Polina Volkova (email), Alexey Shipunov, Polina Borisova, Reed Moseng, Ranelle Ivens

In search of hybridity: the case of Karelian spruces

Volkova P., Shipunov A., Borisova P., Moseng R., Ivens R. (2014). In search of hybridity: the case of Karelian spruces. Silva Fennica vol. 48 no. 2 article id 1072. https://doi.org/10.14214/sf.1072

Highlights

  • Karelian spruces have morphology that is typical for P. obovata and characterized with genetic variation, described previously for P. abies
  • Karelian spruces evolved due to introgression between P. abies and P. obovata. However, it is unclear whether Karelian spruces could be treated as P. fennica, because unequivocal morphological and genetic characters of the latter are still absent.

Abstract

Distribution ranges of spruces, European Picea abies and Siberian P. obovata intersect in the Eastern Europe and Urals, forming wide zone of introgressive hybridization where species discrimination is difficult. We applied both molecular (mtDNA and cpDNA sequences) and morphological approaches with goals of elucidating the origin of spruces in undisturbed forests of Russian Karelia (considered as part of the abovementioned introgression zone). Karelian spruces have morphology that is typical for P. obovata and characterized with genetic variation, described previously for P. abies. This contradiction between morphology and organellar DNA could be itself an evidence of hybrid origin because morphological data should have a genetic basis. If the genes responsible for the observed morphological differences are nuclear, that explains why we did not see any deviation of Karelian spruces towards P. obovata in organellar markers. In this situation nuclear gene flow from P. obovata should be performed via pollen. Thus, we should expect Karelian spruces to have cpDNA haplotypes (inherited paternally in conifers) typical for P. obovata. However, it is not the case for the majority of plants sampled and requires additional explanation like chloroplast capture in the introgresson zone. In all, we think that Karelian spruces evolved due to introgression between P. abies and P. obovata. However, it is unclear whether Karelian spruces could be treated as P. fennica, because unequivocal morphological and genetic characters of this hybridogenous species are still absent.

Keywords
cpDNA; Picea; plant mtDNA; introgression; northern taiga

Author Info
  • Volkova, Moscow South-West High School (No. 1543), 26 Bakinskikh komissarov str. 3–5, RU-119571 Moscow, Russia E-mail avolkov@orc.ru (email)
  • Shipunov, Department of Biology, Minot State University, Minot, North Dakota, USA 58707 E-mail dactylorhiza@gmail.com
  • Borisova, Biological Department, Moscow State University, Vorobjevy Gory, RU-119899, Moscow, Russia E-mail salixhastata@ya.ru
  • Moseng, Minot High School, Minot, North Dakota, USA 58701 E-mail dactylorhiza@gmail.com
  • Ivens, Department of Biology, Minot State University, Minot, North Dakota, USA 58707 E-mail dactylorhiza@gmail.com

Received 9 December 2013 Accepted 26 May 2014 Published 16 June 2014

Views 118503

Available at https://doi.org/10.14214/sf.1072 | Download PDF

Creative Commons License CC BY-SA 4.0

Abbreviations

ANOSIM Analysis of similarity
CP Coefficient of projection
CQN Coefficient of narrowing
DC Distance from the base of cone to the position of maximal width
DS Distance from the base of scale to the position of maximal width
DSL Scale width in 0.1 of scale maximal width distance from the tip
HC Cone maximal width
HS Scale maximal width
LC Cone length
LS Scale length
PCA Principal component analysis
RAPD Random amplified polymorphic DNA

1 Introduction

High importance of forest ecosystems is beyond doubt. Knowledge of species composition and genetic variability for dominant trees is essential for rational use of natural resources (Brautingam et al. 2013). However, this is sometimes difficult to achieve. Well-known examples are spruces, Picea spp., an important genus of dominant forest trees. In Eurasia, one of the largest continuous distribution areas for forest trees is formed by two spruce species: P. abies (L.) Karst. and P. obovata Ledeb. The first has European range; the second grows in Siberia and Eastern Asia. Distribution ranges of these species intersect in the Eastern Europe and Urals, forming wide zone of introgressive hybridization which appeared due to secondary contact between P. abies and P. obovata after the last glaciation (Krutovskii and Bergmann 1995; Popov 2005; Popov and Melnik 2006; Tollefsrud et al. 2008b). In this introgression zone the discrimination between species is difficult; spruces with intermediate morphology are believed to be hybrids and often considered as a hybrid species P. × fennica (Regel) Kom., distributed across almost all Russian plain and Scandinavia (Ramenskaja and Andreeva 1982; Potokina et al. 2012). Difficulties with morphological delimitation of P. abies and P. obovata impelled some authors (e.g. Schmidt-Vogt 1974) to treat them as geographical varieties of one species, which had a support from allozyme data (e.g. Krutovskii and Bergmann 1995).

Characters of cones and seed scales are widely accepted as the most useful for the discrimination of these spruces (Ramenskaja and Andreeva 1982; Popov 2003; 2005; 2010). Picea abies is characterized by longer (10–16 cm vs. 4–8 cm) cones, and seed scales of different shape (rhomboid with toothed tip vs. fan-shaped with rounded tip). To add objectivity into seed scale shape determination, several ratios (coefficients) were suggested for species determination, e.g., coefficient of narrowing and coefficient of projection and their difference (Popov 2003; 2005; 2010; Popov and Melnik 2006). A geometric morphometric approach (Zelditch et al. 2004) which could take into account the essential shape of scales instead of linear measures and their ratios, could be useful in this case but as far as we know, this method has not been applied here. There are some other morphological characters of vegetative shoots and needles which are sometimes used for species discrimination (Orlova and Egorov 2011; Potokina et al. 2012), but their applicability is doubtful. However, morphological characters alone could hardly be used for delimitation of the three spruce species in case of their sympatry as there exist a smooth morphological gradient between typical P. abies and P. obovata (Popov 2005) and high morphological variability of putative P. fennica was revealed (Popov 2007; Potokina et al. 2012)

Molecular data could provide a more definitive answer to the question about the nature of spruce populations attributed to P. fennica. Both genetics of Picea as a whole (Nystedt et al. 2013) and population structure of P. abies in particular are well-examined (Lagercrantz and Ryman 1990; Sperisen et al. 2001; Tollefsrud et al. 2008a; 2008b; 2009). In our case (delimitation between P. abies and P. obovata), mitochondrial nad1 and trnL-trnF chloroplast markers have been proved to be useful (Tollefsrud et al. 2008a; 2008b). In spruces, mitochondrial genome inheritance is maternal whereas the chloroplast genome is coming from wind-distributed pollen (Sutton et al. 1991). This fact provides opportunity for studying gene flow in the introgression zone from each of the two “pure” species separately (Hipkins et al. 1994). We should bear in mind, however, that species delimitation detected by molecular markers is complicated by interactions between introgression, incomplete lineage sorting (Zhou et al. 2010) which are especially typical for conifers (Du et al. 2009), and also historic and contemporary gene flow and environmental selection (Hamilton and Aitken 2013). Various combinations of these evolutionary forces seem to result in different genetic. Greater diagnostic value for delimitation between P. abies and P. obovata was attributed to mtDNA (Tollefsrud et al. 2008a; 2008b), whereas in numerous conifer species complexes cpDNA was more species specific and mtDNA variation matched with geography rather than with taxonomy (Du et al. 2009; Zhou et al. 2010).

Nowadays the only considerable areas of relatively undisturbed forests in Europe are located in Russian North Karelia (Lampainen et al. 2004). In the same time taxonomical status of spruces frequently dominating in northern taiga forest remains uncertain. According to morphological data, all the three species (namely, P. abies, P. obovata and P. fennica) occur there (Ramenskaja and Andreeva 1982; Orlova and Egorov 2011). However, neither RAPD (random amplified polymorphic DNA, Kopylova et al. 2011) nor nuclear microsatellite data (Potokina et al. 2012) were able to verify this hypothesis. Unfortunately, North Karelia was not included in the only large-scaled study of Eurasian spruces, based on mitochondrial and chloroplast markers (Tollefsrud et al. 2008b). In our work, we tried to use both molecular and morphological approaches with goals of elucidating the origin of spruces in North Karelia and finding the characters that discriminate them best.

2 Materials and methods

2.1 Morphology

Most material was collected in 2010–2012 from 104 trees in 9 locations of North Karelia (environs of Chupa, not far from the Arctic Circle and the coast of White Sea, Table 1). For comparison, we also collected plant material in Germany (48 trees and 4 locations, Table 1) and in Siberia (25 trees, 3 locations from different climatic zones in Krasnoyarsk region and in Buryatia Republic, Table 1) where each of the parental species occurs solely (P. abies and P. obovata correspondingly: Komarov 1968). We have chosen P. abies from southern genetic domain for the comparison to analyze “pure” species, because gene flow from Siberian spruces was reported for northern domain of P. abies (Tollefsrud et al. 2008a, 2008b). Unfortunately, as far as we know, cone morphology of southern domain of P. abies was not studied, but published data on northern domain suggest that morphological variation in cones is more longitudinal then latitudinal (Popov 2003) making thus German populations comparable with P. abies from northern domain. Typically, we picked ripe cones from trees stayed at least 10 m apart, one cone per tree. Seed scale contours were projected on paper and then scanned.

Table 1. Geographic origin, mtDNA and cpDNA haplotypes and number of plants subjected to morphological analysis in the investigated locations of Picea spp. View larger in new window/tab.

In 2001, we also collected cone and scale material in the same region as a part of preliminary study. This time, we did not distinguish between trees, but pooled all cones collected on the transect in every 10 m together. Data of these 321 cones (location “a”) were used only once, in the “extended” dataset (see below).

