Full text of this article is only available in PDF format.

Heli Peltola (email), Jaume Gort, Pertti Pulkkinen, Ane Zubizarreta Gerendiain, Jouni Karppinen, Veli-Pekka Ikonen

Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites

Peltola H., Gort J., Pulkkinen P., Zubizarreta Gerendiain A., Karppinen J., Ikonen V.-P. (2009). Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fennica vol. 43 no. 3 article id 192. https://doi.org/10.14214/sf.192

Abstract

In forest breeding, stem volume has typically taken as the most important selection trait, whereas less attention has been given to wood density traits. In this work, we investigated the effects of spacing and genetic entry on the growth, yield and wood density traits in 20 year old Scots pines (Pinus sylvestris L.) based on 10 genetic entries harvested from a spacing trial (stand density range 2000–4000 trees/ha) in central Finland. In order to study also the site effects, we harvested additional material from a trial located in southern Finland (stand density of 2000 trees/ha). Compared to growth and yield properties, wood density traits showed a lower phenotypic variation. Phenotypic correlations among different traits were negative, and mostly moderate to high, suggesting that selection for one trait would simultaneously affect the others. In addition, moderate to strong phenotypic correlations were found among different wood density traits. Stem volume (V) and breast height diameter (DBH) were the largest in widest spacing, whereas in the densest one tree height (H) and latewood percentage were the highest. Genetic entry affected H and wood density traits regardless of spacing. When comparing two sites (with same stand density), genetic entry affected H, whereas site affected DBH and wood density traits. Ranking between genetic entries changed depending on the trait, spacing or site considered. Therefore, no overall ranking was possible. However, we could identify genetic entries having a high V and a relatively high wood density, showing potential for future forest regeneration material.

Keywords
genetic entry; stem volume; height; diameter; wood property traits; phenotypic correlation

Author Info
  • Peltola, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail heli.peltola@joensuu.fi (email)
  • Gort, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail jg@nn.fi
  • Pulkkinen, Finnish Forest Research Institute, Haapastensyrjä Breeding Station, Karkkilantie 247, FI-12600 Läyliäinen, Finland E-mail pp@nn.fi
  • Zubizarreta Gerendiain, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail azg@nn.fi
  • Karppinen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail jk@nn.fi
  • Ikonen, University of Joensuu, Faculty of Forest Sciences, FI-80101 Joensuu, Finland E-mail vpi@nn.fi

Received 29 May 2008 Accepted 8 June 2009 Published 31 December 2009

Views 4343

Available at https://doi.org/10.14214/sf.192 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results