ACTA FORESTALIA FENNICA
235

EERO NIKINMAA

ANALYSES OF THE GROWTH OF SCOTS PINE; MATCHING STRUCTURE WITH FUNCTION

ANALYYSI MÄNNYN KASVUSTA; RAKENTEEN SOPEUTUMISTA AINEENVÄYHDUNTAA

THE SOCIETY OF FORESTRY IN FINLAND
THE FINNISH FOREST RESEARCH INSTITUTE
ANALYSES OF THE GROWTH OF SCOTS PINE; MATCHING STRUCTURE WITH FUNCTION

Analyysi männyn kasvusta; rakenteen sopeutumista aineenvaihduntaan

Eero Nikinmaa

To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in Auditorium XII of the University Main Building, Fabianinkatu 33, on 26 March 1993, at 12 o'clock noon.

The Society of Forestry in Finland – The Finnish Forest Research Institute
Helsinki 1992
A theoretical framework to analyse the growth of Scots pine (Pinus sylvestris L.) is presented. Material exchange processes and internal processes that transport, transform and conserve materials are identified as the components of growth. Hierarchical system is lined out. Momentary uptake of material at a single exchange site depends on the previous time and the ongoing system to the exchange site, the internal state of the biochemical system of the plant and the structure of the plant. The internal state depends on the exchange flows over a period of time and the structural growth depends on the internal state. The response of these processes to the fluxes is controlled by the genetic composition of the plant.

The theoretical framework is formulated into a mathematical model. A concept of balanced internal state was applied to describe the poorly known internal processes. Internal substrate concentrations were assumed to remain constant but tissue-specific. A linear relationship between the quantity of foliage and wood cross-sectional area was assumed to describe balanced formation of structure. The exchange processes were thus described as a function of external conditions. The stand level interactions were derived from shading and effects of root density on nutrient uptake.

The approach was tested at different levels of hierarchy. Field measurements indicated that the hypothesis of the linear relationship described well the regularities between foliage and sapwood of a tree within a stand when measured at functionally corresponding height. There was considerable variation in the observed regularities in the range of geographic occurrence of Scots pine. Model simulations gave a realistic description of stand development in South Finland. The same model was also able to describe the growth differences in Lapland after considering the effect of growth stage on the parameter values. Simulations to South Russia indicated stronger deviation from the observed patterns.

The simulations suceeded interesting features of stand development. They indicated strong variability in the distribution of carbohydrates between tree parts during stand development. Internal circulation of nutrients and the reuse of the same transport structure by various needle generations had a strong influence on the simulation results. Similarly, the extension growth of shoots and their focking was identified as an important process from the point of view of the growth of whole tree.

Keywords: growth models, partitioning of growth, carbon budget, nutrients, structure, pipe model, heartwood, growth, Scots pine.

FDC 56 +161

Author's address: University of Helsinki, Department of Forest Ecology, P.O. Box 24, SF-00014 University of Helsinki, Finland.

ISBN 951-651-095-7
ISSN 0001-5636
Tampere 1992. Tammer-Paino Oy

Contents

1 INTRODUCTION ... 7
1.1 Process-based tree and stand growth models 7
1.2 The objectives .. 7
2 ANALYSIS OF STAND DEVELOPMENT 8
2.1 The connection between functions, structure and environment ... 8
2.1.1 Spatial and temporal hierarchy in forests 8
2.1.2 Components of tree growth 8
2.1.2.1 General overview 8
2.1.2.2 Stand level interactions and the material flows reaching exchange surfaces 9
2.1.2.3 Material fluxes 10
2.1.2.4 Effects of temperature 11
2.1.2.5 Growth .. 12
2.1.2.6 Sensescence 14
2.1.2.7 Functional interpretations of the woody structure ... 14
2.1.3 The role of growth processes in tree functions 15
2.2 Stand growth model 16
2.2.1 The main assumptions of the model 16
2.2.2 Stand structure, material balances and input-out processes . 18
2.2.3 Distribution of growth based on balanced internal state 20
2.2.4 Crown dynamics 22
2.2.5 Sensescence 24
2.2.6 The crown and branch level models 25
2.2.7 Synthesis .. 27
3 TREE AND STAND GROWTH 27
3.1 Introduction ... 27
3.2 Relationship between the water transporting wood and foliage 27
3.2.1 Linear foliage mass and sapwood area relationship and the balanced internal state 27
3.2.2 Material and methods 28
3.2.3 Results .. 30
3.2.3.1 The foliage-wood regression 30
3.2.3.2 Regression between the cross-sectional area of branch and stem 31
3.3 Simulating tree and stand growth 34
3.3.1 The bases of the simulations 34
3.3.2 Simulation of stand growth of Scots pine 35
3.3.3 Geographic variation in the simulated stand development 36
3.3.4 Crown dynamics 38
3.3.5 Turnover of sapwood to heartwood 40
3.3.6 Effect of nutrients on stand growth 41
4 DISCUSSION ... 42
4.1. The bases for the evaluation of the used approach 42
4.2 Analysing the theoretical framework 43
4.3 Testing the assumption of a constant ratio between the water transporting wood and the water transpiring foliage 45
4.4 Evaluation of the approach 47
4.5 New important features of tree and stand growth suggested by the approach 49
4.6 Final remarks 52
REFERENCES ... 53
SELOSITE .. 59
APPENDIXES ... 61
List of main symbols

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_i)</td>
<td>kg/ha</td>
<td>Stand level biomass of plant compartment (i = \text{tot, n, b, st, tr, f})</td>
</tr>
<tr>
<td>(N)</td>
<td></td>
<td>Number of trees</td>
</tr>
<tr>
<td>(W_i)</td>
<td>kg</td>
<td>Dry weight of plant compartment (i = \text{tot, n, b, st, tr, f})</td>
</tr>
<tr>
<td>(G_i)</td>
<td>kg</td>
<td>Growth of plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(S_i)</td>
<td>kg</td>
<td>Senescence of plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(I)</td>
<td>kg</td>
<td>Annual resource inflow</td>
</tr>
<tr>
<td>(O)</td>
<td>kg</td>
<td>Annual resource outflow</td>
</tr>
<tr>
<td>(\alpha_i)</td>
<td></td>
<td>Allocation coefficient of plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(\alpha_{GC})</td>
<td>kg dm/ kg C</td>
<td>Conversion efficiency of carbon to structure in plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(\alpha_{DN})</td>
<td>kg dm/ kg N</td>
<td>Conversion efficiency of nutrient to structure in plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(\nu)</td>
<td>m</td>
<td>Degree of interaction</td>
</tr>
<tr>
<td>(z)</td>
<td>m</td>
<td>Specific height in the canopy</td>
</tr>
<tr>
<td>(P(k))</td>
<td>kg C</td>
<td>Annual photosynthetic production by a tree at year (k)</td>
</tr>
<tr>
<td>(P_{10})</td>
<td>kg C/kg dm</td>
<td>Annual photosynthetic production at unshaded conditions per unit area of needles</td>
</tr>
<tr>
<td>(h_{\text{max}})</td>
<td>m</td>
<td>Maximum height of the canopy</td>
</tr>
<tr>
<td>(h_{\text{min}})</td>
<td>m</td>
<td>Minimum height of the canopy</td>
</tr>
<tr>
<td>(z')</td>
<td>m²/m²</td>
<td>Needle area density at height (z)</td>
</tr>
<tr>
<td>(R(k))</td>
<td>kg C</td>
<td>Annual maintenance respiration of a tree at year (k)</td>
</tr>
<tr>
<td>(r_{\text{mi}})</td>
<td>kg C/ kg dm</td>
<td>Mass specific annual respiration rate for plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(r_{\text{mi}})</td>
<td>kg C/kg dm/h</td>
<td>Respiration rate at chosen base temperature for plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(E)</td>
<td>h</td>
<td>Extend of the active period</td>
</tr>
<tr>
<td>(T)</td>
<td>°C</td>
<td>Average temperature of the active period</td>
</tr>
<tr>
<td>(T_b)</td>
<td>°C</td>
<td>Base temperature of the respiration rate</td>
</tr>
<tr>
<td>(q_{f})</td>
<td>kg N/kg dm</td>
<td>Fineroot mass specific annual nutrient uptake</td>
</tr>
<tr>
<td>(q_{f})</td>
<td>kg N/kg dm</td>
<td>Fineroot mass specific annual nutrient uptake without competition</td>
</tr>
<tr>
<td>(D_f)</td>
<td>kg/ha</td>
<td>Threshold density of roots in soil</td>
</tr>
<tr>
<td>(U)</td>
<td>kg</td>
<td>Annual nutrient uptake</td>
</tr>
<tr>
<td>(T)</td>
<td>kg</td>
<td>Annual retranslocation of nutrients</td>
</tr>
<tr>
<td>(\xi)</td>
<td>kg N/kg dm</td>
<td>Amount of the nutrients retranslocated from senescing needles</td>
</tr>
<tr>
<td>(s_i)</td>
<td>kg N/kg dm</td>
<td>Nutrient concentration of the plant compartment (i = \text{b, st, tr, f})</td>
</tr>
<tr>
<td>(e_i)</td>
<td>m²/kg</td>
<td>Wood cross-sectional area per needle mass per length of plant compartment (i = \text{b, st, tr, sh, w})</td>
</tr>
<tr>
<td>(l_i)</td>
<td>kg/m³</td>
<td>Bulk density of wood of plant compartment (i = \text{b, st, tr, sh, w})</td>
</tr>
<tr>
<td>(h_k)</td>
<td>m</td>
<td>Length of woody structure of plant compartment (i = \text{b, st, tr, sh, w})</td>
</tr>
<tr>
<td>(H_k)</td>
<td>kg</td>
<td>Turnover of sapwood into heartwood in plant compartment (i = \text{b, st, tr})</td>
</tr>
<tr>
<td>(\eta)</td>
<td></td>
<td>Ratio between shoot length and diameter</td>
</tr>
<tr>
<td>(N)</td>
<td></td>
<td>Number of mother shoots in the unit of calculation</td>
</tr>
<tr>
<td>(h_t)</td>
<td>m</td>
<td>Total tree height</td>
</tr>
<tr>
<td>(h_{cb})</td>
<td>m</td>
<td>Height of the crown base of tree</td>
</tr>
<tr>
<td>(\phi)</td>
<td>m²/kg</td>
<td>Specific needle area</td>
</tr>
<tr>
<td>(\alpha_{sa})</td>
<td></td>
<td>Proportion of annual senescence of needles in age class (a)</td>
</tr>
<tr>
<td>(\alpha_{s}) and (\alpha_{r})</td>
<td></td>
<td>Proportion of annual senescence of fine roots and transport roots</td>
</tr>
<tr>
<td>(\alpha_{f})</td>
<td></td>
<td>Proportion of annual foliage senescence associated with heartwood formation in branches</td>
</tr>
<tr>
<td>(m_r)</td>
<td></td>
<td>Tree mortality rate parameter</td>
</tr>
<tr>
<td>(m_t)</td>
<td></td>
<td>Tree mortality threshold parameter</td>
</tr>
<tr>
<td>(\tau)</td>
<td></td>
<td>Decrease in the number of stems for other reasons</td>
</tr>
</tbody>
</table>

The following subscripts and superscripts are used:

- \(j \) stands for size classes
- \(i \) stands for plant compartments
- \(q \) stands for branch
- \(k \) stands for specific year
- \(a \) stands for age class

\(\text{tot} \) = total mass (all biomass compartments together)
\(n \) = needles
\(b \) = branches
\(st \) = stems
\(tr \) = transport roots
\(f \) = fine roots
\(s \) = structure associated with senescing needles

Nikonmaa, E.

Acta Forestalia Fennica 235
Acknowledgements

I would like to express my sincere thanks to Professor Matti Leikola for providing me with the excellent facilities for carrying out this work. I am also very grateful for the practical assistance that both he and Professor Pentti K. Räsänen have given me in the questions that a young researcher has to face in the early phases of his career.

Professor Pertti Hari woke my interest in the field of this study on a summer course in 1983 by presenting a hypothesis on tree growth that seemed impossible. Since that, the shower of ideas that Pepe has poured on me has not let me escape the subject. I am very grateful for the inspiring discussions and the unfailing help that I have received from him during all the phases of this work.

I have been lucky to participate in three projects during the preparation of this thesis. Especially grateful I am to Academician Juhan Ross and Dr. Tiit Nilsson from Estonia, Dr. Leo Kapiainen from Russian Karelia and the Finnish Group, Professor and Rector Paavo Pelkonen, Dr. Pauline Stenberg, Acting Professor Heikki Häniin, Mr. Olavi Kurtto, M.Sc., and Mr. Markku Mäkinen, M.Sc., whose unique personality was too soon lost from us, who formed an inspiring working group and whose effort in the field work is an integral part of this study. The field work was continued in the ESF-Fern Project. I am very grateful to Mr. Frank Berninger, M.Sc., for all the help I have received from him both in the field work and in the modelling. I also thank the other people of the Fern-pine-model group for inspiring discussions and comments on my work in often quite extraordinary surroundings. During many years I have participated in the work of the HAPRO/SILMU-group in the Department of Forest Ecology. I thank all the present and former members of the group for the most inspiring discussions and ideas that have risen from these sessions.

My warmest thanks to Dr.'s Risto Sievänänen and Annikki Mäkelä. They have shown me the possibilities and benefits of exact formulation of one's ideas and they have kindly shared their mathematical expertise whenever it was needed. I wish also to express my gratitude to Dr. Timo Kukuvainen for the inspiring speculations and the criticism he gave to my work.

I am very grateful to Dr. Markku Kanninen and Dr. Jouko Laasasenaho, who reviewed the manuscript of this work for their support and clarifying suggestions. I also thank my brother Mikko, who agreed to spoil some of his free time to improve the readability of this work.

I wish to thank all the people of the Department of Forest Ecology and the Forestry Field Station in Hyytiälä for making up such a pleasant working atmosphere. In particular I wish to thank Miss Pirkko Heimo, Mr. Pekka Kuutinen and Mr. Jörn Laxen, M.Sc., for helping me with the field measurements, Mr. Toivo Pohja for all the technical and musical support and Mr. Harri Hakula, Dip. Eng., for providing me with mathematical expertise.

Finally, I wish to express my gratitude to my father for giving me a good start and continuous support and to my family- Hanna, Miika, Sakari and Laura- for the fuel for this work and for showing that space dogs can be more relevant.

This study was financed by the Academy of Finland, the University of Helsinki and the HAPRO-project of the Ministries of Agriculture and Environment.

1 Introduction

1.1 Process-based tree and stand growth models

The traditional methods of modelling the growth of trees and stands describe the growth of certain dimensions of trees or stands with time-dependent functions that are based on observations of the past growth of the same dimensions in similar conditions (e.g. Nyysönen and Mielikäinen 1978). Presently the environment and treatment regimes of forests are changing. Also, forestry is practiced both where there is no tradition of forest management. These changes implicate situations in which the history of the growth of the present stands is not known or in which it is different from what can be expected in the future. The bases of the traditional methods of growth modelling become thus less valid. This is especially so if the differences in the growth conditions between the past and the present affect the dynamic processes driving growth (Bossel 1991). For these reasons, more careful analyses of the underlying mechanisms that produce growth become important in the growth and yield studies.

Growth of plants is accumulation of matter into organisms. Material balances are quite a natural starting point for the analyses of growth and yield. The state variable approach developed for systems analysis is a tool for such analyses (e.g. Thornley 1981; de Wit and Penning de Vries 1983). A system that is studied is described with a set of state variables. They are connected to each other through flows of material. The states of the state variables determine the rate of these flows. At an aggregate level, the change of state of a tree can be seen as the difference between the in- and out-flows of material in tree-environment system.

The selection of state variables is one of the key approximations and assumptions of a model (Thornley 1981). Ecological systems are hierarchical, i.e. phenomena occur at different spatial and temporal scales (e.g. Levin 1988). The observed patterns depend both on the system properties and on the scale at which they are studied (Levin 1988). According to de Wit (1982), the system studied should be limited so that a minimum interaction should take place between the environmental driving variables and the system state variables. However, this limitation depends on the purposes of the analyses and the hierarchy level at which the system is studied.

The state variable approach suffers from a difficulty in describing the mechanisms that form the internal communication system of plants, in addition to the problems associated with the correct limitation of the system (de Wit and Penning de Vries 1983). Especially, the distribution of resources between tree parts is problematic to model on mechanistic basis (Nikkinmaa 1992).

An approach to study these kinds of phenomena associated with tree growth is to assume a goal for the system or for some level of the system based either on observation or arguments that can be justified, e.g., by evolutionary arguments (Thornley and Johnson 1990). Models can then be used to study the consequences of such assumption on other aspects of the studied phenomena and also to establish some limits for the system behaviour under the assumed conditions (Thornley and Johnson 1990; Sharpe and Rykiel 1991; Givnish 1985). This approach has been used to model the distribution of growth in material balance models (e.g. Davidson 1969; Reynolds and Thornley 1982; Mäkelä 1986; Valentini et al. 1990; Hari et al. 1990; Ludlow et al. 1990). The so-called functional balance (Brouwer 1962) and pipe model theory (Shinozaki et al. 1964) are examples of growth-guiding principles in process-based stand growth models. The concept of functional balance was developed based on the experimental observations that the carbohydrates were distributed between the shoot and root growth so that the internal nutrient concentration remained stable (Brouwer 1962). On the other hand, the regular ratios between dimensions of different parts of trees have been used as a goal for distribution of growth between foliage and wood or different compartments of wood in carbon budget based models (e.g. Hari et al. 1985; Mäkelä 1986; Landsberg 1986; Ludlow et al. 1990; Sievänänen 1992).

1.2 The objectives

The process-based tree and stand growth models offer a valuable tool for analyses of tree growth in the present rapidly changing environment. The
models based on biological mechanisms, however, suffer from insufficient knowledge on some of the central processes and also from being rather complicated. An approach that uses some, either empirically or theoretically justifiable principle to describe badly known functions can offer a simpler alternative for the process-based analyses of the stand development.

The objectives of this work are a) to develop theoretical bases to analyse Scots pine (Pinus sylvestris L.) growth within the material budget framework, b) to evaluate if the assumption of balanced internal state as a principle for growth can be applied within this framework and c) to study the patterns of growth of trees and stands caused by the stand development from above. The work is divided into three components. First the theoretical framework used to analyse the functioning of tree is outlined. The main emphasis is paid on clarifying the roles of structure, function and growth. Second, a model of tree and stand growth is designed assuming that growth is the means of trees to balance structure with function. The key assumptions are defined exactly and a set of additional assumptions is introduced to make the model operational. Third, the approach is analysed by a) testing the generality of the hypothesis that a balanced internal state is expressed in a constant ratio between the amount of foliage and the sapwood cross-sectional area below and b) comparing various aspects of simulated growth against observed patterns. Furthermore, the general implications of the used assumptions on growth are studied and the applicability of the approach is discussed.

2 Analysis of stand development

2.1 Connection between functions, structure and environment

2.1.1 Spatial and temporal hierarchy in forests

The growth and development of a forest stand can be analysed within a framework of material flows and various processes operating at different spatial and temporal scales. The outcome of these is the formation of organic structures (e.g. Pomeroy et al. 1988). The basic theoretical framework for tree growth can be presented as in Figure 1. Momentary exchange of material between plants and the environment takes place at various exchange sites. Internal processes mix the materials taken up and transform them into different organic compounds and to permanent structures of the plants. The rates of exchange processes are determined by the local environment and the local internal state of each exchange site. The internal state consist of the concentrations of different substrates and organic compounds. It changes more slowly since it results from the action of various exchange sites. The permanent structure is the “skeleton” in which the various processes take place. It changes even more slowly, since it responds to the changes in the internal state. However, the structure affects both the local environment of the exchange sites and the internal processes of the plant. Thus there is a feedback loop from the accumulated growth of many years to these rather fast reactions. The success of the whole in the past determines what kind of momentary reactions are possible at the moment.

The environmental conditions of site, i.e. climate, concentration of gases in the air, physical and chemical soil properties, i.e. the distribution of particle sizes, their structure and chemical composition, determine the magnitude of the flows within the system. The climatic phenomena and the concentrations in the air are largely independent of the local stand level processes due to effective mixing of substances in the atmosphere. In contrast, the light climate and the soil properties do not remain stable. Vegetation changes them within the time scale of growing season and rotation. The soil properties also change slowly, within a time range of hundreds and thousands of years (e.g. Ulrich 1987). The environmental conditions thus have a similar temporal and spatial hierarchy as the plant’s response to the environment. At any given moment, the past and present environmental condition determine the functions of the outlined system.

