SISÄLLYS

KARI HELIÖVAARA: Occurrence of Pityovus reinellla (Lepidoptera, Tortricidae) in a gradient of industrial air pollutants 83–90

Tiivistelmä: Pihkahäätien esiintymisen eriään teollisuusaluksen ympäristöissä

Tiivistelmä: Männyn neulasten ja versojen fysiometrisen rakennetta

MATTI KÄRKKÄINEN: Malli männyn, kuusen ja koivun puuainen okaisisuudesta 107–116

Abstract: Model of knotiness of wood material in pine, spruce, and birch

MATTI KÄRKKÄINEN: Mänty- ja kuusirunkojen arvosuhteet 117–127

Abstract: Value relations of pine and spruce stems

KAARINA NISKA: Kivennäismaan ravinemmäärien ilmaisutapa 129–138

Summary: Expressing the nutrient concentrations of mineral soils

LEENA RYYNÄNEN & MARTTI RYYNÄNEN: Propagation of adult curly-birch succeeds with tissue culture 139–147

Tiivistelmä: Visakkoisin lisäys solakkasiirtoon asulla

PEKKA KILKKI & RISTO PÄIVINEN: Weibull function in the estimation of the basal area dbh-distribution 149–156

Seloste: Weibull-funktio pohjapinta-alueen lähimmittajakauman estimoinnissa
Occurrence of Petrova resinella (Lepidoptera, Tortricidae) in a gradient of industrial air pollutants

Kari Heliovaara

TIIVISTELMÄ: PIHKÄKÄRÄISEN ESINTYMİEN ERÄÄN TROLLISUSALUEN YMPÄRISTÖSSÄ

The relationship between industrial air pollutants and the occurrence of Petrova resinella (Lepidoptera, Tortricidae) was studied around the industrialized town of Harjavalla in western Finland. There were forty-four sampling sites set out at logarithmic distances along five transects (NW, W, SW, S, SE) from a distinctive source of emissions. Each site consisted of three circular sample plots (30 m²) in young Scots pine (Pinus sylvestris) stands. The number of galls, including cankers formed several years earlier, was highest in the vicinity of the factory complex on each transect. The highest number of two-year-old galls containing living larvae was usually recorded at the ends of the transects several kilometres from the factories. However, the significance of the differences both between zones and transects were rather low. Correlations between the deposition of heavy metals (Cd, Cu, Ni, Pb, Zn) used as an indication of the general level of air pollution, and the total number of galls, were positive and generally highly significant. It is concluded that P. resinella has benefited from air pollution although perhaps to less extent than some sap-sucking species.

Harjavallan kaupungin trollisusalaisuuden ympäristössä tutkittiin ilmansaatosten ja pihkäkääräisen esiintymisen välillä suhdetta. Tutkimuksen 44 näytteistä, joista kukin muodostui kolmesta 30 m² pyöreäkaivaltaan, sijaitsevat saattutulihänteen ympärrillä logaritmisen asteikon osoittaminen etäisyydissä niiden lähellä eri ilmassuuntaisista. Pihkäkääräisen ääniä kohdellaan erityisesti niiden lähellä, jossa on suurempi ilmansaattaus. Ääniä on enemmän kuin neljä kilometriä päästä alueen keskustasta. Autori teki tutkimuksen盈利性工业区周围的人口。每个地点包括三个圆形样本区（30 m²）在年轻的云杉（Pinus sylvestris）中。每个样点位于工厂区附近，是周围环境中的最高点。每个样点的最高数量为两年一度的寄主，含有活的幼虫。与重金属（Cd, Cu, Ni, Pb, Zn）的沉积量有关，用作为空气污染水平的指示。与总数量的球果数量，有正面的和一般相当显著的相关性。结论是，P. resinella从空气污染中受益，尽管可能不如一些寄生性昆虫。
1. Introduction

In northern European countries, forests appear to be healthy and the level of industrialization is low compared with the situation in Central Europe. The gradual accumulation of pollutants and their transportation over long distances may, however, change the susceptibility of forest trees to insect attack even in the north. Air pollutants certainly affect several insect species in one way or another. Some species may increase in numbers, making them pests, and some may decline. However, there are several well-documented cases of long-term fluctuations in insect numbers, the reasons for which are not exactly known. The coincidence of pollutants and outbreaks of insect pests thus also raises the danger of exaggerating the effects of pollutants.

