Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 52 no. 2 | 2018

Category : Research article

article id 9938, category Research article
Jyrki Hytönen, Egbert Beuker, Anneli Viherä-Aarnio. (2018). Clonal variation in basic density, moisture content and heating value of wood, bark and branches in hybrid aspen. Silva Fennica vol. 52 no. 2 article id 9938. https://doi.org/10.14214/sf.9938
Keywords: moisture content; wood; bark; hybrid aspen; basic density; branches; clonal variation; heating value; ash content
Highlights: Hybrid aspen clones differed in their moisture content, ash content, basic density and heating value; Stem wood had lower ash content, basic density and effective heating value than stem bark; There was significant vertical variation in wood and bark along the stem in moisture content and basic density.
Abstract | Full text in HTML | Full text in PDF | Author Info

Hybrid aspen (Populus tremula × P. tremuloides) is one of the fastest growing tree species in Finland. During the mid-1990s, a breeding programme was started with the aim of selecting clones that were superior in producing pulpwood. Hybrid aspen can also be grown as a short-rotation crop for bioenergy. To study clonal variation in wood and bark properties, seven clones were selected from a 12-year-old field trial located in southern Finland. From each clone, five trees were harvested and samples were taken from stem wood, stem bark and branches to determine basic density, effective heating value, moisture and ash content. Vertical within-tree variation in moisture content and basic density was also studied. The differences between clones were significant for almost all studied properties. For all studied properties there was a significant difference between wood and bark. Wood had lower ash content (0.5% vs. 3.9%), basic density (378 kg m–3 vs. 450 kg m–3) and effective heating value (18.26 MJ kg–1 vs. 19.24 MJ kg–1), but higher moisture content (55% vs. 49%) than bark. The values for branches were intermediate. These results suggest that the properties of hybrid aspen important for energy use could be improved by clonal selection. However, selecting clones based on fast growth only may be challenging since it may lead to a decrease in hybrid aspen wood density.

  • Hytönen, Natural Resources Institute Finland (Luke), Natural resources, Teknologiakatu 7, FI-67100 Kokkola, Finland E-mail: jyrki.hytonen@luke.fi (email)
  • Beuker, Natural Resources Institute Finland (Luke), Production systems, Vipusenkuja 6, FI-57200 Savonlinna, Finland E-mail: egbert.beuker@luke.fi
  • Viherä-Aarnio, Natural Resources Institute Finland (Luke), Production systems, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: anneli.vihera-aarnio@luke.fi
article id 9933, category Research article
Timo Saksa, Jari Miina, Hilkka Haatainen, Kauko Kärkkäinen. (2018). Quality of spot mounding performed by continuously advancing mounders. Silva Fennica vol. 52 no. 2 article id 9933. https://doi.org/10.14214/sf.9933
Keywords: soil preparation; slash; logging residues; forest regeneration; mixed modelling
Highlights: The number and quality of mounds varied considerably according to the operating conditions;The main factors reducing the quality of spot mounding were steep terrain, a thick humus layer, fresh logging residues, stoniness and soil texture;With careful selection of timing and conditions for mounding, the quality obtained by continuously advancing mounders can be improved.
Abstract | Full text in HTML | Full text in PDF | Author Info

Operating conditions affecting the quality of spot mounding by Bracke continuously advancing mounders were investigated on 66 regeneration areas (124 ha) in eastern Finland. The quality of mounds was classified as suitable (good or acceptable after additional compression) or unsuitable for planting. Models were constructed for the number of suitable planting spots obtained per hectare (good and acceptable mounds), the probability of successful mounding (≥1600 planting spots ha–1) and the probability of creating a suitable mound as a function of terrain, site and soil characteristics, as well as slash conditions (removed, fresh or dry logging residues). The average number of mounds created was 1892 ± 290 mounds ha–1, of which 1398 ± 325 mounds ha–1 (74%) were classified as suitable for planting. The quality of spot mounding was reduced by steep terrain, a thick humus layer and fresh logging residues. Stoniness and soil texture also affected the number of planting spots created. Mounding after logging residues had dried increased the number of planting spots by 191 spots ha–1 compared with mounding in the presence of fresh residues. Removing residues did not significantly increase the number of planting spots compared with mounding amongst dry residues. A thick humus layer, very stony soil, steep slopes and valley terrain decreased the number of planting spots by 150–450 spots ha–1. The number and quality of mounds varied considerably according to the operating conditions, but with careful selection of timing and sites the quality obtained by a continuously advancing mounder can be improved.