2.1.2 Components of tree growth

2.1.2.1 General overview

Tree growth can be interpreted as acclimation to the environmental conditions that have prevailed in the growing site. The rather slow growth processes use the materials from the fast exchange processes within the limits of the genetic information that remains stable for each individual. The net growth of a plant can thus be divided into the components of material in- and outflows and into the growth and senescence processes. The most important material flows are those of carbon, water and nutrients. In the following, the way by which stand level effects determine the immediate environment at the exchange site is reviewed. This is followed by a treatment of the momentary processes at the exchange sites and how the use of materials taken up and the flows of other substances affect them. A separate review is given on the effects of temperature on both the exchange and the internal processes followed by a review on the control of growth and senescence processes. Finally, a review on the functional properties of the structure is required to get a full picture of the role of growth in the tree functions, since the structure affects functions also through providing an infrastructure for different processes.

Figure 1. A schematic presentation of the spatial and temporal hierarchy in the functions of a forest. The exchange processes describes the flows in and out of the plant, the internal state means the internal concentration of substrates and readily reversible chemical compounds within the plant. In the internal processes materials taken up are transported between different parts of a plant and transformed into active and storage compounds and into structure. The structure means the permanent “skeleton” of the plant in which the exchange and internal processes take place.

2.1.2.2 Stand level interactions and material flows reaching exchange surfaces

Interferences between individuals within a stand and the size of an individual determine the proportion that the individual captures from the total flux reaching the site. The amount of materials reaching the exchange site depends on the spatial distribution of the exchange sites. The closer the sites are the more they interact with each other. Thus the interaction between sites is highest within an individual. From the whole plant point of view this is unimportant since the resources captured are used by the same organism. However, different spatial arrangements of the exchange sites can affect the amount of resources used to bring about the uptake (e.g. see chapter 2.2.4, Givnish 1985; Kühpers 1989). The interplant interference depends on the number of exchange sites of different individuals that can intercept the same flux. Also the position of these sites relative to each other is important, if there is a clear direction of the flux, as it is the
The substances taken up are assimilated into organic compounds and used for growth of the plant. The transformation of the materials taken up into other compounds can have strong influence on the rates of inflow when the quantities of inflow over a period of time are considered instead of the momentary rates of inflow (see Figure 1, feedback arrow from internal processes to the exchange processes). There seems to be a close connection between the growth rate and the uptake rate in the trees considered (e.g. Ingram 1979; Ingstad 1981; Clarkson and Hansen 1980). The regulation of nutrient uptake and consumption seem to cause that the actual steady-state concentrations of nutrients in roots are quite independent of external ion concentrations (see review by Clarkson 1985). On the other hand, the effects of the sink-source relationships of carbon on its uptake rates are still unclear (Geiger and Sievertsen 1991). They suggest that the actual changes in the uptake rates may be connected to a non-specific signal associated with the changes in source-sink relationship.

2.1.2.3 Material fluxes

The velocities of material flows are different in atmospheric and soil environment. It seems that the actual speed of transport processes in soil may influence the acquisition of nutrients more than the capacity of roots to absorb ions (Clarkson and Petsch 1985; Petsch 1989; Grice et al. 1989a,b; Oker-Blom et al. 1989). According to Donald (1963) competition begins when the immediate supply of a single necessary factor for plants falls below the combined demands of the different exchange sites of the plants.

The flow of carbon into the plant at the exchange surface depends on the rate at which carbon is transformed to sugars in cells and the conductivity of the transport path from the surface of the leaf to the chloroplasts. The transformation rates depend on the availability of light and the internal state of the photosynthetic "machinery". The photosynthetic rate depends on the light supply in saturating fashion (e.g. Hari et al. 1988). This indicates that the rate is initially limited by light supply but as the light increases the carbon supply increases as well. The light sensitivity of the stomatal conductance depends on the light availability, temperature, light, and water and carbon dioxide concentrations in the air near the leaves (e.g. Cowan and Farquhar 1977; Hari et al. 1986; Hari and Berninger 1990) which have been quite successful in predicting the photosynthetic production in natural conditions (e.g. Hari and Berninger 1990; Berninger and Hari, in press). It seems that the stomatal conductance depends on the light availability, temperature, light, and water and carbon dioxide concentrations in the air near the leaves, the leaf temperature, the light supply and the surrounding air temperature (e.g. Jarvis et al. 1981). The flows of water and nutrients are in the same direction so they should have synergistic effects. The convection of water is able to supply enough of certain nutrients in fertilised agricultural soils (Clarkson and Hansen 1980) but it seems that plants are able to maintain sufficient nutrient uptake independent of water (Boyer 1985). Nitrate uptake seems to be proportionally to the flow of water only at very low water fluxes. This could be attributed to an inhibition of uptake caused by an accumulation of nitrate ions in the roots (Boyer 1985). According to Boyer (1985), on the other hand, in conditions of low water uptake nutrient uptake can create positive xylem pressure in roots by creating osmotic potential difference between soil and root, thus enhancing water uptake. Thus the uptake of nutrients seems to be independent of water flow. However, in conditions of low water availability, the transport of nutrients in soil to the vicinity of roots can strongly limit the uptake (e.g. Nye and Tinker 1977; Chapin 1991).

The rates of exchanges through exchange sites depend also on the fluxes at other parts of the plant (see Figure 1, exchange processes creating the internal state and feedback arrow from internal processes to the exchange processes). Especially the in- and out-flows of water are closely coupled. The driving force and the conductance of the flow path affect the water movement (Boyer 1985). The reactions that affect transpiration are quite important for water uptake. There is growing evidence that exchanges of carbon and water through stomata through interactions between the content of nutrients and the abscisic acid in the sap (e.g. Boyer 1985; Schulze 1991; Tardieu et al. 1992a,b). Schulze (1991) has also suggested that the ratio between the transport of water potentials of leaf and root xylem might be associated with phloem transport and the osmotic pressure difference of phloem between shoots and roots. This could provide trees with a fast signal from roots to shoot as a response of soil drying.

The internal processes require energy, which releases carbon from the system. The respiration processes can be divided according to the processes in which the energy is used (e.g. Penning de Vries et al. 1974). Growth, maintenance and transport respiration can be identified. Maintenance can also be interpreted as resynthesis of dead material that does not require uptake of new material but requires input of energy (Thornley and Johnsson 1990). The release of carbon dioxide from the biosynthesis can be calculated based on the chemical reactions involved (Penning de Vries 1975). These calculations can be extended to the whole plant level if the chemical compositions of different plant compartments are known (e.g. Mohren 1987). However, as shown by Chapin et al. (1987), quite considerable changes in the total energy requirement can exist depending on the chemical pathway used to build up compounds, especially proteins from different forms of nitrogen taken up by the plant.

Maintenance respiration results from the synthesis of substances, mainly proteins, and of the maintenance of ion gradients (de Wit et al. 1978 and Penning de Vries and van Laar 1982; cited by Mohren 1987). Although maintenance respiration can be estimated based on the concentration of proteins and the metabolic activity of the tissue (e.g. Mohren 1987), there is large variability in the reported values (e.g. Schäfer et al. 1991). Especially the metabolic activity of tissues varies according to, e.g. the age of the tissue and the environment (Mohren 1987; Pel et al. 1991).

An increased availability of one resource can affect the uptake of another by changing the biochemical machinery of the uptake organ (see Figure 1, feedback arrow from internal processes to the exchange processes). Evans and Terasima (1987) and Evans (1987) reported that nitrogen availability and acclimation to high irradiance conditions had an effect on the relative activities of different parts of the root system. The acclimation to high nitrogen availability favoured dark reactions and the acclimation to high light intensity light reactions. Also the nutrient availability, especially that of phosphorus, affected the development of roots to water uptake (Dijkstra et al. 1988). In addition, plants seem to be able to improve soil conditions for nutrient uptake in their vicinity and create favourable conditions to micro-organisms around the root surfaces by exchange of plant compounds (see review by Clarkson and Hansen 1980; Clarkson 1985).

There are numerous substances that can be either quite neutral from the plants point of view or can have toxic effects on plants. For example, such a common substance in soil as aluminium may have strong influence on the functions of a plant, especially if the soil environment is changing through human activities (Ilvesniemi 1991).

2.1.2.4 Effects of temperature

Temperature has a strong influence on the process rates. The input/output processes, especially those of water, can to some degree influence the energy balance of plants and thus the internal temperature of a plant, but mostly the ambient temperature determines it.

Temperature effects have different time scales. Temperature affects the rates processes
directly, and indirectly by creating periodic unfavourable conditions for plants inducing dormancy. Generally an increase in temperature causes an exponential increase in process rates. At normally occurring temperatures a 10 degree rise in temperature doubles the process rate (Landsberg 1986). This model explains quite well the measured respiration rates although there seems to be quite big variation during the growing season (e.g. Landsberg 1986). The acclimation or adaptation of plant to cold climate changes the temperature dependence of respiration and also photosynthesis (see review by Skre 1991). Cold adapted plants have a higher dark respiration rate at a given temperature than warm adapted ones and their optimum temperature for the exchange rate of carbon dioxide is lower. The latter effect seems to be connected with enzyme activities resulting in high mesophyll conductance at low temperatures. In addition, the high rates of photospiration at high temperatures may play a role in these plants (Skre 1991). Temperature has also been reported to affect the light saturation of photosynthesis (e.g. Sprugel 1989).

In boreal and temperate climatic zones trees that become active too early in the spring or those that continue the active phase too long in the autumn have suffered severe damage. In the opposite case quite strong losses of growth can occur. The adaptation to cyclic environment is a typical example of feedback from the genetic level to the internal processes. The annual cycle is seen in various aspects of functions of trees such as the timing of growth and dormancy periods in apical meristems (e.g. Sarvas 1972, 1974), the frost hardness of trees (e.g. Repo et al. 1991), the rates of input output processes (e.g. Pelkonen and Haukioja 1981; Pelkonen 1981). The induction, maintenance and release of dormancy are triggerred by environmental factors, including 1) temperature, 2) photoperiod, 3) water stress and to lesser extent with deficiency of nitrogen and 5) light quality (Lavender and Silim 1987). It also seems that the stage of development of a tree (seeding vs. mature), genetic variation within species and the species properties affect the dormancy set and release (e.g. Pelkonen 1971a; Koski and Sievänen 1985; Hänninen 1990).

The accumulated temperature during the growing period and the day length seem to be connected with the induction of rest period (e.g. Koski and Sievänen 1985). On the other hand, dormancy release is largely determined by temperature; first a period of cold temperatures (between -5 and 10 °C) is required to remove the growth arresting physiological conditions in buds and then certain amount of accumulated forcing temperature (> 0 °C) is required for bud burst (cf. Hänninen 1990).

2.1.2.5 Growth

The rates of the various input processes determine the availability of materials for growth but also the rates of the internal processes brings about growth influence the rate of uptake processes (see Figure 1). The internal regulation of these processes at the whole plant level is still quite poorly known, partly because of the difficulties involved in this kind of analysis (Lavender and Silim 1987; Schulze 1991). As argued in Chapter 2.1.1, the whole growth history of the plant species can be involved in the regulation of growth through the limits set by the genetic information (see also Figure 1). At the plant level, it seems that the relative organ sizes play an important role in maintaining the homeostasis between the different requirements of various substances (e.g. Brouwer 1962). However, also the shape of the grown organs can be important.

The morphology of the leaves can be quite variable depending on the growth conditions (e.g. Kellonmaki and Oker-Blom 1981; Ross et al. 1986; see Figure 1, feedback loop from structure to exchange processes). At shoot or crown level, the structure has a central role in determining the intercepted light at a certain point (e.g. Kellonmaki and Oker-Blom 1983; Oker-Blom and Smolander 1988; Kuuluvainen and Pukkala 1987, 1989). Interplant interactions do not necessarily have a big importance on the momentary uptake at plant level, since neighbouring exchange sites can intercept a flux that other exchange sites do not. However, the resources that are available for growth (e.g. photon fluence rate) in the long run can be very different. This is because the material requirements of forming different architectural patterns are different.

The growth of an above ground part of a tree consists of leaf formation, associated axil elongation and secondary thickening of these axes and previously formed structure. Carbon and nutrient availability, i.e. the input and output processes, determine the growth of leaf at the coarsest level. However, also stored compounds play an important role in growth, especially in matching the rates of input/output processes with those of the growth processes (e.g. Gordon and Larson 1968). The growth of leaves seems to be the fastest close to the best local source of water and metabolites (see review by Dale 1988).

At the cell level, the growth is associated with cell elongation and cell division and can be caused by allowing the cell wall to loosen and extend and place conflicting demands on the growth of cells (Dale 1988). The control of these processes is still rather poorly known but the osmotic regulation seems to have a central role (e.g. Cosgrove 1986; Dale 1988).

Length growth can either be influenced by the conditions of the previous and the present summer (determinate growth, e.g. Mikola 1950), or the growth can be determined by the environment of the most recently formed mature leaves (indeterminate growth, e.g. Dickson and Isberrands 1991). Needles and connecting vascular system develop simultaneously and can be redeveloped genetically and functionally a single organ (Larson 1969; Watson and Casper 1984). Similarly, developing leaf is intimately connected to the stem vasculature in trees with indeterminately growing shoots (e.g. Beudant and Grignon 1991).

Cambial cells resume their activities as dormant buds start developing. Auxin has an important role in reactivating hardwood cambia (Sandberg and Wareing 1981) although also cytokinins are involved in the initiation of vascular differentiation (Aloni 1991). Savidge (1991) has shown that auxin or sucrose availability is not controlling the biosynthesis of coniferin which is the main precursor of lignin in conifers. Therefore he hypothesizes that the vasculature is controlled by the interaction of auxin and cytokinins. The growing parts, such as shoot apex, buds but also developing leaves seem to be the main source of auxin in plants (Sembolde et al. 1980) but also the old leaves of the conifers produce it (Savidge and Wareing 1981; Savidge 1988). Aloni and Zimmermann (cited by Aloni 1987; Roberts et al. 1988) proposed a hypothesis that the resulting differentiation would depend on the amount of auxin the differentiating cells receive. The distance from the auxin source to the differentiating cell would determine the auxin concentration at that place. The rate of cell differentiation depends then on the size of the auxin concentration gradient. This hypothesis explains quite well the treach error differences observed in many species along the height and distance from the pith (see chapter 2.1.2.7).

Old needles have an important role in bringing about the late wood formation (e.g. Larson 1969). Denne and Dodd (1981) conclude that the thickening of late wood is caused by shifts in hormonal balances, especially between gibberellins and auxin (see also Aloni 1991). On the whole, hormonal control seems to affect the woody growth more than the substrate supply. However, Sadava (1981) claim that it would be naive to conclude that the only factors involved would be hormonal. As pointed out earlier, the water status of plant can have strong influence on growth. Also, Denne and Dodd (1981) point out that temperature directly affects both the duration and the rate of the cell division.

It seems that growth affects nutrient uptake more than other input processes. This follows from the relatively poor mobility of nutrients, especially that of phosphorus, and their scarcity in natural soils. The adequate distribution of growth can create a balance between the nutrient supply and the cost of nutrient transport from the root system, and the nutrient demand, which the growth of the whole tree determines. The idea of the so called functional balance has risen from these considerations (White 1935, cited by Thornton and Johnson 1990, Brouwer 1962).

Ingestad and Ågren (1991) suggest that nutriti on mainly controls the fluxes of carbon and nutrients through processes in the shoot; both affecting nitrogen assimilation (see section 2.1.1.4) and the sink strength of the shoot for carbon. An improved availability of nitrogen would affect the growth of new shoots resulting in proportionally bigger amount of carbon used to foliage but also because of the close connection between woody and foliar growth, to branches and stem. McDonald et al. (1992) found quite linear ratio between the projected leaf area and the crown size. The pheno type signal, i.e. photon fluence density for birch (Betula pendula Roth.). The slope of this relationship decreased as a function of light availability. The latter was mainly due to changes in the specific leaf area whereas the proportion of leaves from the total biomass remained approximately constant.

Also Clarkson (1985) had the impression that carbon supply is unlikely to be a limiting factor since growth and nutrient transport in well-illuminated plants. However, Chapin et al. (1987) argue that nitrogen acquisition including absorp-
on, translocation and assimilation, forms a major carbon expense (up to 50% of total carbon).

2.1.2.6 Senescence

According to Pell and Dann (1991), maturing, ageing and senescence is a carefully timed sequence of events in plant’s life that hormones, at least partially, control. Depending on the organ’s stage of devolvement, antioxidants, such as cytokinins, are able to counteract the effect of various oxidising toxic substances, which could cause senescence at later phases of development. So similar environmental stress can have very different effect, depending on the organ’s age and growth history (Pell and Dann 1991).

Often the senescence of different organs is described as a function of their age. However, in the woody branches, different plant organs have different characteristics. The woody organs are mainly dead cells (e.g. Kärkkäinen 1985). Thus, the turnover of sapwood to heartwood is not analogous to foliage senescence. Often heartwood formation during the maturing period (see Sarapää 1990) but there is also some evidence that it might be more closely connected to crown dynamics and thus functioning of the tree (e.g. Kaipiainen and Hari 1985).

Recently, xylem tissues as modular organisms has started discussion about the autonomy of branches (e.g. Sprugel et al. 1991). Experiments with labelled carbon would tend to indicate that with respect to carbon branches might well be quite autonomous, since there does not seem to be any transport of carbon from young branches into older ones (Isenbrands and Dickson 1991). This would mean that the senescence of branch would follow when it is not any more able to produce for its own maintenance (e.g. Isenbrads and Dickson 1991). Quite often the mortality of whole trees has been thought to take place with similar manner but at lower level.

Senescence has an important role as a source of nutrients for new growth and in maintaining the balance between the organs that take up and consume water (e.g. Helmsaari 1990; Namibi 1985; Whitehead 1985). For example Helmsaari (1990) reported that internal circulation of nutrient could supply up to 60% of the nutrient requirement of new growth in a bole stage Scots pine stand. In addition, senescence together with growth processes determines the architecture of crown (Waller and Steingraeber 1985).

There seem to be genetic limits on the longevity of leaf which together with the environmental conditions can influence the senescence in different parts of tree (Pell and Dann 1991). This favours the nutrient supply of other, remaining parts. However, in deciduous trees, deciduous, it seems that unfavourable conditions do not necessarily enhance the proportion of nutrients retranslocated from the senescing structures (e.g. Nambiar 1985). The total amount of drying foliage, though, can be connected to environmental stress (e.g. Jakola-Sulonen et al 1990).

2.1.2.7 Functional interpretations of the woody structure

Chapter 2.1.2.5 indicated a close relationship between the foliage and wood growth that the hormonal signals from existing and developing leaves mainly control. Development of a tight control at tree level could indicate that the processes bringing about wood growth have been critical for a success of trees in the evolution. This is not surprising, since the position, mechanical support and a supply of lignin and fine roots depend on the wooden structure and on the closely connected phloem.

The interpretation of wooden structure satisfying its functional requirements has quite a long tradition in the science (see e.g. Cavalli-Sforza and Dionigi 1987). In fact, in 1872 Max von Liebig put forward the concept that has later been called the pipe model theory (Shinozaki 1964; Zimmermann 1983). Since those days the woody structure has been examined from the mechanical support point of view (Scheidegger 1972; Metzer 1896; cited by Yilen 1952), from the water conductance point of view (e.g. Jaccard 1913, cited by Zimmermann 1983, Huber 1928) and from the assimilatory capacity point of view (Peters 1968; cited by Assmann 1970).

King and Louch (1976), King (1981) and Morgan and Cannell (1988) among others have studied the implications of mechanical support requirements on shoot and tree structure more recently. On the other hand, e.g. Zimmermann (1983), Ewers and Zimmermann (1984), Tyree and Sperry (1989) have paid attention to the water transport properties of wood. Although the pipe model theory of wood was initially proposed as a purely morphological model, it has also been considered as an approximation of structural adaptation to certain water availability and transpiration conditions (e.g. Jarvis 1975; cited by Whitehead 1985; Waring et al. 1982; Hari et al. 1986a).

The water flow in plants is generally explained by the so-called wood pore theory originally proposed by Askenasy (1895) and Dixon and Joly (1894) (cited by Gregory 1977). This can be described with the Hagen-Poiseuille equation (Mäkinen, pers. comm.). The most critical weakness of the approach is that it does not consider the resistance caused by the pits joining tracheids together or that caused by the cell walls (Carlquist 1985). The difference between calculated resistance with Hagen-Poiseuille equation and that measured seem to differ somewhat depending on the species in question. Pothier et al. (1989) measured resistance that was over two folds greater than the values calculated with the equation for Jack Pine (Pinus banksiana Lamb.). Hasselius and Ford (1990) suggested that for these reasons one should consider also other relationships to describe the water flow through tracheids.

Although the Hagen Poiseuille equation does not necessarily describe the water flow in real wood, it helps to evaluate aspects of wooden structure that are important in determining the flow of water in the plant. The water flow through wood depends on a) the vessel lumen diameter, b) the size of air space in the tracheid walls especially in conifers and c) the length of the tracheids in conifers and the number of pits in the tracheidal walls. Points a) and b) seem also to be connected to the size of tracheids. On the other hand, as pointed out by Isenbrads and Cannell (1988) and Tyree and Sperry (1989), wider vessels need not to be more efficient in water transport in nature since cavitations seem to take place more readily in such vessels than in smaller ones. This might be an important parameter for future tree growth and decision making for planting of trees growing in hard winter where embolism due to freezing is a risk (Tyree and Sperry 1989).

