.dat”, header=F))$V1      
loglike<-function(m,s1,s2) -2*sum(log(ddoublenormal(x,m,s1,s2)))
initial=list(m=mean(x)*0.9,s1=sd(x)*0.7,s2=sd(x)*1.3)
mle(loglike,start=initial)

#
# The method of moments for 2-parameter Weibull distribution
#

momweibull <- function(x) {
  cv <- sd(x)/mean(x)
  fun<-function(c) cv-sqrt(gamma(1+2/c)-(gamma(1+1/c))^2)/
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(gamma(1+1/c))
  shape <- uniroot(fun, c(0.4, 5))$root
  scale <- mean(x)/(gamma(1/shape+1))
  list(shape=shape, scale=scale)
}
x <- (read.table(“bt112.dat”, header=F))$V1      
momweibull(x)

#
# Modified simplified method of moments by Garcia (1981) 
# http:// http://web.unbc.ca/~garcia/softw/weibullR.txt
# 

mweibull <- function(x){
  cv <- sd(x)/mean(x)
  if (cv > 1.2 || cv <= 0)
    stop(“Out of range”)
  a <- 1/(cv*(((((0.007454537*cv*cv-0.08354348)*cv+0.153109251)*
    cv-0.001946641)*cv-0.22000991)*(1-cv)*(1-cv)+1))
  list(shape=a, scale=mean(x)/gamma(1+1/a))
}
x <- (read.table(“bt112.dat”, header=F))$V1      
mweibull(x)
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