Cones and scales were measured to obtain the most frequently used morphological characters, namely, (1) LC, cone length; (2) HC, cone maximal width; (3) DC, distance from the base of cone to the position of maximal width; (4) LS, scale length; (5) HS, scale maximal width; (6) DS, distance from the base of scale to the position of maximal width and (7) DSL, scale width in 0.1 of HS distance from the tip. Two more coefficients: coefficient of narrowing (CQN, equal to DSL/HS*100) and coefficient of projection (CP, equal to (LS-DS)/HS*100) and their difference (Popov 2005) were also added to the character set.

The shape of seed scales was analyzed using the thin-plate spline approach (Zelditch et al. 2004). Instead of true landmarks, we used semi-landmarks which were distributed evenly along the contour of every seed scale (counter-clockwise, starting from the base). Screen digitizer software tpsDig2 (Rohlf 2010a) was used to catch coordinates of every landmark. Weight (principal warps) matrices were obtained from tpsRelw (Rohlf 2010b), and super-imposed images of scales – from tpsSuper software (Rohlf 2004). Classic and geometric morphometry data was visualized with multivariate methods like PCA (principal component analysis). The significance of PCA grouping was tested with ANOSIM (analysis of similarity, Warton et al. 2012) based on 99 or more permutations. For the comparison between populations, non-parametric tests were used, with Bonferroni correction for multiple comparisons, if applicable. R statistic environment (R Core Team 2013) was used for most calculations and plots.

2.2 Molecular data

In 2010–2012, needle material was collected from the majority of trees accessed for morphological data (Table 1). These needles were used for DNA extraction. DNA was extracted using a MO BIO PowerPlant DNA Isolation Kit (MO BIO Laboratories, Carlsbad, California, USA). Dry needle material (~ 0.1 g) was powdered using a sterile mortar and pestle and then processed in accordance with the supplied protocol.

Two fragments were sequenced: chloroplast trlL-trnF region using primers trnt_trnf_c_new (5’-GGAGGATAATAACATTGCAT-3’, Tollefsrud 2008b) and trnt_trnf_d (5’-GGGGATAGAGGGACTTGAAC-3’, Taberlet et al. 1991), and mitochondrial nad1 region, using primers nad1for (5’-CTCTCCCTCACCCATATGATG-3’, Sperisen et al. 2001) and nad1rev (5’-AGATCCCCATATATTCCCGG-3’, Sperisen et al. 2001; with correction from Dr. Mari Mette Tollefsrud, Norwegian Forest and Landscape Institute, pers. comm. in 2013). PCR was carried out as follows: the reaction mixture in a total volume of 20 μL contained 5.2 μL of Taq PCR Master Mix (QIAGEN Corporation, Germantown, Maryland, USA), 1 μL of 10 μM solutions of forward and reverse primers, 1 μL of DNA solution from the extraction above and 11.8 μL water. Samples were incubated in a thermal cycler: 35 cycles of 94° for 1 min; 47 or 53° (for cpDNA and mtDNA, respectively) for 1 min, 72° for 2 min, and finally 72° for 10 min. Single band PCR products were supplied for purification and sequencing to Functional Biosciences, Inc. (Madison, Wyoming, USA) and sequenced there in accordance with standard protocol with both primers (for mitochondrial fragment) or just with one primer (chloroplast fragment, most of cases): Table 1. Sequences were then assembled and edited using Sequencher™ 4.5 (Genes Codes Corporation, Ann Arbor, Michigan, USA). Chloroplast sequences were aligned with ClustalX (Thompson et al. 1997) using gap opening cost 9, gap extension cost 0.05 and IUB weight matrix, followed by manual adjustments; mitochondrial DNA sequences were aligned manually. All haplotype sequences were submitted to GenBank (Table 2). For the alignment, we also used haplotype sequences provided by Dr. Mari Mette Tollefsrud (Norwegian Forest and Landscape Institute, pers. comm. in 2013)

Table 2. GenBank accession numbers for chloroplast and mitochondrial haplotypes discovered.
Haplotype Haplotype full name GenBank accession number
_CCC _CCC_abies_i2 KF896137
_CAC _CAC_abies_m3 KF896138
_CCA _CCA_obovata_d11 KF896139
_TCC _TCC_abies_c9 KF896140
GCAC GCAC_abies_d4 KF896141
GCCA GCCA_obovata_g3 KF896142
GCCC GCCC_abies_b8 KF896143
721bp 721bp_obovata_c5 KF896145
755bp 755bp_na_l3 KF896146
857bp 857bp_obovata_m1 KF896147
891bp 891bp_abies_m5 KF896148
925bp 925bp_obovata_l1 KF896149
959bp 959bp_obovata_l2 KF896150

3 Results

3.1 Morphology

Most morphological characters were able to distinguish Picea abies from P. obovata and from Karelian spruces (Fig. 1), which was supported with the non-parametric pairwise Wilcoxon test (p < 0.001 after Bonferroni correction). However, in most cases Karelian spruces were not separated from “pure” P. obovata (pairwise Wilcoxon test p > 0.05). Only width of scale tip (DSL) allowed for some differentiation between these two groups (pairwise Wilcoxon test: p = 0.006). Nevertheless, DSL values were largely intersecting (interquartile range: 6–8 mm vs. 7–9 mm for Karelian and Siberian trees respectively), making this character less useful for discrimination.

1

Fig. 1. Boxplots showing the variation of most frequently used scaled morphological characters. Characters are represented in values of standart deviations to facilitate comparison of variability in different characters. Absolute and quartile range along with median and outliers are given. Abbreviations are: LC, cone length; HC, cone maximal width; DC, distance from the base of cone to the position of maximal width; LS, scale length; HS, scale maximal width; DS, distance from the base of scale to the position of maximal width; DSL, scale width in 0.1 of HS distance from the tip.

Ratios (Fig. 2) had not more discrimination power then raw morphological characters with an exception of coefficient of narrowing (CQN) that was able to separate (Wilcoxon pairwise test: p<<0.01) “pure” P. abies (interquartile range: 28–42), Karelian spruces (50–64) and “pure” P. obovata (62–75). However, within-group variation of this character was still quite high (Fig. 2). The mean difference between coefficients of narrowing and projection for Karelian spruces (the most important diagnostic character, according to Popov 2005) were equal to 6.6, which was typical for P. obovata (i.e. more then 5.0: Popov 2005), the difference between these two groups was not significant (Wilcoxon pairwise test: p = 0.06). Interquartile range of differences between coefficients of narrowing and projection for “pure” P. abies was from –54 to –12 which is typical for this species (less then –5.0: Popov 2005).

2

Fig. 2. Boxplots showing the variations of scaled morphological coefficients (ratios). Abbreviations are: CQN, equal to (scale width in 0.1 of scale maximal width distance from the tip) / (scale maximal width) * 100; CP, equal to [(scale length) − (distance from the base of scale to the position of maximal width)] / (scale maximal width) * 100; CQN.CP, equal to CQN – CP.

We obtained the general “picture” of spruce diversity using PCA on scaled raw characters (i.e., without ratios). Two first components acquired 80.5% of variation (64.8% and 15.7% for PC1 and PC2, respectively) and therefore were used in subsequent analysis (Fig. 3). The most influential morphological characters (characters with biggest loadings on the particular component) were LS and LC for PC1 and DS for PC2. Similar to individual characters, multivariate analysis was able to distinguish P. abies from pooled Siberian and Karelian samples (ANOSIM R = 0.86, significance = 0.01), but was not able to separate Karelian samples from “pure” P. obovata (ANOSIM R = –0.05, significance = 0.85).

3

Fig. 3. Principal component ordination plot representing morphological diversity of studied spruces.

To understand if any heterogeneity existed in our Karelian populations, we added here location “a” of our preliminary sampling and obtained the extended dataset of 510 samples. However, neither PCA nor the advanced classification methods (like recursive partitioning) could split this dataset in well-supported subgroups (not shown).

Geometric morphometric analysis allowed us to construct super-imposed (“averaged”) images of seed scales (Fig. 4). It also resulted in matrix of principal warps (“weight matrix”) which was scaled and used in PCA together with morphological characters. The resulting graph was similar with “classical morphology” PCA (not shown). There was again no significant difference between Karelian samples and “pure” P. obovata (ANOSIM R = –0.06, significance = 0.8).

4

Fig. 4. Superimposed images of seed scales of studied spruces. From left to right: Picea abies, “Karelian spruces”, Picea obovata.

3.2 Molecular analysis

We obtained chloroplast sequences for 5−18 trees from each locality in Northern Karelia with except for location “o” from where one tree was analyzed (60 trees in total: Table 1). In all, we discovered 7 chloroplast haplotypes in our Karelian samples. These haplotypes were different in two substitutions and one G-insert (Fig. 5). Majority (60%) of the trees were characterized by haplotype _CAC, haplotypes _CCC and GCCA were also quite abundant (10% and 21% correspondingly), single trees also had haplotypes _CCA, GCAC, GCCC and _TCC (Table 1). Different haplotypes always co-existed in same locality (Table 1). Morphological analysis of samples to which haplotypes data was available, returned no significant difference in any morphological character between trees with cpDNA haplotypes of Siberian origin (with CA end: Tollefsrud et al. 2008b, see Discussion) and with other haplotypes of European origin (for every raw morphological character, Wilcoxon test p-values > 0.29).

5

Fig. 5. Two fragments of the alignment of chloroplast haplotypes found, species identity and sample code are shown immediately after haplotype names. View larger in new window/tab.

