Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 28 no. 4 | 1994

Special issue: Adaptation of Tree Breeding to Changing Circumstances and Demands

Category : Article

article id 5541, category Article
Anneli Viherä-Aarnio. (1994). Performance of micropropagated plants of silver birch (Betula pendula) in a field trial. Silva Fennica vol. 28 no. 4 article id 5541. https://doi.org/10.14214/sf.a9181
Keywords: Betula pendula; forestry; growth; mortality; seedlings; clones; tissue culture; clonal propagation
Abstract | View details | Full text in PDF | Author Info

Micropropagated and seed-borne plants of sliver birch (Betula pendula Roth) were compared for survival and growth in a field trial at the age of six years. Three clones for micropropagation were selected from open-pollinated progenies of selected southern Finnish plus trees at the age of 17 and 20. The three seed-borne lots were of southern Finnish stand origin. The best two lots of the experiment as regards the height and diameter growth at the age of six were the clones. The best of these differed significantly from the best-growing seed-grown lot. The weakest lot of the experiment was also a clone which was clearly slow-growing with a dense and bushy crown. Survival of the material was high (mean = 94%), and there was no damage caused by voles and elks, for example. The results clearly show that the selection of material for clonal propagation should be done carefully. The clones should also be tested for performance in the field before propagation on a large scale.

  • Viherä-Aarnio, E-mail: av@mm.unknown (email)
article id 5540, category Article
Anders Persson. (1994). How genotype and silviculture interact in forming timber properties. Silva Fennica vol. 28 no. 4 article id 5540. https://doi.org/10.14214/sf.a9180
Keywords: Pinus sylvestris; Picea abies; silviculture; wood properties; spacing; genotypes
Abstract | View details | Full text in PDF | Author Info

Independent of genotype, increased spacing results in increased branch diameter of Scots pine (Pinus sylvestris L.), but on different levels for different genotypes. Frequency of defects like spike knots and crooked stems are under stronger genetic than silvicultural control. Simultaneous improvement of rate of growth and timber properties is feasible. Deteriorating of both factors can happen rapidly at a negative selection. A defect like stem cracking of Norway spruce (Picea abies (L.) H. Karst.) only manifests itself under drought stress when certain genetic and environmental prerequisites are present, like high fertility and wide spacing. This emphasize the fact that new silvicultural methods may reveal genetic weaknesses.

  • Persson, E-mail: ap@mm.unknown (email)
article id 5539, category Article
Tore Skrøppa. (1994). Impacts of tree improvement on genetic structure and diversity of planted forests. Silva Fennica vol. 28 no. 4 article id 5539. https://doi.org/10.14214/sf.a9179
Keywords: diversity; tree breeding; seed orchards; production; adaptability; genetic factors; trees
Abstract | View details | Full text in PDF | Author Info

After a presentation of basic biodiversity concepts, reviews are made of studies reporting genetic implications of tree improvement activities: seed treatments, seedling production, provenance transfers, plus tree selection, seed production in seed orchards and progeny testing.

Several of the activities may influence the genetic structure and diversity of the planted forests. The general conclusion is, however, that planted forests are at least as genetically diverse as the natural stands that they replace. The diversity in forest management and use is best assurance for the future adaptability of the forests.

  • Skrøppa, E-mail: ts@mm.unknown (email)
article id 5538, category Article
Anneli Viherä-Aarnio, Leena Ryynänen. (1994). Seed production of micropropagated plants, grafts and seedlings of birch in a seed orchard. Silva Fennica vol. 28 no. 4 article id 5538. https://doi.org/10.14214/sf.a9178
Keywords: Betula pendula; seedlings; seed orchards; seed production; tissue culture; grafting
Abstract | View details | Full text in PDF | Author Info

Seed production of micropropagated plants, seedlings and grafts of Silver birch (Betula pendula Roth) in a polyethylene greenhouse experiment was followed for five years. The grafts started flowering and seed production at the age of two years, one year earlier than other two types of material. At the age of three the seed production of both micropropagated plants and seedlings was already more than two times higher than that of the grafts. Variation between the clones was high and plant type x clone interaction was significant. At the age of four, in 1993, seed production was high in all three types of material. Seed production of the micropropagated plants was two times higher than that of the grafts but about 75% of that of the seedlings. In 1994 seed production of all three plant types was very low, which shows large variation between different years. The early development of the plant material types suggests that micropropagated plants have higher seed production than grafts and could well be used instead of grafts in polythene greenhouse seed orchards.

  • Viherä-Aarnio, E-mail: av@mm.unknown (email)
  • Ryynänen, E-mail: lr@mm.unknown
article id 5537, category Article
Anu Mattila, Anne Pakkanen, Juha Raisio, Pekka Vakkari. (1994). Genetic variation in English oak (Quercus robur) in Finland. Silva Fennica vol. 28 no. 4 article id 5537. https://doi.org/10.14214/sf.a9177
Keywords: Quercus robur; allozymes; populations; genetic differences; heterozygosity
Abstract | View details | Full text in PDF | Author Info

Genetic variation in 5 natural stands of Quercus robur L. in Finland was analysed electrophoretically for 13 isozyme loci. Stands were on average polymorphic at 49.2% of the loci, with 2.1 alleles per locus. Observed heterozygosities, ranging from 13.6% to 16.9%, were slightly lower than estimates reported for German stands. The majority of the species’ genetic variation was found within each studied stand, and only 5.5% was between stands. Mean genetic differentiation (∂) was the same as that found in the primary range of the species, but the differentiation estimates (D) for single Finnish population were more variable.