The distribution of tracheid sizes in conifers such as Scots pine seems to follow clear pattern a) both tracheid length and diameter first increase from pith outwards and then stabilise b) from the top of the tree downwards the length and diameter of the tracheids increase up to a certain height that seems to move slowly upwards as the tree grows and c) within this ring the lumen diameter generally decreases from early wood towards late wood (Sanio 1872; Dinwoodie 1901; Bailey 1958; Burley and Miller 1983). The ratio between early wood and late wood also changes so that it remains rather stable within the living crown but increases considerably when going downward from the pruning height (Larsson 1989, Hari, pers. comm. (Department of Forest Ecology, University of Helsinki)). In additional to these trends, there seems to be a concentration of smaller tracheids where branches fork from the main axis (e.g. Zimmermann 1983). This observed pattern coincides quite well with the hypothesis by Zimmermann and Aloni (see Aloni 1987) on the role of auxin in xylem cell differentiation.

One might expect that water conductivity within stem and branches in different positions would be very different based on the observations on the tracheid size distributions. The early work of Hult (1935) and Isenbrads and Cannell (1988) has been confirmed by several other people have demonstrated that this is the case (Zimmermann 1983, Ewers and Zimmermann 1984; Tyree et al. 1987). The water conductivity per supplied leaf mass shows manifold variation between the smallest twigs and the main stem (e.g. Tyree et al. 1987). On the other hand, clear constriction points to water flow seem to exist at the junctions where branches fork from the main axis. These observations lead Zimmermann (1983) to hypothesise that the main axis of a tree is preferred in the water transport. The most distal twigs would become cavitated first in unfavourable conditions of excess demand, while the main stem would get water flow to those and guarantee a higher flow to the main axis.

The storage of water in the woody compartments can be an important factor balancing sharp diurnal and even longer term variations in the water supply (Ewers and Zimmermann 1984; Whitehead 1985). There are clear elastic changes in the woody tissue that are connected to transpiration but with lag that would indicate the storage effect (Mäkinen, pers. comm.). Whitehead (1985) suggests that the sapwood proportion would be higher in the trees adapted to more continental climate than in those adapted to more maritime climate. The higher storage capacity in continental trees would enable them to function even at dry summer periods.

2.1.3 The role of growth processes in tree functions

The tree functions at any moment consist of various input/output reactions that are influenced to varying degree by the past conditions through the internal substrate concentrations, the state of the biochemical "machinery", the structure and the genetic information. The responses of the input/output reactions to the environment are relatively well known as the brief discussion on tree functions from the growth
point of view indicated. However, much less is known on control mechanisms that match the various, simultaneously occurring flows that bring about the internal "state" of the plant. Also the nature of the feedback from these internal processes to the exchange processes is not yet known. The same applies to growth reactions that are the main sinks of the materials taken up, and also to senescence reactions that can be an important source of resources for new growth.

These growth reactions produce the structure of plants. As the discussion on the water transporting properties of wood indicated, the structure determines the limits for the flux of materials through a certain part of the system at a given period. Thus growth can be viewed as plant's means of matching structure with function. The study of the control mechanisms of growth face many methodological problems since the growth processes are slow and the structure of the plants always reflects the past conditions to a great extent. However, the stable internal material combinations in the plants (e.g. Davidson 1969; Hunt 1975; Richards et al. 1979) suggest that growth (and senescence) of different parts of trees must be such that structural limitations do not prevent the formation of balance between the net intake of materials and their consumption.

2.2. Stand growth model

2.2.1 The main assumptions of the model

Tree stands are interpreted as a spatially and temporally hierarchical system in which the vegetation acclimates to its surroundings at very different scales both in time and space. Material fluxes between plant and its environment change as the environmental conditions change. Growth reacts slowly to these changes but it also changes the material flows between the plant and its surroundings. Thus, the role of growth processes is identified as plant's means of matching the structure with function. Temporally this is a rather aggregated process but spatially growth affects virtually all levels of hierarchy.

The applicability of the presented theoretical framework to growth analysis cannot be tested directly. Further definitions of quantitative relations that occur in forest stands are needed. However, as yet, our knowledge on the control of the internal processes and the feedback loops between different levels of the hierarchy is somewhat sketchy (see Chapter 2). de Wit and Penning de Vries (1983) pointed out that our knowledge on the functioning of the communication systems of plants is still too limited to be able to include it into the models at mechanistic level. This means that further assumptions need to be made when quantitative analyses of tree growth are planned from the presented theoretical framework.

It is assumed that the control of material producing exchange processes and material consuming growth processes is such that the internal state and the internal processes per unit volume remain stable. Material exchange processes depend on the momentary environmental conditions but growth depends on the material fluxes between plant and its surroundings over time periods. Therefore the stable internal state can only be expected over time periods that are long enough to facilitate acclimation of growth.

The growth of different structures would thus need to match the consumption of different materials with the uptake of the same materials. So, I assume that the growth processes consume resources and create new material exchanging organs in such a manner that the internal concentrations of resources within the plant organs remain constant or depend on the resource availability according to a known function. This assumption follows the idea of the functional balance principle presented by Brouwer (1962) and can be at least partially justified by empirical observations (e.g. Davidson 1969; Hunt 1975; Richards et al. 1979).

The assumptions of internal states that can be variable within a year but remain constant from year to year facilitate estimations on the annual flow of different materials per unit surface area. In other words, the structure changes so that the flux through unit surface area remains the same for different bases in similar climatic conditions. Furthermore, the basic function of a tree per unit volume is independent of its age but they change due to changes imposed to the environment by the stand development. Then the uptake rate of exchanging organ depends both on the total flux of material and energy reaching the stand and on the competition effect. The latter naturally depend on the distribution of exchanging organs in space (see Chapter 2.1.2.2).

The main material flows in ecosystems are those of carbon, nutrients and water. The carbon and nutrient fluxes are treated explicitly. The nutrient limiting growth represents all of them, as others are assumed to be obtained in necessary quantities. Water flows are considered only implicitly. There is a clear connection between photosynthetic production and the transpiration, on one hand, and water uptake and transpiration, on the other hand. Thus, a simplification is used that describes the water flow through the effects on the photo-production and through the structural requirements to maintain the required transport between different parts of tree. The assumption of a constant ratio between the water-conducting wood and the water-transpiring foliage describes this relationship (e.g. Hari et al. 1985; Valentine 1985; Mäkelä 1986; Nikinmaa 1987).

A model based on the material budgets and systems analyses presented by Hari et al. (1982) and Mäkelä and Hari (1986) is developed further to analyse the implications of these assumptions on forest growth. Stand level dynamics are described with growth and mortality of trees. These are further divided into functionally different biomass compartments. These are the state variables of the model. Figure 2 presents the overall frame of the model.

The exact formulation of the used approach is presented in the continuation. First the basic formulations of the approach are presented. From these common principles two different models that operate at different hierarchy levels are constructed and their main differences are presented as the last point of this chapter. Appendixes 1 and 2 present those equations of the models that do not appear in the text. They are mainly to derive the dimensional changes from the presented considerations. Appendices 3 and 4 present the general structure of the constructed mo-
Stand structure, material balances and input-output processes

Stand can be considered to consist of trees with certain architectural traits represented by the average tree in the simulation (e.g. Mohren 1987). Alternatively, one can consider individual trees, their architecture and distribution within a stand (e.g. Grace et al. 1987b; Oeker-Blom et al. 1980). Hantson et al. (1988) suggest that models operating at tree level would be more realistic since they could include both genetic and environmental variations between individuals and because local interactions mainly affect the organisms. From the management point of view, the dynamics of tree size distribution is one of the most interesting questions, favouring tree level models. However, modelling spatial dynamics easily results into very complicated and time consuming solutions. As a compromise between these two approaches, the stands can be described with trees belonging to different size classes (Hari et al. 1982). Then, the average trees represent the trees of each size class in the simulations. The stand level biomass, Y_{stt} (kg/ha), is the sum of the biomass of the representative trees of each size class, $W_{w}^j(kg)$, times the number of stems, N^j(1/ha), in the size class. The yearly change of the biomass of a stand is then:

$$Y_{tot}(k+1) = \sum_{j} \left(N^j(k) + \Delta N^j(k) \right)$$

The annual growth of a tree depends on annual material intake, I (kg), and loss O (kg). If it is assumed that there is no storage of material on annual bases, or that changes in it are small, the growth of a tree is directly proportional to the difference between intake and loss. Let us now consider the growth of one tree. The growth of a biomass compartment i, G_i, of a tree is naturally proportional to the amount of materials distributed to that compartment, α_i. If no storage is assumed, the sum of these allocation proportions is 1. Let us further denote the conversion efficiency of material to structure by ω_i (kg dm/kg C or N, where C and N refer to biomass or nutrients, respectively) and dmi refer to dry matter.

The following equation gives the material balance of one tree:

$$\sum_{i} \left(\frac{G_i}{\omega_i} + \sum_{j} \left(\frac{1 - O}{1 - O} \right) \right) = \Delta M$$

In the following the equations necessary to calculate the changes in the biomass of trees are presented. These include the formulation of the material balance of trees, the presentation of the input/output processes and the presentation of how the distribution of resources is derived from the conditions of balanced internal state and balanced structure. The growth of different biomass compartments is first derived at the shoot level and the description how the whole tree growth can be calculated from the shoot level premises follows thereafter. As the last point of the tree mass balance, the seneescence of the different biomass compartments is treated. After the mass balance of one tree is described the equations describing the change of the number of stems are treated.

The material balances of a stand facilitate the exact formulation of the presented principles. Consider that trees consist of different functional biomass compartments of needles, n, branches, b, stem, s, transport roots, r, and fine roots, f. We can devide the mass of each biomass compartment i of trees of size class j by $W_i(kg)$. Let us denote the annual growth and seneescence of the same biomass compartments by G_i and S_i (kg).

$$w_i^j(k+1) = \sum_{i} G_i^j(k) + S_i(k) - S_i(k)$$

The annual growth of a tree depends on annual material intake, I (kg), and loss O (kg). If it is assumed that there is no storage of material on annual bases, or that changes in it are small, the growth of a tree is directly proportional to the difference between intake and loss. Let us now consider the growth of one tree. The growth of a biomass compartment i, G_i, of a tree is naturally proportional to the amount of materials distributed to that compartment, α_i. If no storage is assumed, the sum of these allocation proportions is 1. Let us further denote the conversion efficiency of material to structure by ω_i (kg dm/kg C or N, where C and N refer to biomass or nutrients, respectively) and dmi refer to dry matter.

The following equation gives the material balance of one tree:

$$\sum_{j} \left(\frac{G_i}{\omega_i} + \sum_{j} \left(\frac{1 - O}{1 - O} \right) \right) = \Delta M$$

The annual input/output reactions considered in the model are photosynthetic production, P (kg C), respiration, R (kg C), nutrient uptake, U (kg N) and nutrient retranslocation, T (kg N). The conversion efficiency of carbon and nutrients into structure is specific for each biomass compartment and is assumed constant. The bases for its calculation are presented together with the treatment of the respiration costs. The proportion of resources distributed to biomass compartment i, α_i, is calculated from the assumption that growth is balanced internal state and it is variable. Chapter 2.2.3 treats the distribution of growth between the biomass compartments.

The photosynthetic production by a tree is a function of the potential annual production without the shading effect, P_0 (kg C/kg dm), and the total shading effect that the trees of the stand exert on the tree in question (e.g. Hari et al. 1982). The potential production depends on the internal state of the tree and the environment of the location above the stand. It is assumed that from the above ground environmental factors affecting photosynthetic production, only the light availability would change significantly within the canopy and would be influenced by the stand development. Thus, it describes the relations within canopy interaction between trees (e.g. Hari et al. 1982). In this approach it is assumed that the spatial interactions within the canopy can be reduced to one dimension. The position of a tree within a stand would then be determined solely by the vertical position of the foliage in the canopy (Hari et al. 1982).

The water and nutrient availability have an effect on the photosynthetic production. They are assumed to take place through the internal states and would thus reflect on the potential production. The annual cycle affects the photo production, especially in the spring, and needs to be considered when the annual photosynthetic production of the unshaded conditions is calculated (see also Chapter 2.1.2.3). Water availability can have substantial effect on the photo production during the growing period even in the northern latitudes of Finland (Korppi-Niemi 1988). For the model calculations, the potential-photo production, P_0, is determined based on the field measurements of photo-production and of the annual variation of the environmental conditions in Southern Finland (Korppi-Niemi 1988; Hari et al. 1991).

The degree of interaction, I, at any point in the canopy is the photosynthetic production over a period of time at that point divided by that of the unshaded conditions (Hari et al. 1982). The interaction factor is derived from the time integral of irradiance only since it is assumed that the photosynthetic light response would remain constant in the canopy (e.g., Hari et al. 1989). The assumption of horizontally homogeneous canopy simplifies the treatment, i.e. the degree of interaction, I, depend only on the shading leaf area, $Y_d(z)(kg/ha)$, above the point in consideration (z). Kellomaki et al. (1980) determined an empirical relationship for the degree of interaction for Scots pine. It is expressed in the following form (Hari et al. 1982, simplified by R. Sievänen, pers. comm. (Finnish Forest Research Institute)):

$$I(z) = \frac{1}{1 + 0.026(Y_d(z))^{0.58}}$$

The foliage biomass above point z in the canopy ($Y_d(z)$) is the sum of the foliage masses of all the trees in the different size classes. The photosynthetic production by a tree at a year k, P(kg), is then (Hari et al. 1982):

$$P(k) = P_0 \int_{z}^{z+k} \frac{1}{1 + 0.026(Y_d(z))^{0.58}} dz$$

where b_{max} and b_{min} are the maximum and minimum heights of the canopy (in meters) and x_f (m²/m) is the needle area density at height z of trees in the size class j.

Respiration is divided into maintenance and growth respiration according to the approach suggested by Penning de Vries (1974) (see also Chapter 2.1.2.3). Growth respiration per unit growth of tissue is calculated from the type of structure and the composition of different chemical compounds in the structure (Penning de Vries et al. 1974; Mohren 1987). The conversion efficiency, ω_C (see Equation 3) of the photosynthesised carbon to dry matter could then be calculated as presented by Mohren (1987) and is used as a parameter value in the model.

Maintenance respiration depends on the metabolic activity of cells in the tissue (e.g. Penning de Vries 1974). The protein and mineral contents of the tissue mainly determine the rate of respiration. The respiration rates can be determined for different tissues based on their mineral and protein contents following the method described by Mohren (1987). The total respiration of a tree at year k, R(k), (kg), is:

$$R(k) = \sum_{i} \rho_{ma} W_{i}$$

where ρ_{ma} (kg C/kg dm) is the annual respiration loss per unit weight of biomass compartment i.

The annual respiration loss is calculated assuming that the tissue specific rate of tissue decay (see Chapter 2.1.1). The decrease by the temperature, a so called Q10 value of 2 is used, i.e., 10 degree rise in temperature would double the respiration rate (e.g. Landsberg 1974). It was found out in the calculations that the temperature effect that the mean temperature of the active period could be used instead of daily mean temperatures, considering the uncertainty that is involved in the tissue specific respiration rate (see Chapter 2.1.1). The mass specific annual respiration rate for biomass compartment i, r_{ma}^i (kg C/kg dm), is:

$$r_{ma} = \frac{r_{ma}^i \cdot e^{\frac{Q_{10}(T - T_{base})}{10}}}{T_{base}}$$

where T_{base} is the base temperature, a typical value of 0°C is used.
where r_{th} (kg C/kg dm/h), is the respiration rate at the chosen base temperature E, (h), is the extent of the active period, T_{g}, ($^\circ$C), is the average temperature of the active period and T_{w}, ($^\circ$C), is the base temperature at which the respiration rate has been determined.

Yearly nutrient uptake by the root depends on two factors: a) the site dependent annual nutrient uptake of fine roots grown per year without competition effect, r_{f} (kg N/kg dm), and b) on the competition effect that can be described using a negative exponential function with respect to the total mass of fine roots in the stand, Y_{f} (kg/ha) (Fitter and Hay 1987). It is further assumed that the fine roots would not compete with each other if the density of fine roots, Y_{f}, in the stand is lower than a set threshold density, D_{t}. This threshold density is also the density at which the roots of one tree are growing. From these assumptions the specific annual nutrient uptake by unit mass of fine roots, e_{f}, (kg N/kg dm), is:

$$
e_{\text{f}} = \begin{cases}
\epsilon_{\text{f}}, & \text{when}
Y_{\text{f}} \leq D_{\text{t}} \\
\epsilon_{\text{f}} \cdot g(Y_{\text{f}}), & \text{when}
Y_{\text{f}} > D_{\text{t}}
\end{cases}
$$

where g is a function describing the decrease in the nutrient uptake efficiency as a function of total fine root biomass of the stand, Y_{f}. The actual shape of the functions used is presented in the Appendices 1 and 2.

2.2.3 Distribution of growth based on balanced internal state

A constant internal composition of the active tissue is a simplification of the balanced internal state. The changes in the size of the root tissue structure reflects changes in the flow rates between the plant and its environment at annual bases. The balance between the woody structure and the internal state is assumed when the transport capacity of the wood matches the in- and outflows at the exchanging sites. An approximation of this is the constant ratio between the amounts of water transpiring foliage and the cross-section of water transpiring foliage (Hari et al. 1985; 1987; Valley 1985; 1987; Mäkelä 1968; 1988; Nikinmaa 1987; Ludlow et al. 1990).

According to Equation (3), the growth is the difference between the in- and outflow. The assumption that a constant compositional growth gives growth that is linearly proportionally to the amount of resources distributed to that compartment (e.g. McDonald et al. 1992). We can substitute the annual nutrient uptake, U (kg N) or photosynthetic production, P (kg C) for the input (l) in Equation (3). On the other hand, annual translocation of nutrients, T (kg N) or annual respiratory loss, R (kg C) can be substituted for the output (O) (translocation can be viewed as a negative output). Then we need to note the distribution and conversion efficiency of nutrients and carbon into structure of biomass compartment i by α_{Ni}, α_{Ci}, and ω_{Ci}, ω_{Ci}, where N and C refer to nutrients and carbon, respectively. Now, we can write growth of biomass compartment i, G_{i}, (kg), in terms of nutrient or carbon balance as follows:

$$
G_{i} = \alpha_{\text{Ni}} \omega_{\text{Ci}} (U - T) + \alpha_{\text{Ci}} \omega_{\text{Ci}} (P - R)
$$

(9)

where U is the substitute fine root mass times the nutrient uptake efficiency, c_{f} from Equation (8) for U.

Let us also assume that nutrients retranslocate only from senescent needles and that the amount of nutrients retranslocated, ξ (kg N/kg dm), is constant. We can now write growth (Equation 3) as a function of nutrient flows as follows:

$$
G_{i} = \sum_{i=1}^{m} \left(\epsilon_{\text{f}} (G_{i} + W_{i} - S_{i}) + \epsilon_{\text{f}} (P - R) \right)
$$

(10a)

which reads after evaluating the summation and rearrangement:

$$
G_{i} = G_{i}^{\text{net}} + G_{i}^{\text{net}} + G_{i}^{\text{net}} + G_{i}^{\text{net}} + G_{i}^{\text{net}}
$$

(10b)

(10c)

(10d)

The conversion of nutrients is a linear function of available nutrients at the biomass compartment. This can be substituted for ω_{Ci} in Equations (10) and (b). The annual growth of fine roots, as a function of growth of other compartments yields:

$$
\sum_{i=1}^{m} \left(\epsilon_{\text{f}} (G_{i} + W_{i} - S_{i}) + \epsilon_{\text{f}} (P - R) \right) = \epsilon_{\text{f}} \cdot \epsilon_{\text{f}}
$$

(11)

In deriving Equation (11), the equality $W_{i} = S_{i}$ has been taken into consideration.

The assumption of a constant ratio between the water conducting wood cross-sectional area and the amount of needles above the cross-section, ϵ_{f}, (m²/m³), can describe the wooden growth as a function of foliage growth. The change of the size of the wooden structure is a function of the change in the amount of the foliage, G_{i}^{net}, (kg), the annual turnover of sapwood into heartwood, $\frac{H_{\text{w}}}{H_{\text{w}}}$, H_{w}, (kg), the length of the wooden structure, l_{1} (m), and the density of woody material, γ_{1} (kg/m³), if the ratio remains constant from year to year (e.g. Hari et al. 1985). Since the ratio between the cross-sectional area of water conducting wood and foliage biomass seems to change at different parts of the transport path (Hari et al. 1986a) the annual growth of branches, stem and transport roots per growth of needles (assuming no length growth) becomes (e.g. Mäkelä 1990b):

$$
G_{i}^{\text{net}} = \epsilon_{\text{f}} \cdot \epsilon_{\text{f}} (G_{i}^{\text{net}} - S_{i}) + H_{\text{w}}
$$

(12)

$$
G_{i}^{\text{net}} = \epsilon_{\text{f}} \cdot \epsilon_{\text{f}} (G_{i}^{\text{net}} - S_{i}) + H_{\text{w}}
$$

(13)

$$
G_{i}^{\text{net}} = \epsilon_{\text{f}} \cdot \epsilon_{\text{f}} (G_{i}^{\text{net}} - S_{i}) + H_{\text{w}}
$$

(14)

where n, b, st and tr stand for needles, branches, stem and transport roots.