It seems that sucking insects especially benefit from a weakening of their host plants as a result of pollution (Wentzel 1965, Sierpinska 1966, 1970, Przybylkis 1968, Charles & Vilemants 1977, Villelman 1981, Katayev et al., 1983, Heilovaara & Vaissane 1986). However, polluters do not only affect sucking species. Several insect species which earlier have been barely known, have recently appeared as pests on various conifers. Some taxa are assumed to be resistant to air pollution, and are thus able to increase in numbers. In this respect, much attention has been paid to some species of Lepidoptera, such as Epinotia pygmaea (Hübner), Zeiraphera diniana (Guenee) and Operophtera brumata (L.) (Balensweiler 1985 and references therein). Sierpinska (1972) and Charles & Villelman (1977) reported that Exotleia dodecelia (L.), Rhamplia (Rhychonia) buoliana (Denis & Schiffermuller) and Petrova resinella (L.) increased in polluted areas. Hågvar et al. (1976) in Norway assumed that an outbreak of Exoteleia dodecelia was associated with air pollution. However, the moth has decreased recently in the area in spite of continuing pollution (A. Bakke, pers. comm.). Villelman (1980) reported that Rhynchonia buoliana was the only microlepidopteran species in France that exhibited a significant population increase in a pine stand exposed to high levels of atmospheric pollution by sulphur dioxide and fluoride. In that study, R. piniolana (Doubleday), R. pisiolanta (Lienig & Zeller), Blastethia postica (Zetterstedt), B. turionella (L.) and Petrova resinella were present in low numbers and showed no tendency to increase on the polluted plots.

The present study locality, which represents a forest environment surrounding an industrial centre, offers us a possibility to study the densities of several insect species and pests around an emission source. The occurrence of Petrova resinella (Tortricidae) is investigated on several sample plots sited along a gradient of industrial air pollutants. The same plots have been used previously in an investigation on the densities of Andrus cinnamomeus Panzer (Heteroptera) in relation to pollution (Heilovaara & Vaissane 1986). The deposition level of various heavy metals, which indicate the general level of air pollution, is known in these sites (Hyvänniemi 1983). The present study is restricted to determining whether there are any correlations between the level of pollution and the abundance of insect species in the field. Petrova resinella was selected as a target for this study because it is abundant and easy to detect in the study area. Moreover, Kangas (1932) has early noticed that this species may be favoured by increasing atmospheric pollution in eastern Finland.

The life history of P. resinella, the pine resin-gall moth, has been treated by e.g. Mjoberg (1909), Wolff & Krause (1922), Gasow (1925), Crooke (1951), Eidmann (1961), and Scott (1972). In Finland, P. resinella lives mainly on Pinus sylvestris (L.). The species thrives best on dry upland forest sites and bogs, and has a life-cycle of two years. Adults fly in late June – early July, and deposit their eggs singly in the current annual shoots of pine saplings. A canker caused by the gall may remain visible for decades. Even if the pine resin-gall moth is regarded as a pest of pine, it is not usually of any considerable economic importance. However, a gall on the leader shoot may drastically decrease the value of the stem. If, for instance, the shoot is already weak, then growth may be terminated and the trunk become distorted above the point of attack. Moreover, a gall represents a minor point of weakness in the main stem, rendering it liable to wind or snow-break (Juutinen 1962, Löyttyniemi & Piuslää 1983).

I wish to thank E. Amnita, J. Helenius, K. Löyttyniemi and R. Vaissane for making valuable comments on the manuscript, and J. Derome for checking the English.

2. Material and methods

2.1. Study area

The investigation was carried out in August – September, 1985, in the area surrounding the small industrial town of Harjavaltia in western Finland (Finnish uniform grid 27°E 69024). The town is situated on a wide esker area running in a northwest – southeast direction along the shore of the Kokemäenjoki river (Fig. 1).

There are two large factories situated near to each other in the area: a metallurgical

Figure 1. The study area in Harjavaltia, western Finland. Black dots indicate the sampling sites along five transects running in a NW, W, SW, S and SE direction. Shaded areas indicate pine stands.

