Siipilehto J., Rajala M. (2019). Model for diameter distribution from assortments volumes: theoretical formulation and a case application with a sample of timber trade data for clear-cut sections. Silva Fennica vol. 53 no. 1 article id 10062. https://doi.org/10.14214/sf. 10062

Supplementary file S1

Näslund's (1936) height curve as a function of the tree's $d b h$ and the predicted height curve parameters b_{0} and b_{1} is $h=\left(d b h /\left(b_{0}+b_{1} d b h\right)\right)^{p}+1.3$. The power p was 2 for Scots pine and birch (and other broadleaved species) and 3 for Norway spruce. The parameters b_{0} and b_{1} were predicted from the assortment volumes using models by Siipilehto and Kangas (2015). The prediction models for parameters b_{0} and b_{1} were fitted as linear mixed effects model in R using the Ime function.

Table 1. Height models predicted from assortments volume. The commercial volume (Vcom) is the sum of the saw $\log (L o g)$ and pulpwood (Pulp) volume. DDY is the long-time average degree days using a $5{ }^{\circ} \mathrm{C}$ threshold temperature. The random components $s\left(b_{0_{i}}\right)$ and $s\left(b_{1 i}\right)$ are the stand-specific (i) constant and coefficient, respectively. The term $\mathrm{s}\left(\mathrm{e}_{\mathrm{ij}}\right)$ is a scale parameter for the variance function, and the final standard deviation can be calculated as $\mathrm{s}_{\mathrm{yi}}=\mathrm{s}\left(\mathrm{e}_{\mathrm{ij}}\right)(1000 / D D Y)^{p}$. For pine, this number is $0.257(1000 / D D Y)^{0.914}$.

Parameter	Pine		Spruce		Birch	
b_{0}	Estim.	Std.	Estim.	Std.	Estim.	Std.
Intercept	3.128	0.065	3.011	0.144	1.400	0.161
(DDY/1000)	-0.537	0.058	-0.963	0.103	-0.666	0.158
$\ln (\log +2)$	-0.041	0.005	0.161	0.013		
$\ln ($ Pulp +2$)$	-0.414	0.010	-0.212	0.026	-0.346	0.101
$\ln ($ Vcom +2$)$					0.409	0.097
b_{1}						
Intercept	0.232	0.003	0.387	0.009	0.343	0.010
$\ln (\log +2)$	-0.025	0.0005	-0.021	0.001		
$\ln ($ Pulp +2$)$	0.023	0.001	0.006	0.002	0.023	0.006
$\ln ($ Vcom +2$)$					-0.054	0.006
$s\left(b_{0 i}\right)$	0.245		0.295		0.209	
$s\left(b_{1 i}\right)$	0.022		0.022		0.025	
$\operatorname{Corr}\left(b_{0}, b_{1}\right)$	-0.621		-0.790		-0.673	
$\mathrm{s}\left(\mathrm{e}_{\mathrm{ij}}\right)$	0.257		0.261		0.209	
Variance function						
(1000/DDY)	0.914		0.800		0.790	