The growing and senescent foliage is attached to the "piping" at different positions in Scots pine. So the average length of the pipe from fine roots to senescent foliage, l_{1} (m) and the average length of the "piping" in shoots, l_{2} (m), need to be considered. Then the annual growth of wood for needles growth at certain branch group is:

$$
G_{i}^{\text{net}} = \epsilon_{\text{f}} \cdot \epsilon_{\text{f}} \left(\frac{l_{1}}{l_{1}} + l_{2} \right) \frac{G_{i}^{\text{net}} - S_{i}^{2}}{H_{\text{w}}^{2}} + H_{\text{w}}^{2}
$$

(15)

$$
G_{i}^{\text{net}} = \epsilon_{\text{f}} \cdot \epsilon_{\text{f}} \left(\frac{l_{1}}{l_{1}} + l_{2} \right) \frac{G_{i}^{\text{net}} - S_{i}^{2}}{H_{\text{w}}^{2}} + H_{\text{w}}^{2}
$$

(16)

$$
G_{i}^{\text{net}} = \epsilon_{\text{f}} \cdot \epsilon_{\text{f}} \left(\frac{l_{1}}{l_{1}} + l_{2} \right) \frac{G_{i}^{\text{net}} - S_{i}^{2}}{H_{\text{w}}^{2}} + H_{\text{w}}^{2}
$$

(17)

where l_{h} (m), is the average length of the transport path to the new shoots. The l_{t} (m), stands for the average length of new transport roots.

We can place Equations (15)–(17) to Equation (11), to get the growth of fine roots as a function of the growth of foliage. Then we can place the growth of fine roots and the woody biomass compartments written as a function of the growth of foliage from Equations (11) and (15)–(17) to Equation (3). The equation can be rearranged so that the terms including ϵ_{f} are written on the left hand side. Those terms that do not include foliage growth are summed with the net photosynthetic production term on the right hand side. These terms include those associated with the senescence of foliage nutrients, in describing the heartwood formation, the nutrient uptake, and the transport path length and the length growth. It is also assumed that the condition of Equation (3) would hold for each branch, i.e. the branches and the structure in other parts of the tree required the physiological and mechanical support would form independent units, as Watson and Casper (1984) have suggested. These considerations yield Equation (18) (See page 23).

In Equation (18), the respiration of the branch ϵ_{f}, (kg C), is the maintenance respiration of the whole structure required to support that branch. ω_{Ci}, (kg dm/kg) refers to conversion efficiency of carbon into structure and τ_{h}, (kg N/kg dm) is the conversion efficiency of the different structures. In the sum sentences, i refers to branches, stem and transport roots, i.e. the woody structure and ΔH is the average length growth of the new shoots in a branch or new length growth of transport roots. The length growth of stem, ΔH_{t}, is naturally zero for all branches. The top of the tree can be treated as a branch down to the whorl of branches which above have the length growth, i.e. l_{1} is the length of transport path to needles. This differs from l_{2} in branches but is the same as l_{1} in stem and in transport roots.

The growth of other biomass compartments to support the needles of branch ϵ_{f}, $G_{\text{in}}^{\text{net}}$, is obtained by placing the foliage growth of branch ϵ_{f}, $G_{\text{in}}^{\text{net}}$, into Equations (11) and (15)–(17). The growth of the needles and the associated structure require-
ed to support them of the whole tree is the sum of the growth of needles in individual branches and in the top of the tree and the sum of structures required to support the needles of individual branches.

The first parenthesis in the numerator in Equation (18), (P-R)^x, gives the net production for new growth, the second positive term gives the resources that come to reuse from dying needles, i.e. the internal circulation of nutrients and structure and the negative term represents resources lost due to senescence of structures. In the determinator are the transformation efficiencies of carbon to needles, the cost of building the woody structures and the cost to maintain the nutrient balance associated with a unit of needle growth. As the tree size increases, the relative importance of senescence foliage as a releaser of nutrients and structure increases. Similarly when the nutrient uptake rate increases, the importance of foliage and other structures have more importance in releasing nutrients. From Equation (18) it follows that increased senescence of foliage tends to increase foliage growth and decrease woody growth and vice versa, i.e. the structural balance between foliage and woody structure is maintained.

Equation (18) is not allowed to have negative values but branches die when the foliage growth is zero. This follows when the sum of net production and the release of resources by dying needles is smaller than the term associated with the senescence of structure. So it follows from Equation (18) that new needles may grow even if the photo-production of a branch is smaller than the maintenance respiration cost of supporting the branch and all the associated structures in stem and roots. The branch can, in a way, trade the maintenance cost of structures with the release of supporting structures in stem and roots by the dying needles.

Other way of saying above is that the release of transport capacity by the dying needles decreases the carbon export requirement from the branch to the support of infrastructure in the stem and roots. This is because the existing structure can support bigger proportion of the new ecle growth than would otherwise be the case. According to Equation (18) there could be needle growth even if the maintenance cost to support only the structure within the branch is bigger than the photo-production of the branch. The work with 14C has indicated that carbon is not translocated to the old branches from other parts of the tree (e.g. Iserbrand and Dickson 1991). So the transport capacity release can only decrease the “investment requirement” from the branch to the woody structure. If more woody structure is released that can be utilised by the branch, the extra “recirculated structure” can benefit only other branches. The carbon resources that are thus freed seem to be used by other branches and are not translocated for the use of the branch where dying needles were.

The growth of trees can be treated at the level of shoot and branch growth. The growth of these units seems to be determined by the local environment of the exchanging sites of the units and their relative position within the tree. The reuse of existing transport structure seems to be a strong determinant of shoot and branch growth. Through it the past history of the tree as a whole has a strong influence on the growth performance of individual shoots.

2.2.4 Crown dynamics

The factors determining the length growth of the pipeline is not treated in Equations (15)–(17). King and Loucks (1978) have demonstrated that the length of the shoot and its diameter are linearly proportional if the structure is mechanically optimal. Several people have measured such ratio from different species (for review see Can- nell et al. 1988). The pipe model considerations give the same length/diameter relationship for the shoot if the needles are uniformly distributed on the supporting cost. Connecting this principle with the model proposed allows us to write the length of new shoot, 1_{new}(m), as a function of foliage growth.

\[
\lambda_{new} = \eta \cdot \lambda_{old} \cdot G_{new}^{\alpha} \quad \text{(19)}
\]

Thus

\[
G_{new} = \eta_{o} \cdot \lambda_{old}^{\alpha} \quad \text{(20)}
\]

where \(\eta_{o} \) is the ratio between the length and diameter of new shoots, \(\epsilon_{ab} \) (m^2/kg), is the ratio between the wood cross-sectional area and the foliage (kg/m^3), is the density of wood of the new shoots, respectively, and wsh and nsh refer to shoot wood and shoot foliage.

In addition, one needs to consider the forking effect at the level of new shoots. There is a clear trade-off between the cost involved in building the mechanical and physiological supporting structure in the new shoot and the amount of carbohydrates produced by the foliage of the shoot (e.g. Ford 1985). The Equation (20) shows that the shoot length growth is increasing exponentially as its needle mass grows. Thus, it is more economical from the carbon budget point of view to distribute the same amount of needles among many shoots. However, many shoots close to each other may increase self shading and decrease the average productivity of the needles.

Equation (20) can be modified to consider the above aspects. A general value, \(\eta_{o} \), is given for the above equation. If it has value 3/2 then all the needles will grow on the same shoot. A decreasing value implies increased forking. However, only values above one are possible in the equation. When shoots are small, then practically the same solution is obtained for all the exponent values. The effects of the exponent value start to show only in better growing conditions when shoot growth is big. At the branch level, we are talking about the average shoot growth. Thus we would need to know the size distribution of shoots. Simplest way is to assume that the average needle growth per shoot is the total needle growth of a branch divided by the number of mother shoots of a branch, \(v_{o} \). A simplified equation for the woody growth associated with needle growth in branch \(q \) can then be written (there is no differentiation between branch stem and transport roots in the following equation):

\[
G_{new} = \eta \cdot \lambda_{old} \cdot G_{new}^{\alpha} \quad \text{(21)}
\]

\[
\alpha \gamma \frac{(1/2)}{\gamma} \left(\frac{G_{new}^{\alpha}}{G_{new}^{\alpha}} \right) + H_{s}\quad \text{(15) to (17)}
\]

where \(\lambda_{old} \) and \(\lambda_{new} \) represent the average length of the old pipe from the fine roots to new needles and the average length of the pipe that the senescing needles release to reuse in the branch, respectively, and \(H_{s} \) is the amount of heartwood formation connected to the unit of calculation. Equation (21) is otherwise similar to Equations (15) to (17) but here also the length growth is derived from the foliage growth and no difference is made between wood growth in branches, stem and transport roots.

We can write the growth of tree as a function of the input/output processes at the exchange sites. However, the reuse of transport structure by several needle generations introduces strong tree level influences at the branch level growth as discussed at the end of Chapter 2.2.3. The structure and architecture of trees that reflects the history of the growing conditions influences the growth of branches. This suggests that tree level regulation could be influencing the growth as well. The growth of an individual shoot would then depend on its own environment, but also on its relative role in the production of the tree and its relative requirement for the supportive woody "infrastructure".

One way to study the distribution of growth between shoots at tree level is to assume optimal use of resources. Existence of such an optimal growth pattern could be justified by evolutionary considerations. The optimal distribution of needle growth could now be treated as a problem of obtaining as big production as possible within the constraints set by the construction costs of required organs. For determination of growth to obtain optimal phototrophic production we can write:

\[
\max_{n} \left(\sum_{n} \left(\frac{P_{n}(t)(\phi)(G_{n}(t)) + \lambda_{new}(t) - S_{n}(t))}{\lambda_{new}(t)} \right) \right)
\]

Nikinnis, E. 22

Acta Forestalia Fennica 235

23
while

\[\frac{\partial}{\partial t}(G_{b}(z) + G_{h}(z) + G_{l}(z)) = P - R \]

where \(P \) is the potential annual photosynthetic production per unit needle area in unshaded conditions, \(t(z) \) is the degree of interaction at that height and \(\phi(z) \) is the specific needle area at that height.

Let us assume that the growth of new needles does not affect the photosynthetic production of the remaining ones. Then the photosynthetic production of the crown is maximized when the photosynthetic production of the new needles is maximized. The maximization problem of the photosynthetic production under the restrictions of structural growth can be solved using Euler’s method of variation calculus and the multiplier of Lagrange (Elsgoltz 1963). The photosynthetic production by the new needles depends on the height density of needle growth, \(G_{b}(z) \), only (the photosynthetic production and restriction are of the form \(f(G_{b}(z), x, z) = 1 \)). Thus the optimization problem can be written in algebraic form. The method of the multiplier of Lagrange can be applied to the Euler equation and we get for the restricted optimum of the photosynthetic production by the new needles that \(\delta W_{\text{opt}} = \lambda \delta G_{b}(z) \) equals zero. The equation can be rearranged so that the ratio between the partial derivative of the variable to be maximized and the partial derivative of the restriction is constant, \(\lambda \), (also called the Lagrange multiplier) in the optimal solution, i.e.,

\[\frac{\partial}{\partial G_{b}(z)} \left(\frac{P_{b}(t(z)) \phi(z) G_{b}(z)}{G_{s}(z)} \right) = \lambda \]

The terms that do not depend on the foliage growth disappear when solving Equation (24). We can write \(G_{b} \) and \(G_{l} \) as a function of \(G_{s} \) as presented in Equations (21) and (11). Then we get the foliage growth as a function of height and \(\lambda \). The value of \(\lambda \) is determined by the requirement that Equation (23) must hold for the optimal solution.

2.2.5 Senescence

Senescence is an important factor determining both the net and gross annual growth of the biomass compartments. Following from the balanced growth principle, the senescence rates have a strong influence on the amount of carbohydrates distributed among different biomass compartments as seen for example in Equation (18). On the other hand, Equation (2) clearly demonstrates the effect of senescence on the net growth of biomass compartments.

The annual senescence of the exchange organs depends on their biomass (fine roots) or on the age of the organs (foliage). The senescence of foliage is naturally associated with the senescence of branches. However, also the release of transport structure in the branches and stem depends on it. The senescence of foliage, \(S_{b} \), (kg) is calculated as:

\[S_{b} = \sum_{i} W_{g}(z) \sigma_{b}(z) \]

where \(W_{g}(z) \), (kg), is the needle mass of age class \(i \) and \(\sigma_{b}(z) \) is the proportion of senescing needles in that age class. Branches die when they lose all the needles, i.e. become positioned below the living crown. Thus the senescence of branches is

\[S_{b} = \int_{z_{b}}^{z_{b}} W_{g}(z) \sigma_{b}(z) dz \]

where \(W_{g}(z) \), (kg), is the branch biomass at height \(z \) and \(\sigma_{b}(z) \) is the proportion of senescing needles, (both in meters) are the pruning limits the previous year and at present.

The senescence of fine roots and transport roots is simply:

\[S_{f} = \sigma_{f} W_{f} \]

and

\[S_{s} = \sigma_{s} W_{s} \]

where \(\sigma_{f} \) and \(\sigma_{s} \) are the senescence rates of fine roots and transport roots.

The turnover of functioning transport structure to non-functional heartwood is a more complicated matter since it is a question of mainly dead cells becoming non-functional. In addition, this term has a strong effect on the carbon allocation as can be appreciated from Equations (15)–(18). It is assumed that the turnover would be connected to crown dynamics as suggested by the empirical results of Kwapinski and Hari (1985). Heartwood formation would be proportional to the death of needles outside the present living crown. The assumption that a certain proportion of dying needles always brings about heartwood formation accounts for heartwood formation in older branches. This yields:

\[H_{b} = \epsilon_{b} \gamma_{b} S_{b} \]

and

\[H_{l} = \epsilon_{l} \gamma_{l} S_{l} \]

where \(\epsilon \) and \(\gamma \) are the ratio between needle mass and wood cross-sectional area and wood density, respectively (see Equations 12–14) and \(\sigma_{b} \) and \(\sigma_{l} \) is the proportion of foliage senescence associated with heartwood formation in branches. \(h_{b}(k) \) is the initial pruning limit, \(h_{b}(k+1) \) is the pruning limit at the end of the period and \(h_{l}(k) \) is the initial height of the tree.

The tree level senescence depends on the carbon budget but is not directly derived from that. Instead, the number of trees per size class decreases as the needle biomass of the representative trees starts to decline (Mikkelä and Hari 1986). The senescence is proportional to the drop of the needle mass according to following function:

\[N_{j}(k+1) = N_{j}(k) \left(1 - \frac{m_{j} S_{j} - \sigma_{b}}{W_{j}} \right) \]

where \(m_{j} \) is the mortality rate parameter and \(m_{j} \) is the mortality threshold parameter. The first parameter gives the steepness of the decrease of the number of stems and the second parameter sets the limit of how much bigger the foliage senescence has to be in comparison to annual growth to start tree mortality. \(\tau \) refers to a decrease in the number of stems in size class \(j \) that disappear for some other reasons such as thinning, etc. In addition to the above equations, the number of stems of a size class is not allowed to become negative.

2.2.6 The crown and branch level models

Growth can be calculated either based on the local environment of, e.g., each individual shoot or optimal solutions at the crown level can be sought. The whole tree effects on growth take place through existing structure and the requirement to build new structures for the support of the needles (Equation 18). In the continuation, two different computer models are presented which allow a quantitative examination of the made assumptions.

The crown model

The models used are referred to the crown and branch models. The crown model describes trees with average lengths of branches, stems and transport roots and with a constant crown form between dynamic height and pruning limit growth (see Appendices 1 and 3). The branch model calculates the growth of needles and associated structures at branch or unit height level. The crown form and pruning limit result from this growth (e.g. Nikkinnmaa and Hari 1990, Nikkinnmaa 1990).

In the “crown” model, the new length growth was assumed to have a negligible effect on the annual biomass growth in comparison to the thickness growth so it was omitted from the determination of the annual distribution of growth (see Appendix 3). The effect of length growth in terms of carbon takes place the following year when it determines the new length of the woody compartments. Thus, different biomass compartments grow in the manner described in Equations (11)–(14) and (18), assuming that the lengths were average values for trees. The length of the pipe to senescing needles in the stem is equal to the average stem length but in branches the length is that of the branches at the birth of the senescing needles (Equation 15).

The height growth of the crown model depends on the thickness growth (e.g. Sievänen 1992) and the density effect which the light gradient between the upper and lower parts of crowns of trees in different size classes determines. The length growth of branches is proportional to their thickness growth. The length growth of transport roots is derived from the fine root growth and their average density in the soil. The derivation of the pruning limit is a simplification from the optimality approach of the model “branch”. It depends on the average photosynthetic productivity of the needles in the crown, the maximum photosynthetic productivity of the needles without shading effect and the light condition at the pruning limit. Additional definitions on how the number of branches and their average length changes from year to year are needed since average values for length were used. Appendix 1
describes the simplifications made in the crown model in more detail.

The branch model

The structure of the branch model is presented in Appendix 4. The branch model treats the height growth of trees with an external function that depends on the maximal annual height growth, the photosynthetic production of a tree and the age of the tree (Mäkelä and Hari 1986). The crown dynamics are derived from the optimality considerations. A special case is applied where the ratio between the photosynthetic production by new needles divided by the cost of construction of needles and the structure required to support them is constant within a crown (e.g. Nikinmaa and Hari 1990, Nikinmaa 1990), i.e.

\[
P_{0}(z)G_{z}/(w_{0} + G_{z}(z))/w_{0} + G_{z}(z)/w_{0} = \kappa
\]

Equations (33) can be written as a function of foliage growth. Let us treat the woody structure without differentiating it into branches, stem and transport roots. Then we can write Equation (11) as a function of foliage and wood growth only. On the other hand, the wood growth is treated as a function of foliage growth only in Equation (21). We can substitute these into Equation (33) and get:

\[
\alpha_{i}, \alpha_{i}G_{z}(z)^{2} + 1/\alpha_{i} + \alpha_{i}z_{i} + \alpha_{i}z_{i}(z) - P_{0}(z)P_{i}(z)/\kappa G_{z}(z)\alpha_{i} = 0
\]

where

\[
\alpha_{i} = \left[(z_{i} - \lambda_{i} w_{i}) \right]^{2} \cdot \gamma_{i} \cdot \nu_{i}
\]

In addition, it is required that the construction costs equal the resources available for growth, i.e. the condition of the problem presented in Equations (22) and (23).

It can be shown that if the above ratio is constant also the solution of the optimality problem of Equations (22) and (23) follows. We can move the denominator of Equation (33) to the right hand side of the equality sign. Taking the derivative of both sides with respect of new foliage growth, \(G_{z}(z)\), gives the same solution for constant, \(\kappa\), as the optimal solution of Equations (22) and (23) gives for the Lagrange multiplier, \(\lambda\), since the terms that do not depend on \(G_{z}(z)\) disappear. In both cases the value of the constant is determined by requiring that the condition of Equation (23) will hold. Thus the solution of the optimality problem follows from the above principle but the above principle does not necessarily follow from the optimality solution. The acceptable values for those terms that do not depend on the foliage growth are limited in Equation (33).

The principle of Equation (33) says that growth is distributed so that at any height as many units of new resources are obtained per unit of resource invested. If that were the case, then it would be worthwhile to invest to the height where more is obtained per unit of resources invested until the growth increases the unit cost to the same level as it is in the other parts. The unit cost increases as a function of the foliage mass since the new axis growth depends exponentially on the foliage growth.

3 Tree and stand growth

3.1 Introduction

One of the main objectives of the present work is to analyse the applicability of the concept of balanced internal state in the studies of tree and stand growth within a material balance framework. The former chapter demonstrated that it is possible to describe growth of trees and stands from those premises with relative simplicity.

The validity of the approach was tested at different levels of the theory. The generality of one of the main assumptions of the model, i.e. that the ratio between the foliage mass and the water conducting woody area is constant was tested using trees from very different climates. Apart from that, the mathematical model that links the different hypotheses together was used to simulate various aspects of tree and stand growth. The simulation results were compared with empirically observed trends.

The effect of some rather poorly known processes on the outcome of the simulations were examined. This was carried out in order to elucidate the role of these processes in growth and to suggest directions for future work, both theoretical and empirical, in the field.

3.2 Relationship between the water transporting wood and foliage

3.2.1 Linear foliage mass and sapwood area relationship and the balanced internal state

The internal state and the internal processes of the plant were defined in Chapter 2 as the internal concentration of substrates and compounds within the plant plus the processes by which they are transported between different structures and transformed into other readily reversible forms or into more permanent structures. A balanced internal state was assumed such that the in- and out-flows of substances to and from different biomass compartments match the material consumption in the same compartments so that the substrate concentrations remain stable.

