Fig. 1

Fig. 1. Sketch of the working method of the harvester in the PL corridor (unit surface of 0.1 ha). The harvester started to work at “A1”, followed the path shown and finished when it reached the point “B1” (unit 1). The harvested moved from “B1” to “A2”, in the next unit (unit 2). The forwarder followed the same path as the harvester.

Table 1. Main parameters of the harvesting units.
Unit Species a)
% b/s/p
DBH b) (cm) DSH b) (cm) Height b) (m) Density (trees/ha) Harvested
area (m2)
Harvested biomass c)
(OD t)
Harvested volume d)
(m3s)
Biomass removal
(OD t/ha)
1 86/12/2 2.7 4.0 3.7 15 717 908 2.52 5.1 27.8
2 93/7/0 2.3 3.4 3.5 30 239 795 1.64 3.3 20.6
3 73/24/2 2.3 3.5 3.4 20 640 812 1.85 3.7 22.8
4 86/11/4 3.1 4.4 4.0 14 854 819 1.90 3.8 23.2
5 86/14/0 4.7 6.5 4.9 15 385 592 2.16 4.3 36.5
6 93/7/1 4.7 6.2 4.7 15 099 677 2.17 4.4 32.1
7 85/15/0 3.1 4.5 4.0 13 396 659 1.51 3.0 22.9
8 94/6/0 2.5 3.7 3.8 15 648 921 1.76 3.5 19.1
9 92/8/0 2.4 3.6 3.7 15 252 1120 2.14 4.3 19.1
10 95/5/0 3.7 5.2 4.5 10 080 600 1.61 3.2 26.8
11 99/1/0 3.5 4.9 4.5 12 202 668 1.45 2.9 21.7
12 95/5/0 3.0 4.3 4.1 12 732 609 1.52 3.1 25.0
13 98/2/0 3.9 5.1 6.3 17 507 620 2.19 4.4 35.3
Av. 90/9/1 3.2 4.6 4.2 16 058 754 1.88 3.8 25.6
a) b, broadleaves (mostly birch, Betula spp., and willow, Salix spp.); s, spruce (Picea abies); p, pine (Pinus sylvestris).
b) DBH, diameter at breast height; DSH, diameter at stump height. The mean values are weighted by basal area.
c) As weighed during the field study.
d) Given the density 497 OD kg/m3s (m3s = solid cubic meters).
Fig. 2

Fig. 2. Average distribution of DBH classes (cm) in the harvested units.

Table 2. Definition of the work elements in the harvester work cycle.
Work element Description Priority a)
Boom out Starts when an empty crane moves towards a tree to be harvested and stops when the tree has been reached. 1
Felling Starts when the first tree has been reached and stops when the last tree has been felled (moving to successive trees included). 1
Boom in Starts when the last tree in the crane cycle has been felled and stops when trees have been dropped on the ground (including fixing the bunch). 2
Moving Starts when the base machine wheels are turning and ends when the base machine stops. 3
Miscellaneous Other activities such as trees being dropped and then picked up again, bucking of long trees 4
Delays Time not related to effective work time e.g. personal breaks, repairs. 5
a) If work elements were performed simultaneously, the element with the highest priority (lowest number) was recorded.
Table 3. Definition of the work elements in the forwarder work cycle.
Work element Description Priority a)
Loading Starts when the empty crane starts to move from the base position in the load bunk and stops when the crane returns to the base position and the machine starts to move to the next loading area (machine position). 1
Moving while loading Starts when the base machine wheels are turning and ends when the base machine stops for loading. 2
Driving loaded Starts when the base machine starts to move from the cutting area and ends when the machine stops at the landing. 2
Unload Starts when the crane moves to grab the first bunch and ends when the crane returns in its base position in the loading space. 1
Driving unloaded Starts when the base machine starts to move from the landing and ends when the machine stops at the cutting area. 2
Miscellaneous Other activities e.g. bunches are dropped and then picked up again, load adjusting. 3
Delays Time not related to effective work time e.g. personal breaks, repairs. 4
a) If work elements were performed simultaneously, the element with the highest priority (lowest number) was recorded.
Table 4. Hourly operating cost of the harvester (including the accumulating felling head) and the forwarder, VAT excluded.
  Harvester (including AFH) Forwarder
Economic lifespan (years) 4.6 4.6
Interest rate (%) 6 6
Purchase price (SEK) 3 450 000 3 200 000
Salvage value, present value (SEK) 527 767 489 523
Operating hours per year (WT-hours) 2500 2500
Fixed costs (SEK/WT-hour) 330 309
Capital costs (SEK/year) 745 720 691 682
Fixed maintenance costs (SEK/year)
(insurance and administration)
79 650 79 650
Variable costs (SEK/WT-hour) 491 421
Variable maintenance costs (SEK/WT-hour) 67 21
Fuel costs (incl. lubricant) (SEK/WT-hour) 174 150
Driver salary (SEK/WT-hour) 250 250
Profit margin (5%) (SEK/WT-hour) 41 36
Operating hourly cost (SEK/WT-hour) 862 766
Fig. 3