Silva Fennica 20 (2)
plant producing copper and nickel, and a chemical plant producing sulphuric acid, aluminium sulphate and fertilizers. The industry in the area dates back to the early 1940s, and signs of pollution have been visible in the vegetation since then (Karhu 1982, Laaksovirta 1973, Laaksovirta & Silvola 1975). Annual emissions from the factories now total more than 10000 tons of sulphur oxides and sulphuric acid. In addition, other emission components in 1978 included more than 700 tons of carbon monoxide, 70 tons of nitrogen oxides and more than 1500 tons of particulate matter (Ympäristökeskittä Oy 1980).

2.2. Sampling

The galls of the moth were sampled on the same forty-four, pine-dominated sites included in previous studies (Hynninen 1983, Hynninen & Lodenius 1986, Heliovaara & Väisänen 1986). These sites were delimited on five radial transects (NW, W, SW, S, SE) extending from the factory complex. The sampling sites were located at logarithmic distances from the emission point. The transects were all about 9 kilometres long, and each had nine sampling sites, except for one, which had eight (Fig. 1). Each sampling site consisted of three adjacent, circular sample plots (30 m²). The plots were marked out randomly by fixing a post as the centre point. Every pine higher than 40 cm, and every gall made by the moth, was then counted over an area, diameter 6.2 m, around this post. The occurrence frequency of the galls on every sampling site was compared with the heavy metal deposition level. The values for five heavy metals (Cd, Cu, Ni, Pb, Zn) were derived from Hynninen (1983). Sphagnum moss had been used as a collector of heavy metals during a three-month period in 1981 in that study. The deposition levels of all five heavy metals were highest in the vicinity of the factories (means: 139.8 ppm of Cd, 186.7 ppm of Cu, 501.3 ppm of Ni, 9.9 ppm of Pb, 43.2 ppm of Zn), and were considerably lower three kilometres from the factories (4.9, 3.3, 12.5, 0.9, 1.5 ppm, respectively).

The material consisted of 44 sampling sites and 1756 pines bearing a total of 814 galls of P. resinella. The mean height of the pines was 2.1 m, S.D. 0.6, and the mean stem number per hectare 4500, S.D. 2300.

3. Results

Galls or signs of galls made by P. resinella, were recorded at all 44 sampling sites. The total number of galls varied from 2 to 40 on the three sample plots at each site. The total number of galls, including both living and old ones, gradually declined with increasing distance from the emission source (Fig. 2 a, c). The mean number of galls in the vicinity of the factories was five times that at a point about nine kilometres away. Differences between the number of galls in the nine concentric zones were statistically highly significant, but the differences between transects were not. The highest number of two-year-old galls containing living larvae was usually recorded at the ends of the transects. However, the significance of the differences between both the zones and the transects were rather low (Fig. 2 b, d, e).

Correlations between the deposition level of heavy metals and galls per tree were positive and highly significant along most of the transects (Table 1).

Figure 2. Significance of the zone factor (P) and the transect factor (P) in explaining the occurrence of galls of P. resinella around the emission source. Two-way analysis of variance. Distances on a logarithmic scale in the field, each transect about nine kilometres.

A. Total number of galls.	P = 0.001, df = 4.31
B. Living galls.	P = 0.019, df = 4.31
C. Galls per tree.	P = 0.010, df = 4.31
D. Living galls per tree.	P = 0.004, df = 4.31
E. Proportion of living galls.	P = 0.025, df = 4.31

Heliovaara
4. Discussion

Air pollution has been found to have both a direct and indirect effect on insect populations. The direct effects of airborne pollutants are usually implicated in the toxicology and decline of insect numbers, while indirect effects may result either in a decrease or an increase in insect abundance. Secondary interactions may involve evolutionary changes in insect colouration, such as the industrial melanism resulting from a decline in lichens (e.g. Mikkola 1975, Douwes et al. 1976), pest outbreaks, resulting from disruptions of the equilibria with the species' parasites and predators, or from physiological alterations in the host trees and food quality. Sulphur oxides have been found to change the physiological of plants at levels far below those that cause direct injury (Dässler 1963, Materna 1973, Schnaider 1973). Such changes are assumed to be associated with increased densities of certain Micropezidae on pines (see Templin 1962, Sierpinska 1970, Hågvar et al. 1976). Aistad et al. (1982) have summarized the literature on the effects of major air pollutants — fluorides, sulphur, ozone, lead and dust — on insect populations. They point out that there are several unacceptable correlation/causality confusions and failures to determine which agents in a polluted air mass are involved in the development of field effects. The basic mechanisms associated with the secondary effects of air pollution on insect populations are, however, generally poorly understood.