A balanced internal state was also assumed to apply for water flows. As plants grow in volume, also the amount of accumulated water in them increases similarly as the amount of carbon and the nutrients. Some of the water taken up is split into its components in photosynthesis. However, these two components form only a minor proportion of the fate of the water taken up by plants. The majority of water by far flows through plants from soil to atmosphere. At the same time, the flow also transports substances from roots to shoots. As mentioned in Chapter 2.1, the driving force for water flow is transpiration that is determined by the immediate environment of the leaves but also by the water availability in soil. Also, the review on the physiological role of the woody structure (Chapter 2.1.2.7) indicated that woody structure is an important determinant of the flow of water in stem and branches.

The constant concentration of water in plants results when the amount of water entering and leaving plants is constant over any longer period of time. However, this condition is met at zero flows in the system. Since the photosynthetic production is necessarily associated with water loss, there must be water flow through plants if they are to survive. The structure of plants has an important role in conveying the pull of transpira-
tion from leaves to the uptake of water by roots. Too small transport capacity would hinder photosynthetic production. It would not allow sufficient water uptake. This means that some of the available water would not be utilised. A large transport capacity would waste carbon resources. If water availability was restricted, large transport capacity would facilitate a rapid depletion of water resources from soil. This could be harmful later in the growing season. So, it could be assumed that there exists a balance between the amount of foliage and the water transporting structure in species adapted to certain conditions. The quantitative relationship of the above factors would then determine the range of conditions in which the species could thrive.

One could thus expect to find a rather constant relationship between the amount of foliage and water conducting capacity in stem in similar growing conditions and for the same species. The quantity of water that flows through any surface for a given time unit is surface area times flow velocity. The flow velocity in coniferous wood depends on the tracheid size and distribution (e.g. Zimmermann 1983). The constant relationship between the cross-sectional area of wood that transports water and the foliage biomass above it assumes that the internal structure of wood would remain constant with the stem. It also assumes that a unit mass of needles would transport a constant amount of water at different parts of the crown. The relationship remains unchanged also if these factors change as much relative to each other.

It is apparent from the literature review, that there is systematic variation in the woody fine structure affecting the water transport properties within trees. Also, environmental conditions can affect, e.g., the size of tracheids (see Chapter 2.1.2.7). However, the effect of the internal structure on water transport at the tree level is not so clear. Water flow is fast in large tracheids but they are simultaneously more vulnerable to cavitations (Carlquist 1988).

Water conducting measurements (e.g. Huber 1928; Zimmermann 1983; Ewers and Zimmermann 1984) and structural measurements (e.g. Whitehead 1978; Albrektsson 1984; Espinosa Bancalari et al. 1987; Keane and Westman 1987; Long and Smith 1988) have demonstrated that the principle of constant ratio does not apply for all the trees growing in different conditions. However, there are also frequent observation of linear ratio between wood cross-sectional area and quantity of foliage, measured either as leaf area or biomass basis (e.g. Whitehead 1978; Kaufman and Troendle 1981; Long et al. 1981; Wanring et al. 1982; Hari et al. 1986a).

Much of the work done on Scots pine has suggested that, at least at stand level, the ratio between foliage mass and sapwood area is quite constant (e.g. Whitehead 1978; Albrektsson 1984; Hari et al. 1986a). Hari et al. (1986a) measured similar values from two different stands growing at very different locations but in similar climatic conditions. However, the relationship could be different in trees adapted to conditions of different evapotranspiration and water availability. Let us assume that the degree of stomatal closure would be on average constant in all conditions. At higher average rate of evapotranspiration there would be either less foliage per sapwood cross-sectional area or higher flow velocity in wood than at lower rate. As opposite to constant degree of stomatal closure, Kaipianen has reported that a unit mass of needles of Scots pines transpires constant amount of water in very different climatic conditions (Nikinmaa et al., manuscript). According to that, the canopy conductivity is smaller in conditions of high average rate of evapotranspiration than in those of low rate. This could be associated with smaller water transport capacity per unit foliage mass, respectively.

The outcome of the growth of Scots pine trees was measured in order to test the generality of the simplifying assumption that the cross-sectional area of sap-wood per needle mass remains constant. The measurements were carried out in different climatic conditions and the results were compared with the hypotheses presented.

3.2.2 Material and methods

Seven young Scots pine stands from different locations were analysed. There were two stands from Muddusniemi, Finnish Lapland (a and b) (69°N, 27°E), one stand from Hyytiala, Central Finland (62°N, 24°E), one stand from Siuntio, South Finland (d,e) (60°N, 24°E), one stand from near Iraksuk, Siberia (f) (53°N, 103°E) and one stand from near Voronez, South Russia (g) (52°N, 40°E). In addition, the data measured at one stand from Petrosvodsk, East Karelia (62°N, 34°E) presented earlier by Hari et al. (1985) was included in the analyses.

The selected stands were either of local origin or had been established with routine methods and seed material used in forestry within the region. In each case, the canopy had closed recently. The measured stands were growing on medium fertile to poor soils, with the exception of Iraksuk stand (f) which grew on a fertile site. Voronez stand (g) differed from the rest in that it grew next to a pasture field. A sample plot of about 100 trees was limited at each stand, and the diameters and heights of the trees were measured. The sample plots were positioned so that their distance from the camera stand was at least twice the tree height.

Table 1 presents the general properties of the experimental stands. The stands of Muddusniemi and Siuntio (a, b and d, e) had both dense and spaced growing densities. The Muddusniemi stands were just about to reach canopy closure, whereas the height of the tree crowns was already at dynamic phase in Hyytiala and Voronez stands. The Muddusniemi and Voronez stands had double peaked size distribution, which is often associated with the high competition during the canopy closure (Ford 1975).

The sample trees were selected subjectively from the sample plots a, f and g from all the same classes with equal weight. The trees were selected randomly from the stands b, c, d and e. Equal number of trees was chosen from two different strata (trees bigger and smaller than the basal area medium tree) (b, d, e) or the sample of

<table>
<thead>
<tr>
<th>Location</th>
<th>Muddusniemi</th>
<th>Hyytiala</th>
<th>Siuntio</th>
<th>Voronez</th>
</tr>
</thead>
<tbody>
<tr>
<td>A y</td>
<td>Height cm</td>
<td>D1.3 cm</td>
<td>Hcr cm</td>
<td>Deb cm</td>
</tr>
<tr>
<td>Density</td>
<td>Gb m³/h</td>
<td>Size sq m²</td>
<td>N sample plot</td>
<td></td>
</tr>
</tbody>
</table>

Voronez	16	75.1	1.9	7.6	3.1	4.3	0.6	5.6	2.3	6320	15.6	125	79	g	
Iraksuk	24	6.7	1.3	7.2	3.0	2.6	0.4	6.3	2.6	4900	15.3	100	49	f	
Siuntio	17	6.1	1.4	7.8	3.3	2.1	0.5	-	-	3400	-	-	100	102	e
Siuntio	15	4.9	1.4	7.3	2.7	0.9	0.4	-	-	1950	-	-	100	117	d
Hyytiala	22	9.4	1.6	11.6	1.6	5.2	0.6	7.3	2.1	2900	12.1	300	87	c	
Muddusniemi	36	4.4	1.1	3.7	1.4	2.6	0.6	-	-	12200	-	-	100	122	b
Muddusniemi	43	3.2	1.3	4.3	2.1	1.1	0.4	3.6	2.0	5533	5.4	150	80	a	

D1.3 = diameter at breast height
Hcr = height of the crown base
Deb = diameter at the crown base
Gb = stand basal area at the crown base
Size sq m² = Size of the sample plot

The Hyytiala values with the exception of diameter at breast height were calculated from the sample trees.

Table 2. The general properties of the experimental trees in the different locations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Muddusniemi</th>
<th>Hyytiala</th>
<th>Siuntio</th>
<th>Voronez</th>
</tr>
</thead>
<tbody>
<tr>
<td>N of trees</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Deb, cm</td>
<td>4,92</td>
<td>3.63</td>
<td>7.2</td>
<td>6.81</td>
</tr>
<tr>
<td>x</td>
<td>2,13</td>
<td>1,47</td>
<td>2,1</td>
<td>3,07</td>
</tr>
<tr>
<td>Height, cm</td>
<td>4,17</td>
<td>4,7</td>
<td>11,6</td>
<td>5,14</td>
</tr>
<tr>
<td>tot, s</td>
<td>1,21</td>
<td>1,08</td>
<td>1,6</td>
<td>1,15</td>
</tr>
<tr>
<td>Hcb, cm</td>
<td>2,72</td>
<td>2,67</td>
<td>5,2</td>
<td>0,99</td>
</tr>
<tr>
<td>Be/Wb</td>
<td>0,94</td>
<td>0,62</td>
<td>0,5</td>
<td>0,47</td>
</tr>
<tr>
<td>Living*</td>
<td>20,3</td>
<td>22,1</td>
<td>8,6</td>
<td>6,67</td>
</tr>
<tr>
<td>whorls</td>
<td>Age, y</td>
<td>38,4</td>
<td>36</td>
<td>22,0</td>
</tr>
<tr>
<td>s</td>
<td>6,11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Deb = diameter at the crown base, Hcb = height of the crown base
Be/Wb = number of branches per whorl, * the number of sample trees from which branches and whorls were counted was 3 in Muddusniemi (a) and 7 in Iraksuk. At the other places the values were counted from all trees.
trees was chosen from all the trees of the sample plot (c). The number of trees measured per stand varied among 14 to 23. Table 2 presents the average characteristics of the sample trees.

The diameters of all the branches below the lowest living whorl of sub-branches and stem diameter below the crown base were measured. Also the diameters and heights below all the other living whorls of branches were measured from the stems with exception of one Muddusniemi stand (a). The diameter measurements were carried out at two perpendicular directions below bark. In branches the cross-section was perpendicular to the longitudinal axes of the branch and the diameter measurements were carried out at 45° angle between the horizontal and vertical planes of the cross-section. A whorl of branches was alive if there were at least 50% of the major branches still living, both in branches and in the stem.

The sample branches were selected using two methods. Fifteen to twenty branches of different size and position in the canopy were chosen subjectively from the subjectively selected trees. From the randomly selected trees, systematic sample was selected in two different ways. In stands b, d, and e, a sample branch was chosen each time the cumulative branch cross-sectional area surpassed one fifth of the total branch cross-sectional area. Thus, altogether five branches were selected. In the Hyytiala stand, (c), every third branch of the crown entered the sample. The foliage of the sample branches was removed, dried (105° C, 24 h) and weighed.

The dynamics of the needle mass were tested in Hyytiala and Voronez from one tree at both locations. The lengths of the newest shoots and the internodes not bearing needles just below the oldest internodes bearing needles were measured. A systematic sample of 20 and 28 shoots, respectively, was selected from the trees and the length of the shoot and the needle dry mass of the shoot measured. Also, the total diameters of the branches below the lowest living whorl of sub-branches and below each living whorl in the stem were measured from both trees as described earlier. In addition, the width of the newest tree ring was measured at four points at both ends of the diameter measurement axes.

The measurements were carried out either during the maximum foliage biomass after the cessation of foliage growth but before the onset of senescence (early August) (a, f, g) or during the rest period when the foliage was at the annual minimum in late autumn (end of October, c) or in early spring (end of April, beginning of May (d, e) and end of May, (b)).

3.2.3 Results
3.2.3.1 The foliage - wood regression

The regression between the foliage dry mass and the wood cross-sectional area was linear when measured during the maximum needle mass but the slope of the regression line varied between the different locations (see Figure 3). Southern conditions increased the slope (see Table 3). The ratios calculated from the Petrosavodsk data of Hari et al. (1985) were included.

The observed values varied more when the measurements were carried out during the minimum needle mass (see Figure 4). The ratio between the amount of needles and the wood cross-sectional area changed clearly as the age of the branches increased. The ratio seemed to decrease in southern Finland indicating that there was more wood cross-sectional area per foliage mass in older branches than in younger ones. However, in old branches also the proportion of annually senescing needles from the total needle mass was bigger. The slight exponential nature of the observations from one of the Suntio stands could result from the fact that the branches of the upper crown are among the smallest and the biggest branches of the tree. In these branches the needle senescence represents only a minor proportion of the total needle mass. Branches of the intermediate size are mostly the once biggest branches which are now left to the shade crown and therefore have rather a big proportion of the total needle mass in dying needles.

The change in the needle mass and the associated tree ring area had a similar linear relationship to that of the total needle mass and the sapwood area. This suggests that the growth of the new tree ring area is connected to the change in the needle mass that there is above the point of observation (see Figure 5). The difference in the slope of the regression line between the trees was proportionally of a similar magnitude as the difference in the total mass - sapwood area measurements at the same locations. However, the same change in the needle mass seemed to imply smaller change in the tree ring area in the dynamic examination, especially in the Voronez stand. The big variation and the low number of stems in the dynamic examination naturally make the comparison difficult.

The negative change of the tree ring area was associated with the decrease in needle mass. This could indicate that the needles of other whors reuse the transport capacity of older tree rings that the needles of the whorl in question used previously. This is what the constancy of the ratio between the amount of foliage and the cross-sectional area of sapwood predicts (see Equations 12-14). This result and the differences observed when the foliage mass-sapwood area ratio was examined during maximum and minimum needle masses indicate that the growth of the newest tree ring seems to be associated with the needle mass change from maximum to maximum. This is in accordance with the approach used.

3.2.3.2 Regression between the cross-sectional area of branch and stem

The regression between the sum of branch cross-sectional area measured at branch crown base of living branches and the stem cross-sectional area measured at stem crown base was mostly linear but considerable variation existed between the stands (Figure 6). The variation did not depend on the measuring time or the sampling method.
Figure 4. The relationship between the foliage mass and the branch cross-sectional area at the branch crown base measured during the minimum needle mass in a) Mudûnsiemi, b) Hyryliël, c) Sjunto (d) and d) Sjunto (e).

Figure 5. The relationship between the tree ring area change (the difference of the area of the newest tree ring above and below a whort) and the needle mass change of the whort in a) Hyryliël and b) Voronez.

Figure 6. The relationship between the sum of branch cross-sectional area at the branch crown base and the stem cross-sectional area at the stem crown base in a) Mudûnsiemi (a and b are marked with different sign), b) Hyryliël, c) Sjunto (d and e are marked with different sign), d) Irkutsk and e) Voronez.

but a north-to south gradient was apparent (Table 4). The values from measurements made in France by Berninger, (Department of Forest Ecology, University of Helsinki, unpublished) and Spain by Gracia, Retana and Gene (CREAF, Universitat Autònoma de Barcelona, unpublished) supported the observed trends. The same cross-sectional area supported more branches in the South than in the North. The biggest difference in the slope was about 100%.

Figure 7 presents the location of the study areas. The type of the regression seemed to change from north to south. It was linear in the North, but the bigger trees seemed to have more branch cross-sectional area per unit of stem cross-sectional area than smaller trees in the South (Figure...
Table 4. The ratio between the crown branch cross-sectional area measured at the stem crown base and the stem area below the stem crown base. The French value is based on 14 sample trees from La Viále, near Montpellier at approx. 550 m above sea level measured by Beringer (unpublished). Spanish value is based on four trees measured from sample plot in Montesquieu by Gracía et al. (unpublished).

<table>
<thead>
<tr>
<th>Site</th>
<th>Intercept in m² stem area</th>
<th>Regression coefficient m² stem area</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muddusniemi 1</td>
<td>-19.23</td>
<td>0.78</td>
<td>0.96</td>
</tr>
<tr>
<td>Muddusniemi 2</td>
<td>-229.1</td>
<td>1.02</td>
<td>0.96</td>
</tr>
<tr>
<td>Petrosavodsk</td>
<td>91.5</td>
<td>1.02</td>
<td>0.94</td>
</tr>
<tr>
<td>Hyryitalı</td>
<td>-581.8</td>
<td>1.20</td>
<td>0.98</td>
</tr>
<tr>
<td>Siuntio</td>
<td>-52.3</td>
<td>1.16</td>
<td>0.95</td>
</tr>
<tr>
<td>Irkutsk</td>
<td>-280.3</td>
<td>1.05</td>
<td>0.99</td>
</tr>
<tr>
<td>Voronez</td>
<td>-723.5</td>
<td>1.57</td>
<td>0.92</td>
</tr>
<tr>
<td>La Viále</td>
<td>-589.1</td>
<td>1.53</td>
<td>0.93</td>
</tr>
<tr>
<td>Montesquieu</td>
<td>-1269.13</td>
<td>1.81</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Figure 7. The locations of the experimental stands.

3.3 Simulated tree and stand growth

3.3.1 The bases of the simulations

The simulations of tree and stand growth had two main purposes. First, the theoretical considerations presented in chapter 2 could only be tested if they were used to produce quantitative results that could be checked against observed trends of real-world data. Second, the theoretical framework should connect various aspects of forest growth in a new way and describe or predict some new features of the functioning of the forest in order to be something more than just another way of describing the already well-known general trends of tree and stand growth. For these reasons, the presented framework was used to investigate how varying some, still rather poorly known phenomena affected the outcome of the simulations.

The points investigated were the following:

1) How the outcome of the simulation is affected by the variation of the observed structural regularities. This approach was applied to simulate growth for different geographical conditions.

2) How growth differs when calculations assume a) average dimensions for the tree as in the model "crown" and b) optimal combination of shoot level growth as in the "branch" model. How the outcome of simulations is influenced by connecting the heartwood formation to crown dynamics as the pipe model suggests (Shinozaki et al. 1964 a) and Kaipainen and Hari (1985) have observed. How a more detailed treatment of the nutrient balance of trees in which nutrients retranslocate from dying needles and roots complete for nutrients in similar fashion as the needles compete for light, affects the results of simulation.

The presented theoretical framework of forest growth describes the general patterns of the assimilated interactions between the different components of trees and stands. The parameterization of the model actually quantifies these relationships and therefore it has strong influence on the simulation outcome. The parameter values used were generally taken from the literature. However, for some parameters no direct measurements were available. Their value was chosen to give as realistic outcome as possible of the feature whose relations the parameters were describing. The comparison criteria were mostly those from the Calluna-type forest of southern Finland. This kind of fitting was necessary for some of the "aggregation" functions of the model "crown" that Appendix 1 presents. Appendix 5 presents an example of the used parameter values and their sources, separately for both models, since their structure is different and thus they have different parameters.

The main interest was to study, how well the chosen approach could predict the general patterns in the forest growth and development. The reference study of the effect of all the poorly known parameter values on the simulation outcome was attempted. Only the values of those parameters that were studied separately were varied. The parameter sets that Appendix 5 presents are the basic set of values for both models. They are supposed to correspond to the conditions of growth zone of South Finland [Hyryitalı, (62°N, 24°E)] in the growth and yield tables (e.g., Ilvesalo 1920).

The photosynthetic parameter was an average value for a long time period using the available climate data from Hyryitalı and surroundings and the photosynthetic model made based on the field measurements (Korplaitä 1988). The respiration parameter were based on the same climatic data and the experimental results reviewed by Mohren (1987) and Schäfer et al. (1991). The nutrition parameters were averages from various stands (Mälkönenn 1974). Most of the structural parameters were based on the measurements of one or two stands in the Hyryitalı region but also on the measurements made in similar stands in Russian Karelia (Hari et al. 1985).

3.3.2 Simulation of stand growth of Scots pine

The general features of the growth and development of Scots pine stands were the fast increase of the productive organs (i.e. needles and fine roots) in the beginning of the stand development followed by a more stable phase after the canopy closure. This was associated with a more gradual growth of stem and branch biomass. However, the closure of the canopy was reflected on the branch mass development. The transport root mass continued to increase for a longer time than the fine root and foliage masses but its culminati- on occurred earlier than that of the other conductive organs (Figure 8).

The different simulated variables were comparable to the measured values. The foliage, stem and branch biomasses were of the same order of magnitude as the observed values in Southern Finland (e.g. Ilonen 1981, Ilvesalo 1920). The simulations for Hyryitalı gave about 11 kg needle-les for trees of the biggest size class at 100 years and an average branch length of 3.4 m. These values were of a similar magnitude as the values reported by Hakkilä (1972). He also reported that the branch mass of individual trees was 10 to 20% of the bole mass (diameter above 6 cm) in southern Finland when the crown ratio of trees was 40 to 60%. The simulated branch mass was 20% of the total stand stem mass in Hyryitalı. The development of height and crown base height also resembled the general trends observed (Fi- gure 9, Ilvesalo 2020). Initially, the height growth seemed to be too fast, though. The height of the biggest size class of the simulations was compared with the average height of stands. This could have caused, at least partially, the differen-
ces. Initially, the biggest size class corresponds to the dominant height. As the number of trees in the other size classes decreases, the values of the biggest size class correspond more and more to the average values of the stand.