Fig. 3. Average bunch size (number of trees per bunch) in each of the harvested units.

Table 5. Productive work time consumption (minutes) per oven-dry tonnes of the harvester (average, minimum, maximum, standard deviation and percentage), divided into the work elements (n = 13).
Work element Average Min. Max. sd (%)
Boom out 5.80 2.73 7.83 1.28 16.6
Felling 20.88 11.10 28.56 6.55 59.7
Boom in 4.51 2.10 6.61 1.38 12.9
Moving 3.53 2.30 5.33 1.00 10.1
Miscellaneous 0.26 0.06 0.68 0.18 0.7
Total time 34.98 20.24 45.77 9.11 100.0
Fig. 4

Fig. 4. Productive work time consumption per oven-dry tonne of the harvester as a function of the average tree height harvested.

Table 6. Productive work time consumption (min) per oven-dry tonne of the forwarder (average, standard deviation and percentage), divided into work elements (n = 13), given a full load and 100 m forwarding distance.
Work element Average sd (%)
Loading 3.21 0.78 40.3
Moving while loading 2.11 0.70 26.4
Unloading 1.08 0.25 13.6
Driving unloaded 0.48 1.56 6.0
Driving loaded 0.59 1.78 7.4
Miscellaneous 0.51 0.34 6.3
Total time 7.97 3.70 100.0
Fig. 5

Fig. 5. Forwarding productivity given a fixed removal of biomass (25.6 OD t/ha), as a function of forwarding distance.

Fig. 6

Fig. 6. Forwarding productivity as a function of the removal of biomass per ha (in turn, calculated as a function of the average tree height of the study units), given a constant forwarding distance of 100 m.

Table 7. Economic result of the mechanized clearing system and motor-manual clearing, as a function of the average tree height (lowest height 3.4 m, highest 6.3 m), in a stand of 1 ha. The percentage (Δ) represents the variation between the lowest and the highest heights of trees in the modelled stands.
  Stand types / Tree heights
  3.4 m 6.3 m   3.4 m 6.3 m  
  SEK/ha SEK/ha Δ% SEK/OD t SEK/OD t Δ%
Mechanized clearing system
Harvester cost 14 841 11 562 –22 721 307 –57
Forwarder cost 2499 3823 +53 121 102 –16
Relocation cost 4000 4000 0 194 106 –45
Total costs 21 340 19 385 –9 1037 515 –50
Revenues 8692 15 896 +83 422 422 0
Net income –12 647 –3489 +72 –614 –93 +85
Motor-manual clearing
Total cost –4097 –4681 +14 –199 –124 –38
Fig. 7

Fig. 7. Net income of the mechanized harvesting system (as a function of the average tree height, given a constant forwarding distance of 100 m) and costs of motor-manual clearing. Modelled stand size was 1 ha.

Fig. 8

Fig. 8. Net income of the mechanized harvesting system and costs of motor-manual clearing, as a function of quality classes C, B, A and Q and the modelled size of the stands (from 1 to 10 ha).

Table 8. The “Break-even point” (tree height) of the mechanized clearing system for stand sizes from 1 to 5 ha.
Stand size (ha) Forwarding distance (m) “Break-even point”
(Tree height) (m)
1 100 7.6
2 200 7.1
3 300 7.1
4 400 7.2
5 500 7.4