Führer (1985) has recently classified the occurrence of some insect species into three categories according to their relationship to air pollutants. Some species of Micropezidae, such as Exosteolea dodecada and Rhyacionia buoliana, were placed in the category of insects which obviously have some advantage at high impact intensity, and therefore reach much higher levels in areas influenced by pollutants. In the present study area, Aratus pisonius was also classified in this category (Heilöväara & Väisänen 1986). The responses of Petrina resinae to air pollutants in the study area seems to be analogous to that of A. pisonius although much less pronounced.

In some cases, insect herbivores have been assumed to be more tolerant of air pollutants than trees (Gilbert 1970, Bouillard 1973, Aistad et al. 1982, Führer 1985). This especially concerns those species which have hidden life habits, and which seldom come into direct contact with the pollutants. Only adults of Petrina resinae have exposed life habits since the other stages development remain for almost two years inside the resin gall, which presumably prevents heavy direct contamination.

Parasitic species of Hymenoptera are known to be sensitive to dust, which may reduce parasitism of insect herbivores in polluted areas (see Finney & Fisher 1964). Führer (1985) has suggested that, if a parallel is drawn with pesticides, it can be assumed that entomophagous insects in general are more threatened by air contaminants than phytophagous ones. The distinctive galls of P. resinae on the shoots of pines seem to be under heavy parasitization pressure. Wolff & Krausse (1922) and Escherich (1931) have listed more than forty species of insect predators, mostly those belonging to Ichneumonidae. Unfortunately, however, nothing is yet known about the response of these parasitoids to air pollution.

References

Gasow, H. 1925. Beitrag zur Kenntnis des Kiefernharzgallenwicklers (Eurytia resinae L.) und des...
Hymenopteræ, 1983. Bakkrassamålsrörsren (sammal
ten), mænnens versjon og seinsamsmålen raskasmetallpitoishuud Harjavalan kaupugissa ja lähiympäristöissä. Manuscript, Department of Botany, University of Helsinki, 99 pp.
— & Ludmirius, M. 1986. Mercury pollution near an
industrial source in Southwest Finland. Bull. En
Juutinen, P. 1962. Tutkimuksia metsätalousen esiintyi
Kangas, E. 1932. Tutkimuksia kaasutonhaisu Imatra
Karhu, N. 1982. Tuloksellista ympäristöhisoon Kemi
Katayev, O. A., Golvivn, G. I. & Selikovv, A. V.
1983. Changes in arthropod communities of forest biocenoses in a small scale atmospheric pollution. En
Ympäristö ja Terveys 4: 539–552.
viljelytaitoihissa Uudenmaan – Hämeen piirimetsälaitakunnan alueella. (Summary: Mammalian damage in young pine plant
Mjøberg, E. 1909. Om hartugsvallkaren (Retinea re
Oppermann, A. 1980. Rinders- und holzbrunnten Insek
Prybiski, Z. 1968. Results of consecutive observations of effect of SO₂, SO₃, and H₂SO₃ on fruit trees and some harmful insects near the sulfur mine and sulfur processing plant at Machow near Tar
Sierpinszki, Z. 1966. Schädliche Insekten an jungen
—. 1970. Owdy szkodliwe występujące w drzewos
tanach sosnowych na terenach uprzemysłowy
mi i ich znaczenie gospodarcze. (Summary: Pest insects occurring in pine stands in industrialized areas and their economic import
Templin, C. 1980. Influence of pollution atospherische
—. 1981. Influence de la pollution atmosphérique sur
Wenzes, K. F. 1965. Insekten als Immissionsfolge
Wolff, M. & Krause, A. 1922. Die forstlichen
man perustutkimus. 22 pp. + 2 append.