The simulated development of the number of trees per hectare had qualitatively the same shape as in the growth and yield tables (Figure 10, Ilvesala 1920). The model also seemed to produce a similar double-peaked size distribution as is observed in young stands after the canopy closure (e.g. Ford 1975). The used approach was also able to produce the difference in the stem wood production between the different site types just by changing the parameter value for nutrient uptake per unit mass of fine roots (Figure 11). This is in accordance with earlier findings with similar methodology (Mäkelä 1988).

The allocation pattern of carbohydrates between different biomass compartments was very dynamic (see Figure 12) and qualitatively corresponded with the few estimations made on carbon allocation patterns (e.g. Ogiving 1957, Albrektson and Vallinger 1985; Mohren 1987; Reiners 1988).

3.3.3 Geographic variation in the simulated stand development

The use of the presented approach was developed to a more general study of growth in different climatic conditions. Also, it was studied how the earlier observed differences in the structural parameters affected the outcome of the simulations (see Chapter 3.2).

To approximate the changes in the growth of Scots Pine stand in different climatic conditions, a) the functional parameters describing the process rates were modified according to the length of the growing season at each location and b) the values of the parameters describing the dimensional regularities in the different parts of tree were varied based on the measurements performed in the different locations. The Hyytiälä values were the reference values for the parameters connected to photosynthetic production, respiration and nutrient uptake (\(P_o\), \(f_m\), \(f_{mh}\), \(f_{mr}\), \(t_{mhr}\), \(t_{mr}\), \(\sigma_\alpha\) and \(c_\eta\)). The values for other locations were adjusted by multiplying the Hyytiälä values with the relative length of the growing season at each location as compared with the length of the growing season in Hyytiälä. The structural parameters (\(f_{mtr}\), \(e_{DT}\), \(e_{ST}\), \(e_{Ar}\)) were the measured values for the different locations (see Chapter 3.2). The wood density was not changed between the locations. It was assumed that the opposing trends of north-south gradient and the growth rate in the density of the trees would cancel out each other (Hakkila 1968; 1979).

Appendix 5 presents the parameter set and the parameter sources used for simulating the growth of the Hyytiälä stand. Table 5 presents the parameter values that vary from one location to another. The locations for the simulations were Muddusniemi in Lapland, (69° N, 27° E), Hyytiälä in Southern Finland, (62° N, 24° E) and Voronez, in South Russia, (52° N, 40° E). The different growing conditions were derived from weather data that was available for Murmansk, Jyväskylä, and Voronez and from the structural measurements carried out at Muddusniemi, Hyytiälä and Voronez. The length of the growing season was calculated from the daily average temperatures as the number of days which had average temperature continuously above 5°C.

The same trends as observed for Hyytiälä simulations were present also in the other geographic locations. The main difference was that the initial development of the different biomass compartments was much faster in the South than in the North and that the levels reached were
The parameters varied in the simulations and their values in different locations. See explanations in text and Appendix 5.

Table 5.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mudusni</td>
</tr>
<tr>
<td>P_v^*</td>
<td>1.98</td>
</tr>
<tr>
<td>f_{sw}</td>
<td>0.13</td>
</tr>
<tr>
<td>f_{sh}</td>
<td>0.015</td>
</tr>
<tr>
<td>f_{sw0}</td>
<td>0.015</td>
</tr>
<tr>
<td>f_{sh0}</td>
<td>0.015</td>
</tr>
<tr>
<td>f_{s0}</td>
<td>0.64</td>
</tr>
<tr>
<td>a_1</td>
<td>0</td>
</tr>
<tr>
<td>a_2</td>
<td>0.05</td>
</tr>
<tr>
<td>a_3</td>
<td>0.3</td>
</tr>
<tr>
<td>e^*</td>
<td>0.0106</td>
</tr>
<tr>
<td>P_{sh}</td>
<td>3</td>
</tr>
<tr>
<td>e_{sh}</td>
<td>0.98</td>
</tr>
<tr>
<td>e_{s0}</td>
<td>0.89</td>
</tr>
<tr>
<td>e_{s0}</td>
<td>0.45</td>
</tr>
</tbody>
</table>

* For determining the needle mass branch cross-sectional area ratio values from Hari et al. (1985) were used.

Figure 14. The simulated and observed stem mass development for North Finland. Simulated values are marked with solid line and observed values with dotted line. The observed values are from Iivessalo (1970) from site types C1, E1C1 and EM1. The simulated values were obtained by varying the value of e^* (0.0073, 0.0106 and 0.0146).

Figure 15. The simulated development of needle mass (open circles), stem mass (boxes) and fine root mass (filled circles). The left scale is for needles and fine roots and the right scale is for stems.

Figure 16. The simulated development of height, crown base height and the needle mass height distribution for trees of the biggest and the smallest size class. The crown width is proportional to the foliage biomass per height.

Figure 17. The simulated allocation of carbohydrates to needles (circles), stem (open triangles) and branches (filled triangles).

Figure 18. The simulated needle mass when 80% (filled circles) and 90% (open circles) of the senescent needles release transport structure to reuse.

3.3.4 Crown dynamics

Crown dynamics of trees are based on the pipe model and the functional balance considerations in the model "branch" (Chapter 2.2). This added a new component of dynamics on the stand development as compared to the results of the more aggregated model "crown". The changes of foliage biomass became more dramatic at the start of canopy closure. This was also reflected more in the branch mass than in the model "crown". However, the development of the other biomass components was similar in both models (Figure 15). The dynamics of foliage biomass coincided with the observed values by Albrectsson (1980).

The simulated crown form dynamics behaved rather logically. A major proportion of the foliage biomass was in the lower parts of the crown when the trees were young or growing widely spaced. When the trees became older or were densely packed, the bulk of the foliage mass moved into the upper crown (Nikinmaa 1990). Simulated favorable nutrient conditions produced crowns in which foliage was concentrated more on the upper proportions. This agrees with the result of Brix (1981) from a fertilisation experiment (see Nikinmaa and Hari 1990). The pruning limit of the crowns was about the same in the trees belonging to the dominant tree classes but was clearly lower in the smallest size classes (Figure 16).

The trend of the allocation of carbohydrates between different biomass compartments remained the same in the model "branch" as in the model "crown" but it became more dynamic, especially for foliage and stem wood (Figure 17). The fluctuations became bigger as the trees became bigger or when the trees became clearly dominated by others. The fact that the senescence of sapwood into heartwood depended on the changes of the pruning limit height caused some of the fluctuations as probably the oversimplified branching model. This shows in the allocation pattern: when more is allocated to the stem less goes to the branches. When the pruning limit moves higher, a smaller proportion of the dying needles releases transport structure in the stem for reuse. Thus the new needles require more new structure to support them in stem. From this it follows that a bigger proportion of the carbo-
hydrates goes to the stem. In the opposite case, more needles and especially more branch wood is formed. Also, if the branching model produces too few new shoots at older ages, a high proportion of carbohydrates is allocated for their growth (see Equation 22). Thus, the average proportion of carbohydrates allocated to branches becomes bigger.

The practical realisation of the crown dynamics included parameters that were estimated using the fitting procedure described in Chapter 3.3.1. These were involved with aggregation from the more dynamic model "branch" to the model "crown". Also the calculation of sapwood release from senescing to functioning needles required simplification in the model "crown". Example of such simplifications is the parameter ξ of Equation (B8), which determines how different heights are weighed in the distribution of released transport structure for reuse. Also the maximal limit for the ratio between the growth of needles at given height and the growth of other structures required to support them was such a parameter (see Chapter 2.2.6). The simulations indicated that both models were quite sensitive for changes in these parameter values. If their values were such that too long crowns resulted in the early development of stand, the whole stand could collapse prematurely at about 60 years of age.

3.3.5 Turnover of sapwood to heartwood

The transport structure that served needles which died below the living crown in stem or in branches became heartwood in the models. Thus needles dying below the new living crown did not release transport structure to reuse in the models. The heartwood formation initiated in branches was approximated in the model "crown" by assuming that dying foliage would release to reuse only a certain proportion of the transport structure that has served them. The change of the pruning limit caused most of the heartwood formation in the early stand development whereas later on the heartwood formation in branches seemed to dominate.

The variation of the factors that affected the heartwood formation had a large effect on the outcome of the simulation (see Figure 18). The effect was very clear on foliage growth but rather small on woody growth. The factors affecting the pruning limit in the model "crown" affected the timing and the level of the peak needle mass mainly. The parameter for the formation of heartwood in branches affected mainly the needle mass of the later phases. In both cases there was remarkably little effect on the wood formation.

The effects of senescence are represented in Equation (15) in Chapter 2.2 by S_b and l_b. These show that the changes in senescence rates affect the growth of needles, G_{n}, and, consequently, growth of other biomass compartments, G_b, G_n, G_h, and G_h, through Equations (11) and (15)–(17). The simulations demonstrate that small changes in the rate of heartwood formation change the allocation so that although the foliage biomass is much affected, the changes in woody mass can be quite small.

3.3.6 Effect of nutrients on stand growth

The availability of nutrients per unit mass of carbon used for fine roots affects the stand development as shown in Chapters 3.3.2 and 3.3.3. The model was very sensitive to the parameter for nutrient uptake rate, e_{r}, at the range of values that produced a comparable stand development to the growth and yield tables. Especially at the lower range of values, a 40% increase in the parameter (from 0.007 to 0.01) caused a two-fold increase in the allocation of carbon to stem whereas a change from 0.014 to 0.018 changed the allocation only by about 20%. However, no root interference was assumed in the simulation results of Chapters 3.3.2 and 3.3.3.

The effect of root competition on stand development was studied by changing the slope parameter, k_r, of Equation (A13) in Appendix 1. The higher the parameter value, the steeper was the effect of the fine root biomass on the root specific nutrient uptake rate. As can be seen from Figure 19, the effect on the biomass compartments and distribution of produced carbohydrates is clear. An increase from 0 to 0.0003 (fine root biomass in kg/ha) caused only small changes, but as the value increased from 0.0003 to 0.0005 a clear change in the allocation pattern took place. At the highest value the system oscillated before a stable development followed. It is interesting to note that the higher root interaction...
the effect of such variation. The effect was str-

goest on the fine root and stem mass whereas

the foliage mass was less affected. Carbon allo-

cation between the different parts of tree was

affected in a similar fashion as when the nutrient

uptake parameter was varied. This is natural,

since both terms describe the nutrient acquisition

for the remaining and new structures. However,

in contrast to what happens when the uptake rate

parameter is changed, changing the retransloca-

tion parameter does not reflect the timing of the

minimum or maximum allocation and causes a

bigger change in the proportion allocated to fine

roots.

Figure 21 presents the importance of internal

nutrient cycling. Nambiar (1985) and Helmisai-

ra (1990) point out that the retranslocated nutrients

are a major nutrient source for new growth. Hel-

misaira (1990) claims that the significance of

retranslocation depends on the phase of stand

development. Simulation results suggest that the

proportion increases until the maximum needle

mass is attained. After that, the proportion of

internally circulated nutrients stabilizes to about

40% of the total nutrient requirement (see Figure

21). This falls into the lower range of the values

estimated by Helmisaira (1990).
(Davidson 1969) was changed to better correspond with long lived trees that have clearly different biomass compartments with different nutrient demands (Mäkäräinen 1974) and that can obtain a considerable amount of their annual nutrient requirement of growth through internal circulation (Helmsaari 1990). The present model was written as a carbon balance model, as is the mass balance model for based stand growth models (e.g. Hari et al. 1982, McMurtrie and Wolf 1983, Mohren 1987, Ludlow et al. 1990). However, it was simultaneously required that the nutrient balance of trees would hold (see Chapter 2.2). The assumptions that were written in carbon terms could be written at nutrient basis. In that respect, the model resembles the nutrient productivity approach of Ågren (1985). However, the actual balance equations are different in the two approaches.

It is assumed that the growth of a biomass compartment depends linearly on the nutrients allocated to that. Equation (11) shows that the root to shoot ratio depend inversely on the nutrient uptake per unit mass fine roots. The experimental results of Ingestad (1979) have demonstrated a linear relationship between the internal nutrient concentration and the relative growth rate of trees. If the state of nutrition is low. According to those results, the conversion efficiency of nutrients to structure, a_w, would not be constant. The results of, e.g., McDonald et al. (1991) show that the concentration depends on the availability of other resources. If we allow the conversion efficiency to vary, the presented approach produces root to shoot ratio that is a Michaels-Menten type function with respect of the conversion efficiency. Then it is assumed that the conversion efficiencies of nutrients to structure of the different biomass compartments are proportional to each other.

The conversion efficiency in the presented approach is the same as resource utilisation for growth. It could be replaced with a resource utilisation function, which describes the structural growth per unit of nutrients as a function of, e.g., uptake efficiencies. Also, an optimal growth problem could be formulated with respect of nutrient utilisation. These considerations would allow for variation in the nutrient concentration of the tissue. However, the equations of Chapter 2.2 demonstrate that the use of more complicated relationships than the applied linear ones can result into rather cumbersome solutions. In natural conditions, the nutrient concentrations seem to remain stable in certain soil conditions. Differently adapted to the same resource availability (e.g. Schulze and Chapin 1987). Principally, the presented approach could be applied for this kind of analyses.

4.3 Testing the assumption of a constant ratio between the water transporting wood and the water transpiring foliage

The main operational assumptions of the model were those that describe the balanced internal state, i.e., a constant nutrient concentration in the different tissues and that the ratio between the foliage and sawdow cross-sectional area. Within the theoretical framework, the first described the result of the regulation of the resource acquisition and utilisation and the second described the development of sufficient transport capacity to allow for the maintenance of the balanced internal state. As already pointed out, rather much work has been done on testing the basis of the first main assumption (e.g. Mäkelä and Sievänen 1987). For these reasons, the main emphasis of the independent testing of the key operational hypothesis of the theoretical framework was laid on the second assumption.

The results of the measurements supported the hypothesis at stand level. The relationship between the foliage mass of a branch and the cross-sectional area at the crown base of the branch was linear within stands. Also the relationship between the sum of the cross-sectional areas of branches measured at the same place and the stem cross-sectional area at the crown base was linear. On the other hand, the dynamic measurements, i.e., estimations of change of the needle mass and the change of tree ring area gave a linear relationship that should follow if the hypothesis is correct. The slopes of the dynamic estimations were slightly higher than those of the static estimation but the material measured did not allow to estimate if the difference is significant. However, the relationship between the change in the foliage quantity and in the tree ring area is according to the hypothesis. It follows if the stand structure is dynamic (see Chapter 2.2.3, Equations 12-14).

The water transport velocity per unit amount of supplied leaves can be very different in different tree species (Huber 1928). The water transport velocity within the conductive cells depends strongly on the lumen size (e.g. Zimmermann 1983). There are clear and systematic trends in the tracheid size distribution in stems of conifers. They can be observed in the same tree ring from the top downwards and between tree rings at the same height from the pith onwards (see Chapter 2.1.2.7). Voskogt et al. (1985) report a tracheid size variation depending on the site conditions. In spite of these observations, there are the apparently contrasting results of constant linear relationship between the crown foliage biomass and the sawdow cross-sectional area at the crown base within a stand (e.g. Whitehead 1978, Kaufman and Trondle 1981, Wa- ring et al. 1982, Hari et al. 1986a). A similar relationship was also observed in this study with the exception of small differences.

The regression lines for the different locations were clearly defined in southern and northern stands. Trees of the southern conditions could support about three times the foliage of those of Lapland with the same cross-sectional area. Kai- pianen (Nikinmaa et al., manuscript) has observed that the stand level transpiration per needle mass is approximately constant in different conditions. This means that the annual water flow per unit cross-sectional area would be about three folds in trees of southern conditions compared to those of Lapland. On the other hand, the growing period is longer in the South and the potential evaporation is higher in the North. This and the constant water flow per unit mass of needles suggests that the average canopy conductivity is lower in the South than in the North. It can be that the smaller amount of sawdow cross-sectional area per needle mass of needles plays a role in bringing that about.

It seems that, either water permeability of wood changes strongly when going to more favourable growing conditions or the woody structure plays a role in the water balance of a tree. Pothier et al. (1989) have demonstrated that the sapwood permeability changes as a function of the site quality and it is connected to the changes in tracheid structures. At young spruce, the permeability correlated with the lumen diameter. The findings are supported by the results of Voskogt et al. (1985). Coey and Margolis (manuscript), on the other hand, found that the relationship between the structure and permeability of Abies balsamea (L.) Mill. was positively correlated with sapwood permeability. Thus, similar permeability changes could have taken place in the trees of this study.

The control of the woody growth seems to bring about linear regression between the amount of foliage and the sawdow cross-sectional area at the crown base. The size distribution of the
water conducting vessels or tracheids would thus need to be similar there at stand level. However, there is evidence from many species that the regression does not remain constant at other heights (Huber 1928, Waring et al. 1982, Tyree et al. 1987). We found (Aröld and Ninimaa, unpublished result) that the sapwood cross-sectional area at 1.3 meters was about double to that at the crown base. The ratio between early and late-wood starts to decrease below crown or lower parts of the living crown (Larson 1969, Hari, Department of Forest Ecology, University of Helsinki, unpublished data). This could explain why the ratio of the cross-sectional areas between branches and stems started to decline in the lower parts of the crown in Voronez and is so different at the breast height compared to crown base. However, the same reason could not explain the changes in north-south gradient. There seems to be proportionally more late wood in the southern trees than in the northern trees of the same size (Mikola 1980).

Zimmermann (1983) introduced a model of architectural hydraulics of trees. It suggests that water conductivity is lower at distal points of a tree than in the main stem. This hypothesis coincides with quite general observations that the tracheid size changes within the tree in height direction and also at high gradient (Sanio 1872, Helander 1933, Bailey 1958, Dinwoodie 1961, Burley and Miller 1982). The observations of this study may support that idea in the southernmost conditions. There one could observe increase in the ratio between branch area per unit stem area, which could reflect changes in conductivity when moving downward in the upper parts of the crown, which was not very clear.

Tyree and Sperry (1989) suggest that the negative effects of drought and their limitation only to the most distal branches are not so important for trees living in the more northern climates. It is more crucial to avoid xylem dysfunction due to water embolism. This would mean that trees growing in cold climates would need to have structures that either avoid winter embolism or facilitate the restoration of any damaged parts in their water conducting pathway. Cold temperatures in the winter are affecting water in wood almost equally at any point. From the above, it could follow that the fine structure of wood could be more or less independent of the position in the water transport system in the North as contrast to the South. Thus, the pipe model considerations could hold better in the North than in the South.

The mechanical stress caused by snow loading during winter has a clear gradient in North South direction. Various people have explained the stem form quite successfully on the basis of mechanical considerations (review by Assmann 1970, Ylilinen 1952). The same considerations can be used to describe the structure of the branches (e.g. King and Loucks 1978, Cannell et al. 1988). In this study no clear trend was detected that would have indicated geographical difference in the mechanical stability. It must be said, though, that the measurements were not designed to study that kind of effect.

A more mechanistic theory of the growth of trees is based on the source-sink considerations (see Chapter 2.1). According to these theories the sink strength of the growing meristems determines where the flow of photosynthetic products is going. The new foliage seems to be a strong carbon sink and draws photosynthates from nearby sources (e.g. Dickson and Iserbrands 1991). Favourable growing conditions can facilitate fast foliage growth. Thus a bigger portion of the carbon supply of the tree is drawn to the growth of new foliage and less is left for the stem. However, good conditions facilitate high total foliage growth giving also bigger stem growth in absolute terms. These considerations could explain the observed pattern of increasing ratio between foliage and stem cross-sectional area when going from North to South and why the ratio seems to increase in the southern stand as a function of tree size. Sato (1956, 1958, 1959, cited by Kozlowski 1971b) and Long and Smith (1988) observed a similar pattern with other species.

The used assumption appears to be an applicable tool in describing the control mechanisms bringing about wood and foliage growth of Scots pine, especially in the present conditions in Finland where the species is growing. In these conditions there are two aspects that need to be modified further. The one aspect seems to be tree-to-tree genetic variation that brings about different foliage/wood relationships. In Hyytiala and Ikfruts there were outlying trees that had clearly differing values for the observed relationships and which difference, especially in Hyytiala, from the rest of the stand. This may have a strong effect on the allocation of carbohydrates, as the simulations of the chapter 3.3.3 demonstrated. Also, the dynamics of the development of different individuals can be affected. The so-called “wolf trees” could be examples of that. Their consideration in the simulations could bring in a new component of dynamics in the analysis of stand development. The other aspect to consider in the future is the tracheid size distribution that can be observed along the ontogeny of development of the meristems. That can be done within the present model structure by varying the coefficient of proportionality between sapwood area and needle mass, e, according to the height age of the stem at that height.

It is more difficult to consider the changes of the coefficients at the same corresponding height that was observed in trees of different sizes in the southern stand. The consideration of the differences observed between stands is also difficult for this. However, this becomes necessary if the models are wished to be used in the conditions of changing climatic conditions. It is not clear if the observed changes are phenotypic of if they are due to genetic development of the trees. The experimental stands were rather centrally situated in the regions of Svoboda’s taxonomic subdivision of the Scots pine of the European area (Giertych and Matyssek 1991). Thus, the stands should have had rather different genetic compositions. Also, one would not have expected linear ratios within stands if the ratio between the foliage and the sapwood area depended on the growth rate, i.e. carbon allocation feature. On the other hand, there was clear non-linearity in the measured values in the Voronez stand.

It must be clarified, to what degree the observed change is phenotypic and how strongly it is genetically controlled. The interaction of auxin, cytokinins and gibberellins controls the coupling of the foliage and woody growth. Thus, the growth processes are very closely tied to the annual rhythm of the trees (e.g. Larson 1969) which is under strong genetic control (e.g. Koski and Sievänen 1985). Therefore, the annual rhythm of trees belonging to different provenances determines quite strongly their growth. Because of this it would be major changes in foliage/wood ratios would not take place although climate would change. In fact, the observation that the ratio is less sensitive to the tree size in the North than in the South could indicate a stronger annual rhythm in the South.

A general description of foliage wood ratios would require considering both the internal structure of the wood and its quantity in relation to the functioning and quantity of foliage. General lines to improve our knowledge in these respects would be to examine the quantity and functional quality of wood and the relationship it has to the amount of foliage and its functions in different conditions. In addition, the control processes between foliage and woody growth need to be studied at mechanistic level. According to Tyree and Sperry (1989), the model simulations have demonstrated that stomatal regulation and xylem physiology must evolve as an integrated unit in order to prevent catastrophic dysfunction. They conclude that trees must evolve mechanisms to keep an appropriate balance for carbon allocation between leaves, which increase evaporative demand, and stems, which supply the demand for water evaporated from leaves.

4.4 Evaluation of the approach

Evaluation of the approach requires testing of its components and the whole, i.e. how well the different composite principles are joined together within the theoretical framework. The main assumptions of the models used were those connected with the internal balanced internal state, i.e. constant concentration of different substances and the constant structural relationships. Previously the basic assumptions of the approach were dealt with. It was concluded that they can be used as an approximation when the analysis of growth is developmentally improbable, although, they do not correspond exactly with the real world situation in every condition.

There were various other assumptions that were necessary in order to formulate the approach mathematically. Some of them followed from the principle of balanced internal state. Since it was assumed that the internal states remained the same, the uptake processes could be described with the variation in the internal conditions. Some other assumptions used were basically simplifications of the real world, either because their importance on the outcome of the simulation was small in comparison with problems in their realistic description was not known on the control processes involved. For example, it was assumed that only the light regime in the canopy would change so strongly that it needed to be considered in the analysis and that the wood density is a constant.

The additional assumptions were not tested separately, as the key assumptions, partially because at the moment that would have been either impossible or at least very laborious and was outside the scope of this work. The values used were based either on literature or field observations, mainly in the Hyytiala region. However, the validity of the assumptions was studied by estimating how big an effect they had on the
outcome of the simulation. The critical ones of these additional assumptions were introduced as hypotheses to improve the used theoretical framework. This gave some of those attributes that Tuomivirta et al. (manuscript) have identified for a good theory (see Chapter 4.1).

The general features of the growth and development of Scots pine stands were the fast increase in the productive organs in the beginning of the stand development followed by a more stable phase and a continuous and rather stable growth of stem biomass. This result is a direct consequence of combining the effects of light extinction and the pipe-model partitioning pattern (cf. Mäkelä 1990b). Qualitatively this pattern corresponds quite well with the observations (see Chapter 3.3.2). Using a realistic combination of parameter values, the observed patterns are similar to those reported in the growth and yield tables. These results give support to the presented approach.

Interesting result of the approach is that the variation of the foliage mass that produce a large difference in the growth of stem–wood growth is quite moderate. For example in Figures 19 and 20, about 15% of the foliage mass produced by trees with about 70% smaller stem biomass. This approach gives thus the same result as the so called priority principle (Waring 1987). When the resource availability is low, the resources are primarily used for utilizing organs. However, as the resource availability increases, a major proportion of the resources goes to growth of stem and other supportive organs.

As such, these results have also a direct influence on the development of other organs. Allocation seems to be strongly connected to the size of a tree. This has consequences on the studies in which the genetic variability of allocation is studied. If there is a strong stochastic variation in the size of the individual in site conditions or in the establishment of the experiment, then the genetic variation may obscure the genetic differences.

The differences between different locations within the climatic conditions presently observed in Finland could be described by modifying the material exchange rates according to the length of the relative growing season of the location and changing the structural parameters according to the local measurements. However, the same approach was not as successful in more southern conditions.

It was assumed that the growth processes match the resource uptake at annual basis and that the internal concentration of materials remains stable (see Chapter 2.2.1). However, the balance between the processes can change, when moving to very different environmental conditions, as the results over the structural regularities would suggest. Thus, both the internal concentrations of materials and the exchange processes could vary, since the latter depend on the former (see Chapter 2.1).

There was not enough data to estimate all the necessary parameters of the model for the different conditions. Still, surprisingly good fit with the observed could be reached, thereby, there are additional calculations that would be necessary to produce the required parameter values even if the same data as from Hyytiälä was available from all places. For example, where the water availability limits the photosynthetic production one would minimally need to estimate the potential annual photosynthetic production as a function of the foliage mass of the stand and the water retention capacity of the soil. Similarly, the very basic way of describing the stand light conditions would need to be improved, e.g., according to the lines given by Kuuluvainen and Pukkala (1989). Also the effects of canopy on the radiation, and in this way to photosynthesis, become more important in the southern conditions.

The generalisation of the model to a wider range of conditions requires additional work. The used approach offers possibilities for this provided that additional information is obtained on, e.g., the acclimation/adjustment of photosynthetic and respiration rates to temperature (see review by Siri 1991) and the variation of the structural regularities in response to the different conditions. The approach can be utilised to estimate the effects of climate changes on the trees in a given stand. The requirements for the approach are in this case similar. However, the approach is used to study the performance of tree and stand growth at geographically different locations. However, the treatment is simpler because one needs not to consider the genetic differences. In this case the model is more flexible and the different processes can acclimate to environmental changes. The results of simulation for stands in South and North Finland suggest that small changes can be estimated quite readily even with the present approach. When the aspects such as variation in the annual cycle and summer droughts become important, they need to be considered in more detail. The method can be used to analyse how different structural adaptations, for example forking patterns, affect the performance of trees in very different conditions (see also Kääpä 1989). In that manner, new information can be gained on the probable success of different genetic traits or different species in different conditions.

4.5 New important features of tree and stand growth suggested by the approach

The formulation of the model required construction of sub-models describing aspects that are poorly known. These aspects were studied through simulations. The sapwood turnover to heartwood, elongation growth and the forking patterns, nutrient uptake and retranslocation, the root mortality and the tree mortality had all a big effect on the simulation outcome when the parameter values of the sub-model describing these aspects were varied. Many of these aspects are such that their importance in the tree growth and stand development is not apparent. The used approach raises those as interesting hypotheses of factors affecting tree and stand growth.

An adequate description of growth and branching pattern is important in simulating the tree growth. Equations (19) and (20) in Chapter 2.2.4 demonstrate that the growth of foliage biomass implies an exponential demand for the mechanical and physiological support of shoots (also, e.g. Ford 1985). The expression that describes the dependency of shoot wood growth from foliage growth has a theoretical value of 3/2 for a single shoot in Equation 19. However, the value of n decreases when many daughter shoots grow from one mother shoot. The needle mass is distributed among many shoots and the average length of shoot per needle mass grows slower as would otherwise be the case. The production of new shoots is less because the value would give no length growth. The value of n has not much importance when the foliage mass per shoot is small since any exponent between 1 and 3/2 would produce almost the same outcome. However, the amount of carbohydrates used for the growth of daughter shoots of a given mother shoot increases, the importance of this parameter becomes bigger.

According to these considerations, very different allocation patterns could result between trees that have different branching design.

The branching pattern determines the extensional growth of different parts of trees and the height growth, as well. It also determines the development of the light climate within the canopy and the relative position of the tree within the canopy. Also the extension growth related to diameter growth has got a strong influence on the strength properties of wood (e.g. Ylinen 1952, Assman 1970, Morgan and Cannell 1988).

Kellomääki and Öker-Blom (1983) estimated that at high latitudes the within-crown shading of trees can be much more important than the between-tree shading. This should be considered when the costs and benefits of different branching patterns are being evaluated. However, it is not as likely that the same pattern of growth can produce as good outcome from the cost-benefit point of view in all conditions. The branching pattern that was determined from young trees did not function so well in the simulations, as the trees became older. The allocation of carbon between stem and branches fluctuated and a very high proportion of carbohydrates was allocated to branches. There seems to be plasticity in the branching pattern of trees depending on the stage of the development of the stand (Ford 1985). The simulation results suggest that such plasticity is an important factor in stand growth.

The identification of differences between branching patterns could be increased in conditions of very good growth. Then the differences in the biomasses would be the biggest between the branching patterns, both in absolute and relative terms. However, meaningful conditions could give biased results, since the plastic response to changing environment seems to be an important factor, especially as the trees age. The fact that there are obvious cost differences in shoot growth and obvious benefit differences because of between shoot shading can facilitate analyses of optimal branching patterns. These analyses could be used to aid for example tree breeding programmes.

The within-crown heartwood formation had a large effect on the outcome of the simulation, as also demonstrated by Mäkelä (1988). Factors affecting crown dynamics had a big effect on the simulation outcome and affect heartwood formation. The effect was clear on the growth of foliage but rather small on woody growth. Changing the factors that affected the pruning limit of the model "crowd" affected the timing and the level of needle mass culmination. On the other hand, changing the heartwood formation parameter of a branch affected mainly the needle mass of the later phases of stand development. In both cases the parameters had remarkably little effect on the
wood formation. On the other hand, the model "branch" was sensitive to parameters that determined the self-shading of the trees and how the new needles at different heights reused the released transport structure [Chapter 2.2, Equation (25)].

Equation (18) in Chapter 2.2 shows that the changes in relative senescence rates directly affect the distribution of carbohydrates between the tree parts. The simulations demonstrate that small changes in the rate of heartwood formation change the allocation of carbohydrates between the parts of trees. While the foliage biomass is much affected, the changes in wood mass can be small. Those changes in the allocation pattern could explain why atmospheric pollution causes needle loss of conifers but does not reduce the stem wood growth as much (Nöjd 1996).

An adequate description of the "internal circulation of structure" seems to be important in determining the stand level growth of biomass compartments as well as within the tree distribution of foliage in the crown. I use the term "internal circulation of structure" to describe how the existing structure that the dying needles release is fulfilling the physiological and mechanical support requirements of the remaining and new needles (see Equation 5 in Chapter 2.2). The use of the term is justified, since the process is analogous to the internal circulation of nutrient. No structure moves physically from one place to another in the process but the remaining needles start to use it similarly as the nutrients are used in the translocation process. It is difficult to describe in exact terms the amount of existing transport capacity that comes to reuse from the dying trees at one height. To do this one would need to calculate the amount of sapwood that there is at different positions along the transport path before the growth begins. The transport path requirement for each height would then be the differences between the sapwood area that is required by the new total needle mass at each height and the existing sapwood area over the length of the transport path. This naturally requires a good description of the architecture of transport branches relative to other branches and stem. It is probable that the problems of sensitivity of the model to the reuse parameters stem partially from an inadequate description of the tree architecture.

Although there is empirical and experimental evidence for the existence of a relationship between heartwood formation and the death of whors of branches (e.g. Kaipilaani and Harri 1985), more work is needed to study the generality of these observations and the mechanisms bringing them about. It seems strange that despite the big importance of these questions, little attention has been paid to them as reviewed by Saranpää (1990).

The presented role of existing structure on growth raises interesting aspects on the interpretation of trees as multicellular organisms. It has been argued that individual branch masses would be quite independent with respect to carbon (e.g. Sprugel et al. 1991). Plants can also be considered to consist of foliage and fine roots and associated infrastructure required for their functions as suggested by the concept of integrated physiological units (IPU, Caspar and Watson 1984). In such a case, the construction of the infrastructure at other parts of the plant needs to be considered as a necessary expenditure for each leaf. The presented approach, on the other hand, dying needles release transport structure that fulfills a big proportion of this structural requirement. Thus, a considerable amount of the photosynthetic productivity is liberated for other uses. So, in a way, the released transport structure is comparable to photosynthetic production that is transported by the tree to a particular location. Consequently, there is not an independent even with respect to carbon, since the previous existing structure determines its growth potential to great deal.

The above considerations can have interesting consequences on the growth of trees in different light climates. In open grown trees the needle mass is growing or remain quite constant even in the lower branches. From this it follows that branches at different heights are utilising the transport structure released by the dying needles at that height. Naturally the shoots at the upper part of the tree have to use considerable amount of the carbon resources for the growth of stem, since there are hardly any senescing needles that release transport structure for them. The trees that are growing in closed canopies have continuously a big proportion of their crown in strong shade. In these parts the needle growth is considerable sensitive to senescence. Therefore a big proportion of the transport capacity formed by the foliage of the shaded crown is released for reuse by the upper crown. The needles growing there can thus use more of their resources for the shoot growth. So the "internal circulation of structure" between various needle generations could, at least partially, explain the height growth pattern of trees grown in different densities.

The root competition had a clear effect on the stand development. The simulated standing stock was 70% smaller when the "root extinction" coefficient was 0.0004 as compared to the stock obtained when using the value of 0.0002 for the coefficient. The effect on the needle mass was much more moderate. Competition between the roots seemed to decrease especially the value of peak needle mass at the canopy closure so that at the value of 0.0004 no clear peak was present. As Manter (1996) pointed out, the general trend in the growth of the different biomass compartments at stand level is a direct consequence of the diminishing returns of the growth of uptake organs and the increasing cost of supporting organs according to the pipe model. By introducing the root competition, there is an independent decrease of uptake efficiencies of both nutrients and carbon per unit mass of uptake organ. The distribution of growth results then so as to balance these changes. As can be seen from Figure 19 C the effect on allocation can be considerable.

The system started to oscillate before a stable development was found. This could indicate that the system was not in a constant nutrient concentration in tissues does not allow a flexible enough response to strong changes. On the other hand it could be a question of inadequate time dynamics in the model. For the sake of simplicity, the level of root competition in the model depended on the fine root biomass of the previous year. This can generate imbalances in the system, especially during strong competition around the canopy closure.

Retranslocation of nutrients had a similar strong effect on the stand development as the "re-cycling" of the structure from senesced needles to the remaining and new ones. The effect was strongly dependent on the stem mass whereas the foliage mass was less affected. Retranslocation especially affected the amount of carbon allocated to fine roots during the stable phase of the stand development. During that phase a considerable proportion of the nutrients for growth came from internal circulation in the simulations.

The simulations indicate that the internal circulation of nutrients is an important source of resources for long living plants (see also Nambar 1985; Schulze and Chapin 1987; Helmsaari 1990). However, relatively little is known about the processes controlling the retranslocation of nutrients. An approach can facilitate the study of optimal needle senescence patterns from the new growth point of view. This may give some new insight on the role of internal nutrient cycling in the control of growth. Some experimental results suggest that unfavourable environmental conditions do not necessarily enhance the proportion of nutrients retranslocated from the senescing structures (Nambar 1985; Schulze and Chapin 1987). However, the approach used in the present work could identify beneficial internal circulation patterns. These could then be used as a basis for experimental work to analyse, e.g., the success of certain individuals, provenances or species.

The importance of internal circulation of nutrients naturally emphasises the importance of leaching of nutrients from plants point of view. According to Chapin (1991) leaching can account for about 15% of the annual nitrogen and phosphorus returned from plants to soil. The simulation results suggest that it is an important factor determining plant growth.

An interesting result of the simulations was that the model was very sensitive to the parameter for nutrient uptake at the range of values that produced stand development comparable to the growth yield target values at the stable phase of the range, a 40% increase in the parameter value (from 0.007 to 0.011) increased the allocation of carbohydrates to stem about two folds at the stable phase of development. A change from 0.014 to 0.018 changed the allocation only by about 20%. This might reflect a high sensitivity of infertile stands to factors that further drop the availability of nutrients, such as forest fires and acid deposition.

Fertilisation experiments in Sweden have demonstrated that stand level fine root biomass is quite stable at very wide range of nutrient availabilities (Linder and Axelsson 1982). In simulations the fine root biomass remained quite as the nutrient availability was improved and then started to decrease again. At the range of values that corresponded to Calluna- to Myrtillus-type stands the actual fine root biomass was quite stable though, since the culmination of fine root growth occurred at that range.

The modelling approach assumes a constant nutrient concentration in the tissue. As mentioned, the results by Tamm (1989) indicate that the concentration of nutrients in needles remains quite stable at different nutrient availabilities. However, as the nutrient availability increase, also the stable concentration increases. Considering the above model it could be even further the changes in the stand level fine root biomass.
The mortality of trees is probably the process that is the most difficult to describe in adequate terms at the moment. Generally tree mortality has been attributed to a declining relationship between the need and availability of resources. The presented approach could work if a stand was treated on an individual tree basis. The problems would be associated with the description of environment by trees and the genetic composition of the stand.

A model that uses tree size classes faces the problem that one should be able to describe population level phenomena within each size class. In the present model, this is done so that the proportion of trees dying in a given size class increases as the growth of needle mass falls beyond some threshold level. In qualitative terms the model functions satisfactorily even with the four size classes used in the model "crown". However, in this case it is extremely sensitive to the threshold level parameter. The sensitivity to the threshold level parameter decreases, though, as the number of size classes is increased. In any case improving the mortality component in the approach is very important.

4.6 Final remarks

The main aims of this work were to develop a theoretical framework for the growth of Scots pine and to test the applicability of the concept of balanced internal state, as described by the functional balance and the pipe model conditions, within this framework. These key assumptions were used to formulate a more general theoretical framework in the form of mathematical model. The general formulation of the growth processes as means of matching the tree structure with functions compatible with some of the other main theories in the field of physiological based tree growth analyses. A simplistic approach was used in the mathematical formulation but also flexibility to more complicated formulations would be desirable.

The relationship between the transport structure and the foliage quantity was linear within a stand, but considerable between site variation was observed. The geographical variation suggested changes in the woody fine structure between sites. Also, the possible role of woody structure in the water balance of tree was identified. The analysis showed that a linear relationship between the relation between the growth of foliage and wood in all locations but the measurements between the change in the needle mass and dimension of the ring area suggested that it could serve as an approximation of the relationship within the framework.

Testing of the approach showed that it can be applied to describe the stand dynamics within limited climatic conditions by modifying the characteristics. The application of the approach to a more general description of growth and yield of Scots pine in different climatic conditions requires additional work. Especially the role of acclimation and adaptation to environmental variations in the woody growth needs to be clarified more, as that has rather an important significance on the relationship between the growth of foliage wood and fine roots.

The approach indicated that although the input/output reactions are important, also the rather weakly understood processes bringing about internal circulation of nutrients, and internal circulation of structure having a big importance in the growth outcome. Also the connection between foliage growth and extension growth of shoots affect overall growth and stand development. Presently many of these factors were included into the analysis in a rather crude way. Therefore not much can be said about how, e.g., environmental change will affect them. However, the analysis shows that if there are changes in these processes, strong changes can also be expected in growth. Furthermore, the reasons for the changes in the growth could be the changes in the above factors.

The main justification for this work was derived from the need to estimate growth of tree stands in present conditions where the traditional methods of modelling growth become less applicable. It can be appreciated from this work, that it is not the best tool to estimate short term growth for management purposes. The problems involved in the correct determination of parameter values alone introduce bigger error to the analysis than normally accepted in forest management planning. However, as the planning period increases in length, the applicability of the approach improves and the accumulation of error is considerably less than in the traditional method. Similarly, when it is foreseeable that the conditions of the past and the future are not the same the traditional method looses its ground. Although nobody can predict the future, splitting the growth into its components facilitate intelligent guesses.

The main value of this type of work is that it can help us to understand complex forest ecosystems and the role of growth in them. As such it can help even the management level planning. It is possible, e.g., to identify which growth of tree to make for an efficient estimation of growth. As mentioned, the parameter estimation of a model based on physiological processes is difficult. However, by linking the different factors together, it is possible to connect the growth process of tree to some readily measurable dimension (e.g. Sievänen 1992). Then it is a question of quantifying this relationship with simple regression techniques. In optimum case also the range of applicability of such relationship could be examined with the more theoretical model. Also this type of approach offers a tool to evaluate the outcome of different kind of thinning regimes. Even if the simulation results could not yet be used as direct quantitative estimations, they can point out hypothesis which could be tested with relatively short time experiments.

The rather aggregated method to study processes bringing about growth presented in this work offers means to study the dynamics of stand growth caused mainly by the stand development itself, in the change in the size and number of individuals and the total biomass of different biomass compartments at stand level. As such it offers a tool for improving our understanding on the relative importance of processes bringing about stand development. A generalisation of this kind of model requires either determination of parameter values for different locations or more detailed analyses of the mechanisms bringing about the growth guiding principles. It is necessary that the changes in the principles can be derived as a function of both environmental and internal factors. The value of this approach is that it offers relatively a simple framework which can be used for making stand growth models for different purposes as contrast to the more flexible but simultaneously more complex mechanistically based models. At minimum, it offers a tool to analyse the importance of various factors in the growth phenomena.