In general, amplification of mitochondrial nad1 marker was less successful (1−10 trees from four localities in Northern Karelia, 19 trees in total: Table 1) but we were able to find 6 mitochondrial haplotypes (721bp, 755bp, 857bp, 891bp, 925bp and 959bp, names from Tollefsrud et al. 2008a) in Karelian samples.

We also sequenced cpDNA and mtDNA of several trees from different locations of “pure” P. obovata (7 and 5 trees respectively). All the individuals were characterized by chlorotype GCCA and mitotype 712s (Table 1), typical for this species (Tollefsrud et al. 2008b).

4 Discussion

Morphological heterogeneity within Karelian samples was not enough to split them in any reliable way, even using an extended sampling. In accordance with morphological data and in line with previously published results (Popov 2003; 2007), Karelian spruces have morphology that is typical for P. obovata. Although seed scales of Karelian samples have slightly more acute tip then “pure” P. obovata (as indicated by values of narrowing coefficient), these differences are too small and were not revealed by shape analysis (geometric morphometry: Fig. 4).

However, molecular analysis resulted otherwise. All the revealed in Karelian spruces mtDNA haplotypes were typical for P. abies (Tollefsrud et al. 2008b). According to Tollefsrud et al. (2008b), our cpDNA haplotypes with CA end have Siberian origin and are much more abundant in populations of P. obovata, whereas other haplotypes widely distributed in Europe and are more frequent in P. abies populations. Haplotypes with G-insert have been also once considered as typical for P. obovata (Ran et al. 2006) but since there was only one sample of P. obovata in the cited research, we decided not to use this insert as diagnostic. Taking all these considerations into account, 75% of Karelian spruces had chloroplast haplotypes of European origin. Thus, genetic variation in all the analyzed locations of Karelian spruce was typical for P. abies (some admixture of obovata-specific chloroplast haplotypes is typical for P. abies populations and explained by extensive pollen flow: Tollefsrud et al. 2008b).

This contradiction between morphology and organellar DNA could be itself an evidence of hybrid origin because morphological data should have a genetic basis. It was shown for different conifers that cone morphology is under not only environmental, but also genetic control (e.g. Kumar et al. 2007; Hamilton and Aitken 2013). Specifically, main diagnostic character, i.e. shape of seed scales, of P. abies and P. obovata mainly depends on the genetic characteristics of the plant (Popov 2003). Nuclear microsatellite data delimited Karelian P. fennica (pooled together with P. obovata) from P. abies (species were initially determined on morphological basis: Potokina et al. 2012). However, this delimitation was not perfect and the authors failed to differentiate P. fennica from P. obovata. Extensive pollen flow could notably reduce differentiation at nuclear markers (Tollefsrud et al. 2008b and references therein) but what is more important, Potokina et al. (2012) used samples only from previously glaciated North-Western Russia where introgression between spruce species is pronounced (Tollefsrud et al. 2008b). Thus, plants referred to P. abies and P. obovata in the cited work could already represent genetic mixture of “pure” parent species.

There are several possible explanations for the discrepancy between morphological and organellar DNA data. First, natural selection and/or epigenetic variation (Flatscher et al. 2012; Brautingam et al. 2013) of morphological characters could not be excluded. The climate of Northern Karelia is much colder and more continental than even in north of Western Europe (Kuznetsov 1960), and selective pressure towards the Siberian phenotype may take place. For example, rounded cone scales of Siberian phenotype were shown to reflect adaptation to cold climate (Schmidt-Vogt 1974). Clear influence of environmental gradient from maritime to continental climate on clinal variation in both morphological and nuclear genetic characters was recently revealed in P. sitchensis × P. glauca hybrid zone (Hamilton and Aitken 2013). Interestingly, more rounded cone scales in P. sitchensis × P. glauca hybrid zone were typical for more continental climate (Hamilton and Aitken 2013), mirroring morphological differences between more maritime P. abies and more continental P. obovata and variation in contact zone between these species (Ramenskaja and Andreeva 1982; Popov 2003; 2005; 2010).

If the genes responsible for the observed morphological differences are nuclear (the indirect evidence provided by Potokina et al. 2012), that explains why we did not see any deviation of Karelian spruces towards P. obovata in neutral organellar markers. Differentiation identified with organellar and nuclear markers has often been found to be independent in conifers (as was shown also for P. abies), and populations fixed for a single organelle haplotype do not necessarily show low diversity at nuclear markers (Tollefsrud et al. 2009 and references therein). In this situation nuclear gene flow from P. obovata should be performed via pollen as was shown earlier (Tollefsrud et al. 2008b). Abundance of chlorotypes typical for P. abies in Karelian spruces could have the following explanations. One possibility is the common phenomenon of closely related species sharing cpDNA haplotypes in the introgression zone, probably by chloroplast capture (i.e. the introgression of a chloroplast from one species into another, resulting in the exchange of chloroplast genomes: Rieseberg and Soltis 1991), which is typical for conifers (Hipkins et al. 1994). Fixation of P. abies mitotype in all Karelian locations possibly reflects postglacial recolonization history of Northern Karelia. Picea abies migrated to Fennoscandia shortly after retreat of the last maximum glaciation and even sustained there in small ice-free refugia during most of the last ice age (Parducci et al. 2012). Thus, established P. abies trees were the likely seed parents of early generations of Karelian spruces, receptive to some pollen flow from P. obovata. These processes appear to have contributed to patterns of “mitochondrial capture” of the maternally inherited P. abies mitotype in Karelian hybrid zone, as was shown in P. sitchensis × P. glauca hybrid zone (Hamilton and Aitken 2013). One more reason of the contradiction between morphology and DNA could be the relative scarcity of Siberian spruce data: those haplotypes which are now considering as typical for P. abies could be later discovered in P. obovata.

Thus, Karelian spruces evolved due to introgression between P. abies and P. obovata. However, it is unclear whether Karelian spruces could be treated as P. fennica, because unequivocal morphological and genetic characters of the latter are still absent (Ramenskaja and Andreeva 1982; Popov 2003; Kopylova et al. 2011; Potokina et al. 2012). Moreover, obtained data suggest treating P. abies and P. obovata as geographical varieties (or subspecies) of one biological species as was suggested earlier (e.g. Schmidt-Vogt 1974; Krutovskii and Bergmann 1995) and also adopted in some recent treatments (e.g. Annotated Checklist of the Panarctic Flora 2014). This treatment is supported by clinal morphological variation (Popov 2003; 2005; 2010), which is likely adaptive to increasing of climate continentality from west to east (Schmidt-Vogt 1974; Hamilton and Aitken 2013) and also by molecular delimitation between European and Siberian spruces mainly on mtDNA and not cpDNA markers (Tollefsrud et al. 2008b) reflecting geographical and not taxonomical structure (Du et al. 2009; Zhou et al. 2010). These considerations should be taken into account in guiding management of genetic resources, biotechnology and ecosystem conservation.

Acknowledgements

Authors are grateful for the members of White Sea expedition of Moscow South-West High School, especially to I. Degtjarenko, I. Vorontsov, N. Vorontsov, P. Dmitriev, and also to E. Trushina, K. Trushin, P. Petrov, A. Esjkova for the help in collection and measurements. The work on the Kem-Ludskij archipelago (island Perejma) was done within the limits of the contract with the Natural Reserve “Kandalakshskij”. Sample collection in Siberia was partly organized in collaboration with “Altachejskij zakaznik” refuge. The expeditions were partly funded by “Sovremennoe estestvoznanie” foundation (grant #P11-018) and by Moscow Institute of Open Education.

References

Annotated checklist of the Panarctic flora (PAF). Vascular plants. (2014). http://nhm2.uio.no/paf/. [Cited 5 April 2014].

Brautingam K. et al. (2013). Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution 3(2): 399–415. http://dx.doi.org/10.1002/ece3.461.

Du K.F., Petit R.J., Liu J.Q. (2009). More introgression with less gene flow: chloroplast versus mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molecular Ecology 18: 1396–1407. http://dx.doi.org/10.1111/j.1365-294X.2009.04107.x.

Flatscher R., Frajman B., Schonswetter P., Ovidiu P. (2012). Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation? Genetic Research article ID 698421.

Hamilton J.A., Aitken S.N. (2013). Genetic and morphological structure of a spruce hybrid (Picea sitchensis × P. glauca) zone along a climatic gradient. American Journal of Botany 100(8): 1651–1662. http://dx.doi.org/10.3732/ajb.1200654.

Hipkins V.D., Krutovskii K.V., Strauss S.H. (1994). Organelle genomes in conifers: structure, evolution and diversity. Forest Genetics 1(4): 179–189.

Komarov V.L. (1968). Picea Dietrich. In: Komarov V.L. (ed.). Flora of the USSR, vol. 1. Israel program for Scientific Translations, Jerusalem. p. 111–119.

Kopylova T.A., Orlova L.V., Egorov A.A., Potokina E.K. (2012). Identification of Picea abies, P. fennica, P. obovata (Pinaceae) and their forms with the help of molecular marker methods. Botanicheskij Zhurnal 97: 1416–142. [In Russian].

Krutovskii K.V., Bergmann F. (1995). Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 74: 464–480. http://dx.doi.org/10.1038/hdy.1995.67.

Kumar D., Negi S.S., Pandey R., Pundir I., Tomar A., Kumar P. (2007). Variation in cone and seed morphology of Pinus roxburghii: effect of population and mother tree. Indian Forester 133: 749–757.

Kuznetsov V.V. (1960). The White Sea and biological peculiarities of its flora and fauna. AN SSSR Publisher, Moscow–Leningrad. 323 p. [In Russian].

Lagercrantz U., Ryman N. (1990) Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44: 38–53. http://dx.doi.org/10.2307/2409523.

Lampainen J., Kuuluvainen T., Wallenius T.H., Karjalainen L., Vanha-Majamaa I. (2004). Long-term forest structure and regeneration after wildfire in Russian Karelia. Journal of Vegetation Science 15: 245–256. http://dx.doi.org/10.1111/j.1654-1103.2004.tb02259.x.

Nystedt B. et al. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579–584. http://dx.doi.org/10.1038/nature12211.

Orlova L.V., Egorov A.A. (2011). To the systematics and geographical distribution of Finnish spruce (Picea fennica (Regel) Kom., Pinaceae). Novosti sistematiki vysshikh rastenij 42: 5–23. [In Russian].

Parducci L. et al. (2012). Glacial survival of boreal trees in northern Scandinavia. Science 335: 1083–1086. http://dx.doi.org/10.1126/science.1216043.

Popov P.P. (2003). Structure and differentiation of spruce populations in eastern Europe and western Siberia. Russian Journal of Ecology 34: 27–33. http://dx.doi.org/10.1023/A:1021810904403.

Popov P.P. (2005). European and Siberian spruce. Nauka, Novosibirsk. 233 p. [In Russian].

Popov P.P. (2007). Phenotypic placement of spruce populations in Euro-Siberian part of range. Vestnik Ekologii, Lesovedenija i Landhsftovedenija 8: 108–115. [In Russian].

Popov P.P. (2010). Form structure and geographic differentiation of spruce populations in Northwestern Russia. Russian Journal of Ecology 41: 336–343. http://dx.doi.org/10.1134/S1067413610050036.

Popov P.P., Melnik P.G. (2006). Geographical differentiation of European spruce populations in the eastern part of range. Vestnik ekologii, lesovedenija i landshaftovedenija 6: 90–101. [In Russian].

Potokina E.K., Orlova L.V., Vishnevskaya M.S., Alekseeva E.A., Potokin A.F., Egorov A.A. (2012). Genetic differentiation of spruce populations in Northwest Russia revealed with microsatellite markers. Ekologicheskaya Genetika 10(2): 40–49. [In Russian].

R Core Team. (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. [Cited 2 April 2014].

Ramenskaja M.L., Andreeva V.N. (1982). Manual of the higher plants of Murmansk region and Karelia. Nauka, Leningrad. 435 p. [In Russian].

Ran J.H., Wei X.X., Wang X.Q. (2006). Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Molecular Phylogenetics and Evolution 41: 405–419. http://dx.doi.org/10.1016/j.ympev.2006.05.039.

Rieseberg L.H., Soltis D.E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5(1): 65–84.

Rohlf F.J. (2004). tpsSuper. Version 1.14. State University at Stony Brook, N.Y. http://life.bio.sunysb.edu/morph/. [Cited 2 April 2014].

Rohlf F.J. (2010a). tpsDig2. Version 2.16. State University at Stony Brook, N.Y. http://life.bio.sunysb.edu/morph/. [Cited 2 April 2014].

Rohlf F.J. (2010b). tpsRelw: relative warps. Version 1.49. State University at Stony Brook, N.Y. http://life.bio.sunysb.edu/morph/. [Cited 2 April 2014].

Schmidt-Vogt H. (1974). Die systematische Stellung der gemeinen Fichte (Picea abies [L.] Karst.) und der sibirischen Fichte (Picea obovata Ledeb.) in der Gattung Picea. Ein Beitrag zur Einführung von Erkenntnissen auf dem Gebiet forstlischer Genökologie in die Systematik der Baumarten. Allgemeine Forst und Jagdzeitung 145: 46–60.

Sperisen C., Büchler U., Gugerli F., Matyas G., Geburek T., Vendramin G.G. (2001). Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Molecular Ecology 10(1): 257–263. http://dx.doi.org/10.1046/j.1365-294X.2001.01180.x.

Sutton B.C.S., Flanagan D.J., Gawley R., Newton C.H., Lester D.T., El-Kassaby Y.A. (1991). Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones. Theoretical and Applied Genetics 82: 242–248. http://dx.doi.org/10.1007/BF00226220.

Taberlet P., Gielly L., Pautou G., Bouvet J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. http://dx.doi.org/10.1007/BF00037152.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876–4882. http://dx.doi.org/10.1093/nar/25.24.4876.

Tollefsrud M.M. et al. (2008a). Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Molecular Ecology 17: 4134–4150. http://dx.doi.org/10.1111/j.1365-294X.2008.03893.x.

Tollefsrud M.M., Brochmann C., Sperisen C. (2008b). Paternal introgression from Siberian spruce (Picea obovata) to Norway spruce (P. abies): tracing pollen and seed flow with chloroplast and mitochondrial DNA. In: Tollefsrud M.M. Phylogeography, diversity and hybridization in Norway spruce. PhD thesis. University of Oslo, Norway.

Tollefsrud M.M., Sønstebø J.H., Brochmann C., Johnsen Ø., Skrøppa T., Vendramin G.G. (2009). Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102: 549–562. http://dx.doi.org/10.1038/hdy.2009.16.

Warton D.I., Wright T.W., Wang Y. (2012). Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution 3: 89–101. http://dx.doi.org/10.1111/j.2041-210X.2011.00127.x.

Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. (2004). Geometric morphometrics for biologists: a primer. Elsevier Academic Press, USA. 455 p.

Zhou Y.F., Abbott R.J., Jiang Z.Y., Du F.K., Milne R.I., Liu J.Q. (2010). Gene flow and species delimitation: a case study of two pine species with overlapping distribution in Southeast China. Evolution 64: 2342–2352.