  • Mattila, E-mail: am@mm.unknown (email)
  • Pakkanen, E-mail: ap@mm.unknown
  • Raisio, E-mail: jr@mm.unknown
  • Vakkari, E-mail: pv@mm.unknown
article id 5536, category Article
Roar Skuterud, Jon Dietrichson. (1994). Budburst in detached birch shoots (Betula pendula) of different varieties winter-stored in darkness at three different temperatures. Silva Fennica vol. 28 no. 4 article id 5536. https://doi.org/10.14214/sf.a9176
Keywords: Betula pendula; climatic change; budburst; buds; frost; developmental stages; heat sums; threshold temperatures
Abstract | View details | Full text in PDF | Author Info

Budburst timing and the relationship to storage temperature and duration were investigated in four varieties (entries) of 1–2 metres tall silver birch (Betula pendula Roth) trees. A total of 2,160 shoots were sampled, and the material stores in darkness at 0, 3 or 6 °C from November 29, 1993. When the shoots were placed in storage, they had been through a period of 29 days with temperatures below 0°C (since October 15). By that time the autumn dormancy was assumed already broken, and the trees were expected to respond to increased temperature by bud development. On January 4, 1994, and on four subsequent dates, January 19, February 1, March 4 and March 17, shoots were taken out of storage and set in growth chambers at 9, 12 or 15°C. The time to budburst was recorded.

Duration of storage, storage temperatures and varieties were all highly significant for budburst. The interaction terms were of less statistical importance. Based on the contrast between the three different growth chamber environments, three different methods were used to calculate the threshold temperatures for each entry. In spite of the pre-selection of variable budburst performers, the threshold values, varying between 0°C to -2°C, could not be shown to be statistically different. According to the results, the time of budburst changes in accordance with both winter and spring temperatures, being extremely early after a mild winter and warm spring, given sufficient autumn chilling. The similarities in the threshold temperatures indicate that the ranking in earliness between varieties will most likely be the same from year to year without regard to climate change.

  • Skuterud, E-mail: rs@mm.unknown (email)
  • Dietrichson, E-mail: jd@mm.unknown
article id 5535, category Article
Mats Hannerz. (1994). Predicting the risk of frost occurrence after budburst of Norway spruce in Sweden. Silva Fennica vol. 28 no. 4 article id 5535. https://doi.org/10.14214/sf.a9175
Keywords: Norway spruce; Picea abies; Sweden; provenances; budburst; frost; developmental stages; heat sums
Abstract | View details | Full text in PDF | Author Info

Temperature sums required for budburst in various Norway spruce (Picea abies (L.) H. Karst.) provenances were determined, and weather statistics were then used to predict the risk of potentially damaging frosts at 11 locations in Sweden. Frost risk was quantified as the probability of a frost occurring within 100 day-degrees (two weeks) after budburst. The examples provided show that a spruce seedling from central Sweden has to sustain almost twice as many frost occassions as a seedling from Belorussia, when planted in southern and central Sweden. The method presented here can be used for mapping early summer frost risk in Sweden and for supporting provenance transfer guidelines.

  • Hannerz, E-mail: mh@mm.unknown (email)
article id 5534, category Article
Hyun Kang, Inger Ekberg, Gösta Eriksson, Johan Ununger. (1994). Second and third growth period responses of Picea abies families to first growth period photoperiodic, light intensity and temperature treatments. Silva Fennica vol. 28 no. 4 article id 5534. https://doi.org/10.14214/sf.a9174
Keywords: Picea abies; growth; maturation; temperature; seedlings; photoperiod; environmental effects; genetic effects; juvenility
Abstract | View details | Full text in PDF | Author Info

Seedlings of Picea abies (L.) H. Karst. full-sib families of contrasting origins were cultivated in a phytotron under different photoperiodic, light-intensity and temperature treatments during their first growth period. The effects of the treatments on juvenile growth traits – whether enhanced or delayed maturation was induces – were observed during the two subsequent growth periods. The following hypotheses were tested: (A) Enhanced maturation can be induced in the first growth period from sowing with (i) a long period of continuous light during active growth (24 weeks vs. 8 weeks); (ii) a shorter night during bud maturation (12 h vs. 16 h); high temperature (25°C vs. 20°C) during (iii) active growth, growth cessation and bud maturation; and during (iv) the latter part of growth cessation and bud maturation only. (B) Delayed maturation can be induced after (i) low light intensity during growth cessation and bud maturation (114 μmol m-2 s-1 vs. 340 μmol m-2 s-1); low temperature (15°C vs. 20°C) during (ii) active growth, growth cessation and bud maturation; and during (iii) the latter part of growth cessation and bud maturation only.

The most dramatic effect was observed after 24 weeks of continuous light during active growth. All traits showed a significantly more mature performance in the second growth period compared with the control. The effect for all but one trait was carried over to the third growth period. This is in accordance with the hypothesis that the activity of apical shoot meristems controls the maturation process. For the other treatments there was only weak or no support for the hypothesis of induction of enhanced or delayed maturation. Strong family effects were observed for all traits. Differential responses of the various latitudinal families were observed, suggesting that family effects must be considered to predict and interpret correctly how plants will respond to environmental effects.

  • Kang, E-mail: hk@mm.unknown (email)
  • Ekberg, E-mail: ie@mm.unknown
  • Eriksson, E-mail: ge@mm.unknown
  • Ununger, E-mail: ju@mm.unknown

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles