1

Fig. 1. Map of study area with the five distinct physiographic regions and presence locations of Dalbergia latifolia in Nepal. View larger in new window/tab.

Table 1. List of 19 bioclimatic variables used for habitat suitability model development for Dalbergia latifolia. All of the descriptions and values are based on WorldClim data (Hijmans et al. 2005; O’Donnell et al. 2012).
Code Bioclimatic Variable Unit Minimum Maximum Scaling Factor
Bio1 The annual mean temperature Degrees Celsius –290 320 10
Bio2 Mean diurnal range: (Mean of monthly (max temp – ­min temp)) Degrees Celsius 9 214 10
Bio3 Isothermality: (Mean diurnal range/annual temperature range) × 100 or (BIO2/BIO7) × 100 Percentage 7 96 100
Bio4 Temperature Seasonality: (Standard deviation ×100) Degrees Celsius 62 22 721 100
Bio5 Maximum Temperature of Warmest Month: maximum temperature value across all months within a given year Degrees Celsius –96 490 10
Bio6 Minimum Temperature of Coldest Month: minimum ­temperature value across all months within a given year Degrees Celsius –573 258 10
Bio7 Temperature Annual Range: (Bio5 – Bio6) Degrees Celsius 53 725 10
Bio8 Mean Temperature of Wettest Quarter Degrees Celsius –285 378 10
Bio9 Mean Temperature of Driest Quarter Degrees Celsius –521 366 10
Bio10 Mean Temperature of Coldest Quarter Degrees Celsius –143 383 10
Bio11 Mean Temperature of Coldest Quarter Degrees Celsius –521 289 10
Bio12 Annual Precipitation: This is the sum of all total monthly precipitation values Millimeters 0 11 401 1
Bio13 Precipitation of Wettest Month Millimeters 0 2949 1
Bio14 Precipitation of Driest Month Millimeters 0 752 1
Bio15 Precipitation Seasonality: (Coefficient of Variation) Fraction 0 265 100
Bio16 Precipitation of Wettest Quarter Millimeters 0 8019 1
Bio17 Precipitation of Driest Quarter Millimeters 0 2495 1
Bio18 Precipitation of Warmest Quarter Millimeters 0 6090 1
Bio19 Precipitation of Coldest Quarter Millimeters 0 5162 1
2

Fig. 2. Spatial distribution of selected Bioclimatic variables used for mapping and habitat suitability modelling of Dalbergia latifolia in Nepal (Table 1). These spatial products were derived from 19 original (modification was not made) bioclimatic variables developed by Hijmans et al. (2005) (posted on the Bioclim website; https://www.worldclim.org/). Scaling factor (see Table 1) is used in the units of the studied variables. (Note: “°C” is degree centigrade, “mm” is millimeter and “%” is percentage). View larger in new window/tab.

3

Fig. 3. The Jackknife test for evaluating the relative importance of environmental variables for Dalbergia latifolia Maxent model on habitat suitability. (Note: “ASP” is aspect; “Bio14 is Precipitation of driest period; “Bio15” is Precipitation seasonality; “Bio17” is Precipitation of driest quarter; “Bio18” is Precipitation of warmest quarter; “Bio19” is Precipitation of coldest quarter; “Bio2” is Mean diurnal range; “Bio3” is isothermality; “Bio9” is Mean temperature of driest quarter; “ELE” is elevation; “FT” is forest types and “SLO” is slope).

Table 2. Selected environmental variables and their percent contribution in the Maxent model on habitat suitability for Dalbergia latifolia in Nepal.
Code Environmental Variables Percent
Contribution
Cumulative Percent Contribution
ELE Elevation (m) 71.3 71.3
Bio9 Mean temperature of driest quarter (°C) 9.8 81.1
SLO Slope (degree) 6.4 87.5
Bio15 Precipitation seasonality 5.8 93.3
ASP Aspect (degree) 3.0 96.3
Bio19 Precipitation of coldest quarter (mm) 1.2 97.5
Bio18 Precipitation of warmest quarter (mm) 0.9 98.4
FT Forest type 0.8 99.2
Bio2 Mean diurnal range/ mean of monthly max. and min. temp. (°C) 0.8 100
Bio14 Precipitation of driest period (mm) 0 100
Bio17 Precipitation of driest quarter (mm) 0 100
Bio3 Isothermality 0 100
4

Fig. 4. Relationships between top environmental predictors and the probability of presence of Dalbergia latifolia in Nepal: (A) “ELE” is Elevation in Meter, (B) “Bio9” is Mean temperature of driest quarter in °C, (C) “Bio15” is Precipitation seasonality in mm and (D) “Bio19” is Precipitation of coldest quarter in mm. View larger in new window/tab.

5

Fig. 5. Predicted potential suitable habitats of Dalbergia latifolia in Nepal using Maxent modelling. View larger in new window/tab.

Table 3. Predicted potential suitable habitat area of Dalbergia latifolia for different provinces in Nepal.
Province name High (0.6–0.8) Moderate (0.4–0.6) Low (0.2–0.4) Unsuitable (<0.2)
Area
(ha)
Area ratio
(%) *
Area
(ha)
Area ratio
(%) *
Area
(ha)
Area ratio
(%) *
Area
(ha)
Area ratio
(%) *
Province-2 129 805 58.36 33 668 30.14 63 221 23.45 75 703 1.04
Province-1 37 560 16.89 22 017 19.71 50 807 18.85 1 307 501 17.93
Bagmati 32 814 14.75 31 771 28.44 62 440 23.16 1 275 727 17.49
Gandaki 19 120 8.60 9510 8.51 12 395 4.60 951 522 13.05
Province-5 3104 1.40 14 746 13.20 80 719 29.94 1 083 272 14.85
Karnali 0 0.00 0 0.00 0 0.00 1 297 958 17.80
Sudur Pashchim 0 0.00 0 0.00 0 0.00 1 301 748 17.85
Grand total 222 403 100.00 111 712 100.00 269 583 100.00 7 293 430 100.00
* Refers to the ratio of predicted area to the corresponding area of habitat suitability type.