Total of 40 references


Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Kaunisto S., Sarjala T. (1997) Critical needle potassium concentrations indicat.. Silva Fennica vol. 31 no. 4 article id 5633
Hökkä H., Alenius V. et al. (1997) Individual-tree basal area growth models for Sco.. Silva Fennica vol. 31 no. 2 article id 5616
Lilja A., Kurkela T. et al. (1997) Nursery practices and management of fungal disea.. Silva Fennica vol. 31 no. 1 article id 5611
Maltamo M., (1997) Comparing basal area diameter distributions esti.. Silva Fennica vol. 31 no. 1 article id 5609
Penttilä R., Kotiranta H. (1996) Short-term effects of prescribed burning on wood.. Silva Fennica vol. 30 no. 4 article id 5566
Kuuluvainen T., Leinonen K. et al. (1996) Statistical opportunities for comparing stand st.. Silva Fennica vol. 30 no. 2–3 article id 5598
Beuker E., Kellomäki S. et al. (1996) Changes in wood production of Picea abies and Pi.. Silva Fennica vol. 30 no. 2–3 article id 5591
Skre O., Nes K. (1996) Combined effects of elevated winter temperatures.. Silva Fennica vol. 30 no. 2–3 article id 5581
Vettenranta J., (1996) Effect of species composition on economic return.. Silva Fennica vol. 30 no. 1 article id 5574
Vanha-Majamaa I., Suominen R. et al. (1996) Seedling establishment after prescribed burning .. Silva Fennica vol. 30 no. 1 article id 5573
Lindgren K., Lindgren D. (1996) Germinability of Norway spruce and Scots pine po.. Silva Fennica vol. 30 no. 1 article id 5571
Leinonen K., Rita H. (1995) Interaction of prechilling, temperature, osmotic.. Silva Fennica vol. 29 no. 2 article id 5549
Persson A., (1994) How genotype and silviculture interact in formin.. Silva Fennica vol. 28 no. 4 article id 5540
Hannerz M., (1994) Predicting the risk of frost occurrence after bu.. Silva Fennica vol. 28 no. 4 article id 5535
Kang H., Ekberg I. et al. (1994) Second and third growth period responses of Pice.. Silva Fennica vol. 28 no. 4 article id 5534
Jokinen K. J., Durzan D. J. (1994) Properties of rescued embryonal suspensor masses.. Silva Fennica vol. 28 no. 2 article id 5400
Kolström T., Kellomäki S. (1993) Tree survival in wildfires. Silva Fennica vol. 27 no. 4 article id 5521
Koistinen E., Valkonen S. (1993) Models for height development of Norway spruce a.. Silva Fennica vol. 27 no. 3 article id 5510
Pulkkinen P., (1993) Frost hardiness development and lignification of.. Silva Fennica vol. 27 no. 1 article id 5497
Morgenstern E. K., Park Y. S. (1991) Breeding of Picea mariana (Mill.) B.S.P.: seed o.. Silva Fennica vol. 25 no. 4 article id 5467
Danell Ö., (1991) Survey of past, current and future Swedish fores.. Silva Fennica vol. 25 no. 4 article id 5463
Pulkkinen P., (1991) Crown form and harvest increment in pendulous No.. Silva Fennica vol. 25 no. 4 article id 5459
Höyhtyä R., Hänninen H. (1991) Effect of photon flux density on bud dormancy re.. Silva Fennica vol. 25 no. 3 article id 5452
Långström B., Hellqvist C. (1991) Shoot damage and growth losses following three y.. Silva Fennica vol. 25 no. 3 article id 5450
Pukkala T., Kolström T. (1991) Effect of spatial pattern of trees on the growth.. Silva Fennica vol. 25 no. 3 article id 5449
Kolström T., (1991) Results from the sowing and planting experiment .. Silva Fennica vol. 25 no. 2 article id 5445
Annila E., Heliövaara K. (1991) Chemical control of cone pests in a Norway spruc.. Silva Fennica vol. 25 no. 2 article id 5442
Rikala R., Jozefek H. J. (1990) Effect of dolomite lime and wood ash on peat sub.. Silva Fennica vol. 24 no. 4 article id 5432
Pohtila E., (1990) Forest regeneration of old strip cutting areas i.. Silva Fennica vol. 24 no. 1 article id 5413
Nygren M., (1990) Variation in the seed mass of Scots pine and Nor.. Silva Fennica vol. 24 no. 1 article id 5410
Huuri O., (1990) The cut-block method for seedling production: bi.. Silva Fennica vol. 24 no. 1 article id 5406
Kilkki P., Maltamo M. et al. (1989) Use of the Weibull function in estimating the ba.. Silva Fennica vol. 23 no. 4 article id 5392
Tomminen J., Nuorteva M. et al. (1989) Occurrence of the nematode Bursaphelenchus mucro.. Silva Fennica vol. 23 no. 4 article id 5389
Kärenlampi L., Friedland A. J. (1988) Cytopathological and external observations on re.. Silva Fennica vol. 22 no. 3 article id 5358
Hänninen H., Pelkonen P. (1988) Effects of temperature on dormancy release in No.. Silva Fennica vol. 22 no. 3 article id 5357
Rostad H., (1988) Frost resistance during shoot elongation in Pice.. Silva Fennica vol. 22 no. 3 article id 5355
Johnsen Ø., Apeland I. (1988) Screening early autumn frost hardiness among pro.. Silva Fennica vol. 22 no. 3 article id 5353
Christersson L., Fircks H. A. v. (1988) Injuries to conifer seedlings caused by simulate.. Silva Fennica vol. 22 no. 3 article id 5352
Pukkala T., (1987) Effect of seed production on the annual growth o.. Silva Fennica vol. 21 no. 2 article id 5312
Pukkala T., (1987) Model for predicting the seed crop of Picea abie.. Silva Fennica vol. 21 no. 2 article id 5311
Kärenlampi P., (1987) The decay resistance and moisture dynamics of wood Silva Fennica vol. 21 no. 2 article id 5310
Pukkala T., (1987) Simulation model for natural regeneration of Pin.. Silva Fennica vol. 21 no. 1 article id 5305
Kärkkäinen M., (1986) Value relations of Scots pine and Norway spruce .. Silva Fennica vol. 20 no. 2 article id 5267
Kärkkäinen M., (1986) Model of knottiness of wood material in pine, sp.. Silva Fennica vol. 20 no. 2 article id 5266
Kärkkäinen M., Pietilä J. et al. (1985) Impact bending strength of Finnish tree species .. Silva Fennica vol. 19 no. 4 article id 5255
Westman C. J., Leikola M. et al. (1985) The effect of large-scale nitrogen fertilization.. Silva Fennica vol. 19 no. 4 article id 5253
Parviainen J., (1985) Growth of young Scots pine, Norway spruce, siber.. Silva Fennica vol. 19 no. 4 article id 5249
Kuusipalo J., (1985) On the use of tree stand parameters in estimatin.. Silva Fennica vol. 19 no. 2 article id 5239
Kärkkäinen M., (1985) Norway spruce wood grown in Finland compared wit.. Silva Fennica vol. 19 no. 2 article id 5238
Heikurainen L., (1985) The influence of birch nurse crop (Betula pubesc.. Silva Fennica vol. 19 no. 1 article id 5233
Kärkkäinen M., Marcus M. (1985) Shrinkage properties of Norway spruce wood. Silva Fennica vol. 19 no. 1 article id 5231
Mikola P., (1984) Selection system in timber harvesting in Finland Silva Fennica vol. 18 no. 3 article id 5220
Hallaksela A.-M., (1984) Causal agents of butt-rot in Norway spruce in so.. Silva Fennica vol. 18 no. 3 article id 5216
Kärkkäinen M., (1984) Effect of tree social status on basic density of.. Silva Fennica vol. 18 no. 2 article id 5208
Saranpää P., (1983) The influence of basic density and growth ring w.. Silva Fennica vol. 17 no. 4 article id 5199
Pohtila E., Pohjola T. (1983) Results from the reforestation experiment on plo.. Silva Fennica vol. 17 no. 3 article id 5188
Kärkkäinen M., Dumell O. (1983) Effect of basic density and growth ring width on.. Silva Fennica vol. 17 no. 2 article id 5181
Soikkeli S., (1981) The types of ultrastructural injuries in conifer.. Silva Fennica vol. 15 no. 4 article id 5136
Ollinmaa P. J., (1981) Physical properties of wood growing on drained s.. Silva Fennica vol. 15 no. 3 article id 5128
Greis I., Kellomäki S. (1981) Crown structure and stem growth of Norway spruce.. Silva Fennica vol. 15 no. 3 article id 5125
Jokinen R., (1980) Estimation of growth response achieved through f.. Silva Fennica vol. 14 no. 3 article id 5081
Luukkanen O., Johansson S. (1980) Flower induction by exogenous plant hormones in .. Silva Fennica vol. 14 no. 1 article id 5070
Mikola J., (1980) The effect of seed size and duration of growth o.. Silva Fennica vol. 14 no. 1 article id 5069
Niiranen J., (1980) Methods used in cutting propagation of forest tr.. Silva Fennica vol. 14 no. 1 article id 5065
Velling P., (1980) Variation in the density of wood of different Sc.. Silva Fennica vol. 14 no. 1 article id 5063
Etverk I., (1980) Geographical variability of the Norway spruce in.. Silva Fennica vol. 14 no. 1 article id 5062
Hagman M., (1980) Experiences with Norway spruce provenances in Fi.. Silva Fennica vol. 14 no. 1 article id 5061
Tuimala A., (1979) Changes in timber assortments and loss in stumpa.. Silva Fennica vol. 13 no. 4 article id 5051
Kellomäki S., (1979) Benefits of forests in urban environment  Silva Fennica vol. 13 no. 2 article id 5029
Raunemaa T., Hautojärvi A. et al. (1979) Trace element analysis of sound and decayed Norw.. Silva Fennica vol. 13 no. 1 article id 5017
Saarenmaa H., (1978) The occurrence of bark beetles (Col., Scolytidae.. Silva Fennica vol. 12 no. 3 article id 5003
Huttunen S., (1978) The effects of air pollution on provenances of S.. Silva Fennica vol. 12 no. 1 article id 4983
Lehtiniemi T., (1977) Factors affecting gamma-irradiation sensitivity .. Silva Fennica vol. 11 no. 1 article id 4963
Kellomäki S., Pohjapelto P. (1976) The distribution of throughfall in a virgin spru.. Silva Fennica vol. 10 no. 2 article id 4941
Lehtiniemi T., (1976) Effect of ionizing radiation on the germination .. Silva Fennica vol. 10 no. 1 article id 4930
Kapustinskaité T., (1975) Ash content of peatland soils and stand growth i.. Silva Fennica vol. 9 no. 3 article id 4924
Luukkanen O., (1973) Observations on CO2 exchange in open pollinated .. Silva Fennica vol. 7 no. 4 article id 4888
Mannerkoski H., (1973) Ecological investigations in a drained peatland .. Silva Fennica vol. 7 no. 2 article id 4882
Kärkkäinen M., (1972) The proportion of heartwood in Norway spruce (Pi.. Silva Fennica vol. 6 no. 3 article id 4872
Hari P., Lehtiniemi T. (1972) The effect of temperature and moisture on germin.. Silva Fennica vol. 6 no. 2 article id 4866
Kallio T., (1972) An example on the economic loss caused by decay .. Silva Fennica vol. 6 no. 2 article id 4865
Kärkkäinen M., (1972) Observations on the branchiness of Norway spruce Silva Fennica vol. 6 no. 2 article id 4864
Kallio T., Norokorpi Y. (1972) Butt rot in a Norway spruce stand Silva Fennica vol. 6 no. 1 article id 4861
Pohtila E., (1972) Effect of fine-grounded copper rock phosphate pl.. Silva Fennica vol. 6 no. 1 article id 4859
Kozubov G. M., (1971) Electron microscopic studies in the development .. Silva Fennica vol. 5 no. 4 article id 4854
Luukkanen O., Räsänen P. K. et al. (1971) The use of needle colour in predicting growth an.. Silva Fennica vol. 5 no. 4 article id 4853
Kärkkäinen M., (1971) Decay following logging injury in stems and root.. Silva Fennica vol. 5 no. 3 article id 4848
Mannerkoski H., (1971) Effect of fertilization on the initial developme.. Silva Fennica vol. 5 no. 2 article id 4841
Yli-Vakkuri P., (1971) Winter frost damages to the leaders of Norway sp.. Silva Fennica vol. 5 no. 2 article id 4840
Löyttyniemi K., (1971) Influence of damage caused to needles of Norway .. Silva Fennica vol. 5 no. 1 article id 4835
Mikkola L., (1970) On the crossability of Picea species Silva Fennica vol. 4 no. 4 article id 4831
Heikurainen L., Ouni J. (1970) Height growth of seedling stands growing on peat.. Silva Fennica vol. 4 no. 2 article id 4817
Solin P., (1970) Cold storage of Norway spruce cones and its effe.. Silva Fennica vol. 4 no. 1 article id 4810
Löyttyniemi K., (1969) The effect of treatment of Scots pine and Norway.. Silva Fennica vol. 3 no. 3 article id 4803
Löyttyniemi K., (1969) An Eriophyidae species damaging Norway spruce se.. Silva Fennica vol. 3 no. 3 article id 4802
Leikola M., Pylkkö P. (1969) Influence of stand density on the minimum temper.. Silva Fennica vol. 3 no. 1 article id 4784
Eklund B., (1967) Annual variation of increment in Scots pine and .. Silva Fennica vol. 1 no. 4 article id 4756
Schalin I., (1967) Microfungi in the humus layer of pine, spruce an.. Silva Fennica vol. 1 no. 2 article id 4745
Lilja S., (1967) Significance of the bird-cherry (Prunus padus L... Silva Fennica vol. 1 no. 1 article id 4738
Päivänen J., (1966) Distribution of rainfall in different types of f.. Silva Fennica vol. no. 119 article id 4732
Lähde E., (1966) Experiments on the decomposition rate of cellulo.. Silva Fennica vol. no. 119 article id 4730
Tamm C. O., (1965) Some experiences from forest fertilization trial.. Silva Fennica vol. no. 117 article id 4725
Jamalainen E. A., (1961) Damage by low-temperature parasitic fungi on con.. Silva Fennica vol. 0 no. 108 article id 4703
Kolehmainen V. A., (1955) Effect of prescribed burning in the forest regen.. Silva Fennica vol. no. 85 article id 4644
Kalliola R., (1942) Vegetation and flora in the Pyhätunturi National.. Silva Fennica vol. no. 59 article id 4579
Tertti M., (1939) Forest management of Norway spruce forests Silva Fennica vol. no. 52 article id 4569
Räsänen A. A., (1939) Forest regeneration in Northern Finland Silva Fennica vol. no. 52 article id 4559
Heikinheimo O., (1939) Experiences in forest management of Hylocomnium-.. Silva Fennica vol. no. 52 article id 4558
Mikola P., (1938) Crown and stem form of Norway spruce in the snow.. Silva Fennica vol. no. 47 article id 4546
Tertti M., (1937) Regeneration felling of Norway spruce stands Silva Fennica vol. no. 42 article id 4513
Borg L. E. T., (1936) Areas broadcast sown on snow in Tuomarniemi dist.. Silva Fennica vol. no. 38 article id 4479
Pienpuukomitea ., (1933) The small timber problem Silva Fennica vol. no. 31 article id 4472
Paperipuun-vientikomitea ., (1933) The pulpwood question Silva Fennica vol. no. 28 article id 4469
Tikka P. U. S., (1928) Observations on Norway spruce growth and develop.. Silva Fennica vol. 0 no. 10 article id 4451
Keltikangas M., Tiililä P. (1968) The economic sequence of silver birch (Betula pe.. Acta Forestalia Fennica vol. 82 no. 5 article id 7178
Lähde E., (1966) Studies on the respiration rate in the different.. Acta Forestalia Fennica vol. 81 no. 8 article id 7173
Ilvessalo Y., (1967) The development of natural normal forest stands .. Acta Forestalia Fennica vol. 81 no. 5 article id 7170
Hårdh J. E., (1966) Trials with carbon dioxide, light and growth sub.. Acta Forestalia Fennica vol. 81 no. 1 article id 7166
Huuri O., (1965) The effects of storage in cones on the viability.. Acta Forestalia Fennica vol. 78 no. 5 article id 7158
Heikurainen L., Seppälä K. (1965) Regionality in stand increment and its dependenc.. Acta Forestalia Fennica vol. 78 no. 4 article id 7157
Kallio T., (1965) Studies on the biology of distribution and possi.. Acta Forestalia Fennica vol. 78 no. 3 article id 7156
Laiho O., Mikola P. (1964) Studies on the effect of some eradicants on myco.. Acta Forestalia Fennica vol. 77 no. 2 article id 7150
Yli-Vakkuri P., (1961) Experimental studies on the emergence and develo.. Acta Forestalia Fennica vol. 75 no. 1 article id 7135
Yli-Vakkuri P., (1961) Emergence and initial development of tree seedli.. Acta Forestalia Fennica vol. 74 no. 1 article id 7128
Ollinmaa P. J., (1960) Physical properties of wood growing on drained p.. Acta Forestalia Fennica vol. 72 no. 2 article id 7119
Ollinmaa P. J., (1959) Study on reaction wood Acta Forestalia Fennica vol. 72 no. 1 article id 7118
Kallio K., (1960) The mensurational density of a stand in estimati.. Acta Forestalia Fennica vol. 71 no. 7 article id 7116
Yli-Vakkuri P., (1960) Snow cover and ground frost in Finnish forests Acta Forestalia Fennica vol. 71 no. 5 article id 7114
Keltikangas V., (1959) Finnish feather-moss types and their position in.. Acta Forestalia Fennica vol. 69 no. 2 article id 7490
Yli-Vakkuri P., (1959) On machines for abrading seed wings and their in.. Acta Forestalia Fennica vol. 68 no. 4 article id 7486
Heikurainen L., (1958) Root systems of mixed forest in drained peatlands Acta Forestalia Fennica vol. 67 no. 2 article id 7476
Kallio K., (1957) On the development of spruce forests of the Oxal.. Acta Forestalia Fennica vol. 66 no. 3 article id 7473
Nuorteva M., (1956) Effect of fellings on bark beetle population in .. Acta Forestalia Fennica vol. 65 no. 4 article id 7467
Rummukainen U., (1954) Estimation of Scots pine and Norway spruce cone .. Acta Forestalia Fennica vol. 61 no. 20 article id 7432
Sirén G., (1950) On the biology of undergrown Norway spruce Acta Forestalia Fennica vol. 58 no. 2 article id 7402
Kalela E. K., (1949) On the horizontal roots in Scots pine and Norway.. Acta Forestalia Fennica vol. 57 no. 2 article id 7398
Tikka P. S., (1947) Quality of Norway spruce stands in Peräpohjola i.. Acta Forestalia Fennica vol. 55 no. 1 article id 7389
Kangas E., (1946) Drying of Norway spruce stands as forest damage .. Acta Forestalia Fennica vol. 52 no. 5 article id 7383
Multamäki S. E., (1942) Frost injuries of Norway spruce seedlings and th.. Acta Forestalia Fennica vol. 51 no. 1 article id 7377
Lukkala O. J., (1942) Measurements of rainfall in different kinds of f.. Acta Forestalia Fennica vol. 50 no. 23 article id 7376
Lappi-Seppälä M., (1942) Growth of Siberian larch in mixed stands in stat.. Acta Forestalia Fennica vol. 50 no. 8 article id 7361
Aaltonen V. T., (1942) Growth studies on tree seedlings Acta Forestalia Fennica vol. 50 no. 6 article id 7359
Wegelius Th., (1939) The presence and properties of knots in finnish .. Acta Forestalia Fennica vol. 48 no. 1 article id 7346
Multamäki S. E., (1939) Sowing and planting of Norway spruce in drained .. Acta Forestalia Fennica vol. 47 no. 3 article id 7343
Sarvas R., (1937) Natural regeneration of burned areas. Forest bio.. Acta Forestalia Fennica vol. 46 no. 1 article id 7336
Kalela E. K., (1936) Studies on the development of mixed forest of No.. Acta Forestalia Fennica vol. 44 no. 2 article id 7330
Aaltonen V. T., (1936) Norway spruce as competitor in the sites typical.. Acta Forestalia Fennica vol. 42 no. 8 article id 7325
Laitakari E., (1935) Studies on the influence of stand and forest sit.. Acta Forestalia Fennica vol. 41 no. 4 article id 7317
Hertz M., (1935) The early development of Norway spruce root system Acta Forestalia Fennica vol. 41 no. 3 article id 7316
Backman A. L., (1934) Early history of forests in Åland, Finland Acta Forestalia Fennica vol. 40 no. 20 article id 7297
