Improvement of low level bark beetle damage estimates with adaptive cluster sampling
Coggins S. B., Coops N. C., Wulder M. A. (2010). Improvement of low level bark beetle damage estimates with adaptive cluster sampling. Silva Fennica vol. 44 no. 2 article id 456. https://doi.org/10.14214/sf.456
Abstract
Detection of low level infestation in forest stands is of principle importance to determine effective control strategies before the attack spread to large areas. Of particular concern is the ongoing mountain pine beetle, Dendroctonus ponderosae (Hopkins) epidemic, which has caused approximately 14 million hectares of damage to lodgepole pine (Pinus contorta Dougl. ex. Loud var. latifolia Engl.) forests in western Canada. At the stand level attacked trees are often difficult to locate and can remain undetected until the infestation has become established beyond a small number of trees. As such, methods are required to detect and characterise low levels of attack prior to infestation expansion, to inform management, and to aid mitigation activities. In this paper, an adaptive cluster sampling approach was applied to very fine-scale (20 cm) digital aerial imagery to locate mountain pine beetle damaged trees at the leading edge of the current infestation. Results indicated a mean number of 7.36 infested trees per hectare with a variance of 18.34. In contrast a non-adaptive approach estimated the mean number of infested trees in the same area to be 61.56 infested trees per hectare with a variance of 41.43. Using a relative efficiency estimator the adaptive cluster sampling approach was found to be over two times more efficient when compared to the non-adaptive approach.
Keywords
forest inventory;
adaptive cluster sampling;
mountain pine beetle;
object-based classification;
high spatial resolution;
satellite;
digital aerial imagery
Received 29 June 2009 Accepted 30 March 2010 Published 31 December 2010
Views 3318
Available at https://doi.org/10.14214/sf.456 | Download PDF