References

Larson, P. R. 1969. Wood formation and the concept of wood quality. Yale University, School of Forestry, Bulletin 74.

Sarapää, P. 1990. Heartwood formation in stems of Pinus silvestris L. observations from the Department of Botany, University of Helsinki 14: 1-22.

Selostus

Analysi männyn kasvusta: rakenteen sopeutumista aineenvainhtuina

Tässä työssä analysoitiin männyn kasvun osaava puun elinvoimattomaa ja muututuksia. Koska elinvoimattomuus ja muutot voivat liittyä kasvun kehitykseen, on tärkeää analysoi näitä tekijöitä yksityiskohtaisesti.

Teoretisesti viitekehyksen pohjalta laadittiin matemaattinen malli, joka avulla analysoitiin tapahtumien seurausta. Tarkoituksena oli selittää tapahtumien seuraaminen ja määrittää mahdolliset seuraavat tapahtumat.

Mallin perustana oli tunnettu kasvun historiallinen ja avulinkirjettynä. Malli määrittelee yksittäisten tapahtumien seuraamisen ja määrittää mahdolliset seuraavat tapahtumat.

Mallin perustana oli tunnettu kasvun historiallinen ja avulinkirjettynä. Malli määrittelee yksittäisten tapahtumien seuraamisen ja määrittää mahdolliset seuraavat tapahtumat.

Appendix 1. The equations of the model "Crown" not presented in text

1. Density index

\[
\text{Density index:} \quad DI = \beta_2 (e^{-\gamma_1 \text{dbh}} - e^{-\gamma_2 \text{dbh}}) / (h_0 - h_1)
\]

where \(\beta_1\), \(\beta_2\), \(\gamma_1\), \(\gamma_2\), \(h_0\), and \(h_1\) are the light gradient steepness factor, \(Y_{pb}(a)\) is the stand needle biomass above the center of lower third of the crown and \(Y_{pk}(b)\) is the stand needle biomass above the center of lower third of the crown. \(h_0\) is the height of the tree and \(h_1\) is the height of the pruning limit. \(p\) and \(q\) are parameters defining the shape of the crown and \(C\) is a scaling factor.

2. Average height of the stem weighed by the needle mass distribution

\[
\text{Average height of the stem weighed by the needle mass distribution:} \quad h_{\text{med}} = \frac{\int z \cdot x(z) \cdot dz}{W_\pi}
\]

where \(x(z)\), kg, is the needle mass at height \(z\) and \(W_\pi\) is the needle mass of the tree.

3. Growth height of the tree

It was assumed that the height growth of a tree depended linearly on the diameter growth when trees were growing in open conditions without light competition (Ek 1971). The increasing stand density was assumed to increase this ratio (eg. Kellomäki and Kanninen 1980). Thus:

\[
\Delta h = \Delta d_1 \cdot \beta_3 + \Delta D
\]

where \(\Delta h\) is the diameter growth, \(\beta_3\) is the ratio between the mean diameter at breast height and the height of open grown trees and \(\Delta D\) is the density index.

4. Diameter growth

Diameter growth is derived from the foliage growth and senescence considering that a part of the senescing foliage does not liberate transport structure to reuse (see equations (12)-(14) in the text). Thus:

\[
\Delta d_1 = \left(\frac{1}{\pi} \cdot \frac{d_1(k)^2 - d_1(k)}{r_f} \right)
\]

where \(G_s\) is the needle growth, \(R_f\) is the fraction of needle senescence that releases transport structure to reuse by the new needles (see equation (A12)), \(e_\alpha\) is the parameter relating needlemass with sapwood area and \(d_1(k)\) is the initial diameter of the period.

60

Nikinmaa, E.

Acta Forestalia Fennica 235

61
Root length growth:
Length growth of the transport roots was calculated from the fine root density of the stand. It was assumed that the fine roots of the same tree always fill new soil volume with the same density. It was also assumed that 50% of the new fine roots are growing in the space already occupied by the transport roots and 50% grow into new soil volume outside the circle occupied by the transport roots. Thus:
\[M_i = l_i \left(\frac{6.28 \times h_{cb}(k)}{2 + 6.28G_{j}/D_i} \right) \]
(A10)
where \(G_j \) is the fineroot biomass growth, \(D_i \) (kg/ha), is a parameter describing the density by which the fine roots fill new soil volume. It is also the threshold density for the root competition (see equation 6).

Change of pruning limit:
It was assumed based on the optimality considerations presented in chapter 2.4.2 that the annual photosynthetic production of the needles at the pruning limit should be at least a certain proportion of the average annual photosynthetic production of the needles of the crown. The height of the pruning limit is thus determined based on the amount of light which has passed through the upper portions of the canopy and the position of the tree in the canopy. The photosynthetic production at pruning limit is a negative exponential function of the above needlemass at stand level. This yields the following equation:
\[\Delta h_{\text{st}} = h_{\text{max}} + \ln \left(\frac{P}{P_l \cdot \delta W_i} \right) \]
where \(h_{\text{st}} \) is the height of the crown base, \(k \) refers to the initial conditions of the period and \(k+1 \) to the condition after growth, and \(d_l \) is the lower limit of the crown where branch length growth takes place (see Figure A1).

Number of branches:
A constant number of branches was assumed to be formed each year. The number of dying branches was assumed linearly proportional to the pruning limit height change (see Figure A1). Thus:
\[n_{\text{st}}(k+1) = \frac{(h_{\text{cb}}(k) - h_{\text{st}}(k+1))}{h_{\text{cb}}(k) - h_{\text{st}}(k)} n_{\text{st}}(k) + \beta_{\text{pr}} \]
(A9)

where \(\beta_{\text{pr}} \) is the parameter giving the average number of branches per whorl and \(h \) and \(l \) are the height of the tree and the height of the pruning limit, respectively.

Appendix 2. The equations of the model “branch” not presented in the text
Specific Needle Area (Hari et al. 1982):
\[\psi(z) = c_1 \frac{c_2 - c_3}{c_2(z)} \]
where \(c_2 \) is the degree of interaction at height \(z \) (see equation (4) in the text) and \(c_1 \) and \(c_2 \) are parameters.

Height Growth (Hari et al. 1982):
\[\Delta h = f_1(P, P_0) f_2(\Delta d_{\text{st}}) f_3(A) \]
(B2)
where \(f_1(P, P_0) = 1 - \beta_{\text{nst}} \frac{P}{P_0} \)
(B3)
and
\[f_3(A) = \Delta d_{\text{st}} \frac{\Delta d_{\text{st}}}{\Delta d_{\text{st}} + A} \]
(B4)
where \(P \) is the photosynthetic production of a tree per unit needlemass and \(P_0 \) is the same in unshaded conditions, \(\Delta d_{\text{st}} \) is the diameter growth and \(A \) is the age of the tree. \(\beta_{\text{nst}} \) and \(\Delta d_{\text{st}} \) are parameters.

Branch length growth (Nikinmaa and Hari 1990):
The length growth of shoots was treated slightly differently from the equation (20) and (21) of the text. The branching was treated as a stationary process which depended on the age and the branch length so that the exponent of the shoot growth was 3/2 but that the value of the parameter, \(\nu \), varied depending on the branch age and length. This yielded for the branch q:
\[\Delta l_q = f_4(P, P_0) f_5(\Delta d_{\text{st}}) f_6(A) \]
where
\[f_5(\Delta d_{\text{st}}) = \frac{\Delta d_{\text{st}}}{\Delta d_{\text{st}} + \Delta d_{\text{st}}} \]
and
\[f_6(A) = \Delta d_{\text{st}} \frac{\Delta d_{\text{st}}}{\Delta d_{\text{st}} + A} \]
where \(P \) is the photosynthetic production of a tree per unit needlemass and \(P_0 \) is the same in unshaded conditions, \(\Delta d_{\text{st}} \) is the diameter growth and \(A \) is the age of the tree. & is parameters.

Nutrient uptake efficiency per unit amount of fine roots per year:
\[e_{\text{fr}} = e_{\text{fr}}^{\text{max}} \frac{Y_f}{Y_f - D_k} \]
where
\[e_{\text{fr}}^{\text{max}} \] is the nutrient uptake efficiency without competition effect, \(Y_f \) is the fineroot density of the stand and \(D_k \) is the threshold parameter indicating the initialization of competition (0)

Nutrient uptake efficiency per unit amount of fine roots per year:
\[e_{\text{fr}} = e_{\text{fr}}^{\text{max}} \frac{Y_f}{Y_f - D_k} \]
where
\[e_{\text{fr}}^{\text{max}} \] is the nutrient uptake efficiency without competition effect, \(Y_f \) is the fineroot density of the stand and \(D_k \) is the threshold parameter indicating the initialization of competition (0)
Distribution of released transport structure for reuse for growing needles (Nikinmaa 1987):

\[\rho(h) = \int_0^h \left(h - z(\zeta - h_0) \right) \frac{h_0}{h} \int_0^{h_0} \left(h - z(\zeta - h_0) \right) \frac{h_0}{h} dy \]

where \(\rho(h) \) is the released transport structure for height \(h \), \(h_0 \) is the height of the tree, \(\zeta \) is a parameter giving the weight of the different heights; if its value is one all the heights are equally weighted, if it is less than one, the bottom part of the crown is favoured and if above one the upper parts of the crown are favoured. In the branch model \(\rho(h) \) is substituted for \(S_u \gamma_w A_s \) of the equation (33) in the text.

Appendix 3. Structure of the model "Crown"

Initial states
- Stand level data:
 - Number of size classes
 - Number of trees per size class
 - Stand level biomass of needles, branches, sapwood, total stem wood, transport roots and fine roots
- Data by the representative trees of each size class:
 - Biomasses of needles by age classes, branches, stem sapwood and total wood, transport roots and fine roots
 - Height, Pruning limit, Average length of branches, Average length of transport roots, Number of branches

Photosynthetic production
- Summing the canopy needle mass (area) height distribution (Needle area distribution of a tree with Equation (A1))
- Calculation of photosynthetic production by the representative tree with Equations (4) and (5)

Maintenance respiration
- Mass of the biomass compartment times the specific respiration rate (Equations (6) and (7))

Determination of the biomass specific annual nutrient uptake
- Equations (8) and (A13)

Pruning limit change
- Equation (A11)

Senescence and transport structure release
- Equations (25)-(30), (A12)

Growth
- Distribution of growth between the biomass compartments, Equations (3), (11)-(14) and (18)
- Stem diameter growth, Equation (A4)
- Branch diameter growth, Equations (A7)-(A9)
- Height growth, Equations (A3) and (A5)

Branch length growth, Equations (A6) and (A8), (A9)
Transport root length growth (A10)

Mortality of trees
- Equations (31)-(32)

End state (new initial states for period k+1)
- Equation (1)

Appendix 4. Structure of the model "Branch"

Initial states
- Stand level data:
 - Number of size classes
 - Number of trees per size class
 - Stand level biomass of needles, branches, sapwood, total stem wood, transport roots and fine roots
 - Minimum and maximum heights of the canopy
- Data by the representative trees of each size class:
 - Height and the pruning limit height
 - Needle biomass per age classes per canopy height unit
 - Branch length per canopy height unit
 - Biomasses of branches, stem (sapwood and total), transport roots and fine roots
 - Average length of transport roots

Photosynthetic production
- Summing the canopy needle area height distribution from the tree wise mass distribution and from the specific leaf area Equation (B1)
- Calculation of photosynthetic production by representative tree with Equations (4) and (5)

Maintenance respiration
- Mass of the biomass compartment times the specific respiration rate (Equations (6) and (7))

Determination of the biomass specific annual nutrient uptake
- Equation (8) and (B7)

Height growth and the transport root length growth
- Equations (B1)-(B5) and (A10)

Minimum and maximum height of the canopy

Technical changes
- Canopy layer divided into \(n \) slices of equal thickness, update of the slice a) length and b) position
- Update of the foliage mass in the new slice (considering the changes in the slice)
- Update of the branch length in the new slice
Senescence
Equations (25)-(30)

Distribution of released transport structure for reuse at different heights
Equation (B8)

Iterative search for constant κ in the Equation (32)
Set value for κ, either initial value or that from the previous period
Calculate the height distribution of the new needle biomass (Equation 34), (B6) for the exact shoot growth
Calculate the biomasses of associated structures with Equations (11), (15)-(17) and (B6) for the shoot length growth
Compare the growth with the difference between photosynthetic production and maintenance respiration
If difference is unacceptable (normally > 1-5%) change the value of and repeat until satisfactory result obtained
First gradient method is used in iteration and if it does not converge, then it is changed to Fibonacci method

Mortality of trees
Equations (31)-(32)

End state (new initial states for period $k+1$)
Equation (1)

Appendix 5. The parameter lists of models “crown” and “branch” with an example of sets of values

<table>
<thead>
<tr>
<th>Name</th>
<th>Notation</th>
<th>Unit</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unshaded annual photosyn.</td>
<td>P_u</td>
<td>kgC kgD m$^{-2}$a$^{-1}$</td>
<td>2.72</td>
<td>2.72</td>
</tr>
<tr>
<td>Growth respiration</td>
<td>r_g</td>
<td>kgC kgD (str.) m$^{-1}$a$^{-1}$</td>
<td>0.25</td>
<td>0.2</td>
</tr>
<tr>
<td>Maintenance respiration, needle</td>
<td>t_{m}</td>
<td>kgC kgD (str.) m$^{-1}$a$^{-1}$</td>
<td>0.18</td>
<td>0.2</td>
</tr>
<tr>
<td>Maintenance respiration, branch</td>
<td>t_{m}</td>
<td>kgC kgD (str.) m$^{-1}$a$^{-1}$</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Maintenance respiration, transport roots</td>
<td>t_{m}</td>
<td>kgC kgD (str.) m$^{-1}$a$^{-1}$</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Maintenance respiration, fine roots</td>
<td>t_{m}</td>
<td>kgC kgD (str.) m$^{-1}$a$^{-1}$</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Carbon content, dry matter</td>
<td>C_{d}</td>
<td>kg kgD</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Nitrogen content of needles</td>
<td>N_{n}</td>
<td>kg kgD</td>
<td>0.011</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen content of branches</td>
<td>N_{n}</td>
<td>kg kgD</td>
<td>0.004</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen content of stem</td>
<td>N_{n}</td>
<td>kg kgD</td>
<td>0.0007</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen content of trans. roots</td>
<td>N_{n}</td>
<td>kg kgD</td>
<td>0.0013</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen content of fine roots</td>
<td>N_{n}</td>
<td>kg kgD</td>
<td>0.004</td>
<td>-</td>
</tr>
<tr>
<td>Nutrient uptake per fine root</td>
<td>r_{n}</td>
<td>kg kgD m$^{-1}$a$^{-1}$</td>
<td>0.006-0.02</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen retranslocation %</td>
<td>ξ_{n}</td>
<td>-</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>Threshold finest root density</td>
<td>D_{r}</td>
<td>kg m$^{-2}$</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Nutrient uptake “extinction” coefficient</td>
<td>k_t</td>
<td>1/kg</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Nutrient demand (photosyn. x av. net. cond.) uptake efficiency</td>
<td>$(P/W_{\text{av}}) \pi / t_{\text{f}}$</td>
<td>-</td>
<td>0.1-1.6</td>
<td>-</td>
</tr>
<tr>
<td>Branch mass unit length needle mass</td>
<td>$l_b r_b$</td>
<td>m$^{-1}$</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Stem mass unit length needle mass</td>
<td>$r_s r_s$</td>
<td>m$^{-1}$</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Transport root mass unit length needle mass</td>
<td>$l_t r_t$</td>
<td>m$^{-1}$</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Diameter height ratio of open grown trees</td>
<td>r_{h}</td>
<td>-</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Light gradient multiplier</td>
<td>l_{g}</td>
<td>-</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>Light extinction coefficient in biomass bases</td>
<td>k</td>
<td>1/fg</td>
<td>0.0002</td>
<td>-</td>
</tr>
<tr>
<td>Diameter/length ratio, branches</td>
<td>r_{b}</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Lower limit of conical part of crown</td>
<td>r_{b}</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Needle growth per gram of carbon at crown base/ on the average in the crown</td>
<td>δ</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Needle density on the average in the crown/ that at crown base</td>
<td>x_n</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Needle mass mortality proportion by age classes:</td>
<td>σ_{a}</td>
<td>0.05</td>
<td>0.0-0.1</td>
<td>-</td>
</tr>
<tr>
<td>Proportion of needle senescence associated with heartwood formation in branches</td>
<td>σ_{a}</td>
<td>0.1</td>
<td>0.1-0.6</td>
<td>-</td>
</tr>
<tr>
<td>Senescence of transport roots</td>
<td>σ_{a}</td>
<td>0.4</td>
<td>0.2-0.9</td>
<td>-</td>
</tr>
</tbody>
</table>

Acta Forestalia Fennica 235
<table>
<thead>
<tr>
<th>The parameter</th>
<th>Model</th>
<th>Model branch</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>senescence model</td>
<td>q_x</td>
<td>15</td>
<td>Estimation</td>
</tr>
<tr>
<td>senescence of fine roots</td>
<td>α</td>
<td>1.0*</td>
<td>0.9, *Model assumption, see text, estimation, Persson (1980)</td>
</tr>
<tr>
<td>Tree mortality threshold parameter</td>
<td>m_t</td>
<td>1.0</td>
<td>1.0, Estimation</td>
</tr>
<tr>
<td>Tree mortality rate parameter</td>
<td>m_t</td>
<td>1.0</td>
<td>1.0, Estimation</td>
</tr>
<tr>
<td>Needle area distribution parameters</td>
<td>c_1</td>
<td>1.0</td>
<td>1.0, Harti et al. (1982)</td>
</tr>
<tr>
<td>Specific needle area parameters</td>
<td>c_2</td>
<td>1.0</td>
<td>2.9, Harti et al. (1982)</td>
</tr>
<tr>
<td>Height growth parameters</td>
<td>h_b</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>Branch length growth parameters</td>
<td>b_1</td>
<td>51.21</td>
<td>Nikinmaa & Hari (1990)</td>
</tr>
<tr>
<td>Transport structure release weight parameter</td>
<td>ζ</td>
<td>1.0</td>
<td>Estimated from limited data</td>
</tr>
</tbody>
</table>

Instructions to authors — Ohjeita kirjoitajille

Submission of manuscripts

Manuscripts should be sent to the editors of the Society of Forestry as three full, completely finished copies, including copies of all figures and tables. Original material should not be sent at this stage.

The editor-in-chief will forward the manuscript to referees for examination. The author must take into account any revision suggested by the referees or the editorial board. Revision should be made within a year from the return of the manuscript. If the author finds the suggested changes unacceptable, he can inform the editor-in-chief of his differing opinion, so that the matter may be reconsidered if necessary.

Decision whether to publish the manuscript will be made by the editorial board within three months after the editors have received the revised manuscript.

Following final acceptance, no fundamental changes may be made to manuscript without the permission of the editor-in-chief. Major changes will necessitate a new submission for acceptance.

The author is responsible for the scientific content and linguistic standard of the manuscript. The author may not have the manuscript published elsewhere without the permission of the publishers of Acta Forestalia Fennica. The series accepts only manuscripts that have not earlier been published.

The author should forward the final manuscript and original figures to the editors within two months from acceptance. The text is best submitted on a floppy disc, together with a printout. The covering letter must clearly state that the manuscript is the final version, ready for printing.

Form and style

For matters of form and style, authors are referred to the full instructions available from the editors.

Käsikirjoitusten hyväksyminen

Metsäntutkimuslaitoksessa lähtöisin olevien käsikirjoitusten hyväksymisen menettelystä on ohjeet Metsäntutkimuslaitoksen julkaisuohjeissa.

Muista käsikirjoituksista lähettätään Suomen Metsätieteellisen Seuran toimittukselle kolme täydellistä, viimeisteltävää kopioita, joihin sisältyvät myös kopiot kaikista kuivista ja taulukoista. Omaaaineistoa ei tässä vääheessa lähetettä.

Acta Forestalia Fennicaan toimituksesta päättää käsikirjoituksen julkaismisesta ennakotarkastajien lausunnoten ja muiden ilmoitusten perusteella. Päättäminen virkaan kolmen kuukauden ajan, minkää menoa käsittelevä käsikirjoituksen lopullinen korjattu versio on saapunut toimittushima.

229 Tomppo, Erkki. Satellite image aided forest site fertility estimation for forest income taxation. Tiivistelmä: Satellitkuvan avustamalla metsien kasvupaikkaloikitus metsäverotusta varten.

233 Ovaskainen, Ville. Forest taxation, timber supply, and economic efficiency. Seloste: Metsäverotus, puun tarjonta ja taloudellinen tehokkuus.

235 Nikkinmaa, Eero. Analyses of the growth of Scots pine; matching structure with function. Seloste: Analyysi männyn kasvusta; rakenteen sopeutumista aineenvaihduntaan.