Hertz M., (1934) Studies on influence of grazing on the vegetatio.. Acta Forestalia Fennica vol. 40 no. 17 article id 7294
Cajander E. K., (1934) Observations in a storm damage area Acta Forestalia Fennica vol. 40 no. 10 article id 7287
Pöntynen V., (1929) Studies on Norway spruce undergrowth in state fo.. Acta Forestalia Fennica vol. 35 no. 1 article id 7256
Hertz M., (1929) Observations on annual and daily cycles in the h.. Acta Forestalia Fennica vol. 34 no. 18 article id 7231
Heikkilä T., (1925) Growth studies in the northernmost Finland Acta Forestalia Fennica vol. 29 no. 4 article id 7194
Kujala V., (1921) Observations of forest and peatland site types i.. Acta Forestalia Fennica vol. 18 no. 5 article id 7057
Ilvessalo Y., (1920) Growth and yield tables for the Scots pine, Norw.. Acta Forestalia Fennica vol. 15 no. 4 article id 7042
Heikinheimo O., (1920) The distribution and volume of Norway spruce for.. Acta Forestalia Fennica vol. 15 no. 1 article id 7039
Ilvessalo L., (1913) Experiments with foreign tree species in state f.. Acta Forestalia Fennica vol. 2 no. 2 article id 7529
Tyrväinen J., (1995) Wood and fiber properties of Norway spruce and i.. Acta Forestalia Fennica vol. 0 no. 249 article id 7511
Luomajoki A., (1993) Climatic adaptation of Norway spruce (Picea abie.. Acta Forestalia Fennica vol. 0 no. 242 article id 7504
Valsta Lauri., (1992) An optimization model for Norway spruce manageme.. Acta Forestalia Fennica vol. 0 no. 232 article id 7678
Kubin E., Kemppainen L. (1991) Effect of clearcutting of boreal spruce forest o.. Acta Forestalia Fennica vol. 0 no. 225 article id 7671
Hänninen H., (1990) Modelling bud dormancy release in trees from coo.. Acta Forestalia Fennica vol. 0 no. 213 article id 7660
Leinonen K., Leikola M. et al. (1989) Natural regeneration of Norway spruce in Pirkka-.. Acta Forestalia Fennica vol. 0 no. 209 article id 7656
Finér L., (1989) Biomass and nutrient cycle in fertilized and unf.. Acta Forestalia Fennica vol. 0 no. 208 article id 7655
Henttonen H., (1984) The dependence of annual ring indices on some cl.. Acta Forestalia Fennica vol. 0 no. 186 article id 7633
Nyyssönen A., Ojansuu R. (1982) Assessment of timber assortments, value and valu.. Acta Forestalia Fennica vol. 0 no. 179 article id 7626
Thammincha S., (1981) Climatic variation in radial growth of Scots pin.. Acta Forestalia Fennica vol. 0 no. 171 article id 7618
Nyyssönen A., Mielikäinen K. (1978) Estimation of stand increment Acta Forestalia Fennica vol. 0 no. 163 article id 7597
Luukkanen O., (1978) Investigations on factors affecting net photosyn.. Acta Forestalia Fennica vol. 0 no. 162 article id 7596
Hallaksela A.-M., (1977) Microbial flora isolated from Norway spruce stumps Acta Forestalia Fennica vol. 0 no. 158 article id 7592
Kallio T., (1976) Peniophora gigantea (Fr.) Massee and wounded spr.. Acta Forestalia Fennica vol. 0 no. 149 article id 7583
Kilkki P., Siitonen M. (1975) Simulation of artificial stands and derivation o.. Acta Forestalia Fennica vol. 0 no. 145 article id 7579
Brown R. T., Mikola P. (1974) The influence of fruticose soil lichens upon the.. Acta Forestalia Fennica vol. 0 no. 141 article id 7575
Kallio T., Tamminen P. (1974) Decay of spruce (Picea abies (L.) Karst.) in the.. Acta Forestalia Fennica vol. 0 no. 138 article id 7572
Kallio T., (1973) Peniophora gigantea (Fr.) Massee and wounded spr.. Acta Forestalia Fennica vol. 0 no. 133 article id 7567
Kallio T., (1971) Incidence of the conidiophores of Fomes annosus .. Acta Forestalia Fennica vol. 0 no. 124 article id 7558
Seppälä K., (1969) Post-drainage growth rate of Norway spruce and S.. Acta Forestalia Fennica vol. 0 no. 93 article id 7611
Leikola M., (1969) The influence of environmental factors on the di.. Acta Forestalia Fennica vol. 0 no. 92 article id 7610
Männistö L., Miina J. et al. (2024) How to utilize natural regeneration of birch to .. Silva Fennica vol. 58 no. 3 article id 23075
Pulgarin Diaz J. A., Melin M. et al. (2024) Relationship between stand and landscape attribu.. Silva Fennica vol. 58 no. 3 article id 23069
Muhonen O., Peltola H. et al. (2025) Spatial evenness of fertilization and short-term.. Silva Fennica vol. 59 no. 1 article id 24026
Repola J., Luoranen J. et al. (2024) Biomass models for young planted Norway spruce a.. Silva Fennica vol. 58 no. 5 article id 24031
Böhm S., Baier P. et al. (2023) Blue-stain development on Norway spruce logs und.. Silva Fennica vol. 57 no. 3 article id 23054
Saksa T., Miina J. et al. (2023) Uprooting as a pre-commercial thinning operation.. Silva Fennica vol. 57 no. 2 article id 22027
Häggström B., Lutter R. et al. (2023) Effect of arginine-phosphate addition on early s.. Silva Fennica vol. 57 no. 2 article id 22013
Mäkinen H., Nöjd P. et al. (2022) Recent unexpected decline of forest growth in No.. Silva Fennica vol. 56 no. 4 article id 10769
Goude M., Nilsson U. et al. (2022) Comparing basal area growth models for Norway sp.. Silva Fennica vol. 56 no. 2 article id 10707
Allen B., Dalponte M. et al. (2022) Detection of Root, Butt, and Stem Rot presence i.. Silva Fennica vol. 56 no. 2 article id 10606
Kaitera J., Aarnio L. et al. (2021) Naohidemyces vaccinii sporulates on wild .. Silva Fennica vol. 55 no. 5 article id 10568
Dahlgren Lidman F., Holmström E. et al. (2021) Management of spontaneously regenerated mixed st.. Silva Fennica vol. 55 no. 4 article id 10485
Tikkinen M., Latvala T. et al. (2021) Interest in vegetatively propagated Norway spruc.. Silva Fennica vol. 55 no. 3 article id 10506
Kaitera J., Kauppila T. et al. (2021) Assessment of the potential of Norway-spruce-see.. Silva Fennica vol. 55 no. 2 article id 10446
Kaitera J., Karhu J. (2020) Temperature range for germination of Thekopso.. Silva Fennica vol. 55 no. 1 article id 10422
Wotherspoon A., Thiffault N. et al. (2020) Resource availability and physiological response.. Silva Fennica vol. 54 no. 4 article id 10375
Pikkarainen L., Luoranen J. et al. (2020) Comparison of planting success in one-year-old s.. Silva Fennica vol. 54 no. 1 article id 10243
Henneb M., Valeria O. et al. (2019) Black spruce seedling growth response in control.. Silva Fennica vol. 53 no. 4 article id 10230
Pukkala T., Holt Hanssen K. et al. (2019) Stem taper and bark functions for Norway spruce .. Silva Fennica vol. 53 no. 3 article id 10187
Skrøppa T., Steffenrem A. (2019) Genetic variation in phenology and growth among .. Silva Fennica vol. 53 no. 1 article id 10076
Repola J., Hökkä H. et al. (2018) Models for diameter and height growth of Scots p.. Silva Fennica vol. 52 no. 5 article id 10055
Becker H., Aosaar J. et al. (2018) Annual net nitrogen mineralization and litter fl.. Silva Fennica vol. 52 no. 4 article id 10013
Levkoev E., Mehtätalo L. et al. (2018) Development of height growth and frost hardiness.. Silva Fennica vol. 52 no. 3 article id 9980
Fedderwitz F., Björklund N. et al. (2018) Does the pine weevil (Hylobius abietis) p.. Silva Fennica vol. 52 no. 3 article id 9946
Egbäck S., Karlsson B. et al. (2018) Effects of phenotypic selection on height-diamet.. Silva Fennica vol. 52 no. 2 article id 7738
Luoranen J., Sutinen S. (2017) Reduced height of short day induced bud scale co.. Silva Fennica vol. 51 no. 5 article id 7759
Bayer D., Pretzsch H. (2017) Reactions to gap emergence: Norway spruce increa.. Silva Fennica vol. 51 no. 5 article id 7748
Sharma R. P., Vacek Z. et al. (2017) Modelling tree crown-to-bole diameter ratio for .. Silva Fennica vol. 51 no. 5 article id 1740
Donnelly L., Lundqvist S.-O. et al. (2017) Inter- and intra-annual wood property variation .. Silva Fennica vol. 51 no. 4 article id 7728
Egbäck S., Nilsson U. et al. (2017) Modeling early height growth in trials of geneti.. Silva Fennica vol. 51 no. 3 article id 5662
Čermák P., Rybníček M. et al. (2017) Impact of climate change on growth dynamics of N.. Silva Fennica vol. 51 no. 2 article id 1781
Donnelly L., Grant O. M. et al. (2017) Effect of deployment-type on stem growth, biomas.. Silva Fennica vol. 51 no. 1 article id 1714
Berg S. K. N., Nordfjell T. et al. (2015) Effect of stump size and timing of stump harvest.. Silva Fennica vol. 49 no. 5 article id 1312
Franke A. K., Aatsinki P. et al. (2015) Quantifying changes of the coniferous forest lin.. Silva Fennica vol. 49 no. 4 article id 1408
Bujoczek L., Bujoczek M. et al. (2015) Spruce regeneration on woody microsites in a sub.. Silva Fennica vol. 49 no. 3 article id 1337
Kreutz A., Aakala T. et al. (2015) Spatial tree community structure in three stands.. Silva Fennica vol. 49 no. 2 article id 1279
Luoranen J., Rikala R. (2015) Post-planting effects of early-season short-day .. Silva Fennica vol. 49 no. 1 article id 1300
Düthorn E., Schneider L. et al. (2015) On the hidden significance of differing micro-si.. Silva Fennica vol. 49 no. 1 article id 1220
Hökkä H., Mäkelä H. (2015) Post-harvest height growth of Norway spruce seed.. Silva Fennica vol. 48 no. 5 article id 1192
Lindbladh M., Hedwall P.-O. et al. (2014) Short-rotation bioenergy stands as an alternativ.. Silva Fennica vol. 48 no. 5 article id 1135
Volkova P., Shipunov A. et al. (2014) In search of hybridity: the case of Karelian spr.. Silva Fennica vol. 48 no. 2 article id 1072
Saarsalmi A., Tamminen P. et al. (2014) Effects of long-term fertilisation on soil prope.. Silva Fennica vol. 48 no. 1 article id 989
Storaunet K. O., Rolstad J. et al. (2014) Effects of logging on the threatened epiphytic l.. Silva Fennica vol. 48 no. 1 article id 949
Rossi S., Morin H. et al. (2013) Spatially explicit structure of natural stands d.. Silva Fennica vol. 47 no. 3 article id 973
Hedwall P.-O., Grip H. et al. (2013) Effects of clear-cutting and slash removal on so.. Silva Fennica vol. 47 no. 2 article id 933
Heiskanen J., Saksa T. et al. (2013) Soil preparation method affects outplanting succ.. Silva Fennica vol. 47 no. 1 article id 893
Hökkä H., Repola J. et al. (2012) Seedling establishment on small cutting areas wi.. Silva Fennica vol. 46 no. 5 article id 920
Gunulf A., Mc Carthy R. et al. (2012) Control efficacy of stump treatment and influenc.. Silva Fennica vol. 46 no. 5 article id 917
Zubizarreta-Gerendiain A., Pellikka P. et al. (2012) Factors affecting wind and snow damage of indivi.. Silva Fennica vol. 46 no. 2 article id 441
Nilsson U., Elfving B. et al. (2012) Productivity of Norway spruce compared to Scots .. Silva Fennica vol. 46 no. 2 article id 54
Niemistö P., Korpunen H. et al. (2012) Impact and productivity of harvesting while reta.. Silva Fennica vol. 46 no. 1 article id 67
Strömgren M., Mjöfors K. et al. (2012) Soil CO2 flux during the first years after stump.. Silva Fennica vol. 46 no. 1 article id 66
Bace R., Svoboda M. et al. (2011) Density and height structure of seedlings in sub.. Silva Fennica vol. 45 no. 5 article id 87
Aakala T., (2011) Temporal variability of deadwood volume and qual.. Silva Fennica vol. 45 no. 5 article id 81
Jönsson M. T., Fraver S. et al. (2011) Spatio-temporal variation of coarse woody debris.. Silva Fennica vol. 45 no. 5 article id 80
Lamedica S., Lingua E. et al. (2011) Spatial structure in four Norway spruce stands w.. Silva Fennica vol. 45 no. 5 article id 75
Hökkä H., Repola J. et al. (2011) Seedling survival and establishment in small can.. Silva Fennica vol. 45 no. 4 article id 97
Goudiaby V., Brais S. et al. (2011) Thinning effects on jack pine and black spruce p.. Silva Fennica vol. 45 no. 4 article id 95
Luoranen J., Rikala R. et al. (2011) Machine planting of Norway spruce by Bracke and .. Silva Fennica vol. 45 no. 3 article id 107
Luoranen J., Rikala R. (2011) Nutrient loading of Norway spruce seedlings hast.. Silva Fennica vol. 45 no. 3 article id 105
Jacobson S., Pettersson F. (2010) An assessment of different fertilization regimes.. Silva Fennica vol. 44 no. 5 article id 123
Lafleur B., Fenton N. J. et al. (2010) Contrasting effects of season and method of harv.. Silva Fennica vol. 44 no. 5 article id 122
Schiessl E., Grabner M. et al. (2010) Sub-montane Norway spruce as alternative seed so.. Silva Fennica vol. 44 no. 4 article id 453
Lindroos O., Henningsson M. et al. (2010) Forces required to vertically uproot tree stumps Silva Fennica vol. 44 no. 4 article id 135
Uotila K., Rantala J. et al. (2010) Effect of soil preparation method on economic re.. Silva Fennica vol. 44 no. 3 article id 146
Laurila J., Lauhanen R. (2010) Moisture content of Norway spruce stump wood at .. Silva Fennica vol. 44 no. 3 article id 140
Weiskittel A. R., Kenefic L. S. et al. (2009) Long-term effects of precommercial thinning on t.. Silva Fennica vol. 43 no. 3 article id 196
Luoranen J., Konttinen K. et al. (2009) Frost hardening and risk of a second flush in No.. Silva Fennica vol. 43 no. 2 article id 209
Kankaanhuhta V., Saksa T. et al. (2009) Variation in the results of Norway spruce planti.. Silva Fennica vol. 43 no. 1 article id 217
Storaunet K. O., Rolstad J. et al. (2008) Effect of logging on the threatened epiphytic li.. Silva Fennica vol. 42 no. 5 article id 465
Flykt E., Timonen S. et al. (2008) Variation of ectomycorrhizal colonisation in Nor.. Silva Fennica vol. 42 no. 4 article id 234
Jyske T., Mäkinen H. et al. (2008) Wood density within Norway spruce stems Silva Fennica vol. 42 no. 3 article id 248
Lännenpää A., Aakala T. et al. (2008) Tree mortality agents in pristine Norway spruce .. Silva Fennica vol. 42 no. 2 article id 468
Kalliokoski T., Nygren P. et al. (2008) Coarse root architecture of three boreal tree sp.. Silva Fennica vol. 42 no. 2 article id 252
Rönnberg J., Berglund M. et al. (2007) Incidence of butt rot at final felling and at fi.. Silva Fennica vol. 41 no. 4 article id 272
Vohland M., Stoffels J. et al. (2007) Remote sensing techniques for forest parameter a.. Silva Fennica vol. 41 no. 3 article id 471
Renou-Wilson F., Farrell E. P. (2007) The use of foliage and soil information for mana.. Silva Fennica vol. 41 no. 3 article id 281
Tanskanen N., Ilvesniemi H. (2007) Spatial distribution of fine roots at ploughed N.. Silva Fennica vol. 41 no. 1 article id 306
Siipilehto J., (2006) Linear prediction application for modelling the .. Silva Fennica vol. 40 no. 3 article id 334
Lapointe B., Bradley R. et al. (2006) Nutrient and light availability to white spruce .. Silva Fennica vol. 40 no. 3 article id 330
Repola J., Hökkä H. et al. (2006) Thinning intensity and growth of mixed spruce-bi.. Silva Fennica vol. 40 no. 1 article id 353
Sikström U., (2005) Pre-harvest soil acidification, liming or N fert.. Silva Fennica vol. 39 no. 3 article id 372
Edlund J., Warensjö M. (2005) Repeatability in automatic sorting of curved Nor.. Silva Fennica vol. 39 no. 2 article id 388
Luo J., Wang Y. et al. (2005) Allozyme variation in natural populations of Pic.. Silva Fennica vol. 39 no. 2 article id 381
Rouvinen S., Rautiainen A. et al. (2005) A relation between historical forest use and cur.. Silva Fennica vol. 39 no. 1 article id 393
Siipilehto J., Siitonen J. (2004) Degree of previous cutting in explaining the dif.. Silva Fennica vol. 38 no. 4 article id 410
Saksa T., (2004) Regeneration process from seed crop to saplings .. Silva Fennica vol. 38 no. 4 article id 405
Liu X., Xu H. et al. (2004) Nutrient distribution in Picea likiangensis tree.. Silva Fennica vol. 38 no. 3 article id 412
Jacobson S., (2003) Addition of stabilized wood ashes to Swedish con.. Silva Fennica vol. 37 no. 4 article id 483
Grote R., (2002) Foliage and branch biomass estimation of conifer.. Silva Fennica vol. 36 no. 4 article id 520
Lindén M., Vollbrecht G. (2002) Sensitivity of Picea abies to butt rot in pure s.. Silva Fennica vol. 36 no. 4 article id 519
Lindström H., (2002) Intra-tree models of juvenile wood in Norway spr.. Silva Fennica vol. 36 no. 2 article id 542
Brække F. H., Salih N. (2002) Reliability of foliar analyses of Norway spruce .. Silva Fennica vol. 36 no. 2 article id 540
Harper K. A., Bergeron Y. et al. (2002) Post-fire development of canopy structure and co.. Silva Fennica vol. 36 no. 1 article id 561
Wallenius T., Kuuluvainen T. et al. (2002) Spatial tree age structure and fire history in t.. Silva Fennica vol. 36 no. 1 article id 557
Siipilehto J., (2001) Effect of weed control with fibre mulches and he.. Silva Fennica vol. 35 no. 4 article id 577
Saarsalmi A., Mälkönen E. et al. (2001) Effects of wood ash fertilization on forest soil.. Silva Fennica vol. 35 no. 3 article id 590
Nikkanen T., (2001) Reproductive phenology in a Norway spruce seed o.. Silva Fennica vol. 35 no. 1 article id 602
Lindström H., (2000) Intra-tree models of basic density in Norway spr.. Silva Fennica vol. 34 no. 4 article id 622
Siipilehto J., (2000) A comparison of two parameter prediction methods.. Silva Fennica vol. 34 no. 4 article id 617
Nikkanen T., Ruotsalainen S. (2000) Variation in flowering abundance and its impact .. Silva Fennica vol. 34 no. 3 article id 626
Johansson T., (1999) Biomass production of Norway spruce (Picea abies.. Silva Fennica vol. 33 no. 4 article id 649
Sundström E., (1998) Afforestation of low-productive peatlands in Swe.. Silva Fennica vol. 32 no. 4 article id 676
Vasiliauskas R., Stenlid J. (1998) Spread of Stereum sanguinolentum vegetative comp.. Silva Fennica vol. 32 no. 4 article id 672
Jansons Ā., Matisons R. et al. (2015) Effect of initial fertilization on 34-year incre.. Silva Fennica vol. 50 no. 1 article id 1346
Sjølie H. K., Sørlie H. A. K. et al. (2015) The performance of two Swedish N fertilization f.. Silva Fennica vol. 49 no. 4 article id 1330
Kärhä K., (2012) Comparison of two stump-lifting heads in final f.. Silva Fennica vol. 46 no. 4 article id 915
Menkis A., Bakys R. et al. (2011) Mycorrhization, establishment and growth of outp.. Silva Fennica vol. 45 no. 2 article id 118
Saksa T., Heiskanen J. et al. (2005) Multilevel modelling of height growth in young N.. Silva Fennica vol. 39 no. 1 article id 403
Helenius P., Luoranen J. et al. (2004) Effect of thawing duration and temperature on fi.. Silva Fennica vol. 38 no. 3 article id 421