  • Saksa, Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: timo.saksa@luke.fi (email)
  • Miina, Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: jari.miina@luke.fi
  • Haatainen, Faculty of Science and Forestry, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: hilkka.haatainen@storaenso.com
  • Kärkkäinen, Tornator Oyj, Muuntamontie 2, FI-80100 Joensuu, Finland E-mail: kauko.karkkainen@tornator.fi
article id 9927, category Research article
Eva Dařenová, Richard A. Crabbe, Robert Knott, Barbora Uherková, Jan Kadavý. (2018). Effect of coppicing, thinning and throughfall reduction on soil water content and soil CO2 efflux in a sessile oak forest. Silva Fennica vol. 52 no. 2 article id 9927. https://doi.org/10.14214/sf.9927
Keywords: soil respiration; coppice; precipitation; soil moisture; Quercus petraea
Highlights: The coppice stand reached similar soil CO2 efflux rates eight years after harvest as the original stand; Thinning increased SWC but did not affect soil CO2 efflux; 30% throughfall reduction decreased soil CO2 efflux by 50.7%.
Abstract | Full text in HTML | Full text in PDF | Author Info

In this study we determined the effect of transformation of a mature sessile oak forest stand into a coppiced forest, and of thinning and throughfall reduction in a coppice stand on soil water content (SWC) and soil CO2 efflux. The precipitation reduction was induced by installing parallel drainage channels in both unthinned and thinned coppice stands. The driving factor for temporal dynamics of soil CO2 efflux in all plots was soil temperature. The other factor was soil water content but only up to about 15%. Above this threshold, there was no more effect on CO2 efflux. We found no clear difference in SWC or soil CO2 efflux between the mature and coppiced stand eight years after harvesting. On the other hand, thinning of the coppice stand resulted in increase in SWC up to 22% in proportion, which we assume to be a result of increased gap fraction of the canopy. However, no effect on soil CO2 efflux was observed two years after the thinning. Installation of the drainage channels in two plots covering 30% of the ground area resulted in decrease in SWC up to a proportional 30.5% and thus contributed up to 50.7% reduction in soil CO2 efflux.

  • Dařenová, Global Change Research Institute CAS, v.v.i., Belidla 4a, 603 00 Brno, Czech Republic E-mail: darenova.e@czechglobe.cz (email)
  • Crabbe, Global Change Research Institute CAS, v.v.i., Belidla 4a, 603 00 Brno, Czech Republic E-mail: crabbe.r@czechglobe.cz
  • Knott, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic E-mail: robert.knott@mendelu.cz
  • Uherková, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic E-mail: xfedorov@node.mendelu.cz
  • Kadavý, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic E-mail: jan.kadavy@mendelu.cz
article id 9914, category Research article
Jun Tanabe, Futoshi Ishiguri, Akira Tamura, Yuya Takashima, Jyunichi Ohshima, Kazuya Iizuka, Shinso Yokota. (2018). Within-tree radial and among-family variations in wood density, microfibril angle, and mechanical properties in Picea glehnii. Silva Fennica vol. 52 no. 2 article id 9914. https://doi.org/10.14214/sf.9914
Keywords: modulus of elasticity; modulus of rupture; early selection; tree breeding for wood quality
Highlights: The modulus of elasticity was affected by both microfibril angle and wood density, whereas the modulus of rupture was mainly affected by wood density in Picea glehnii; A larger degree of among-family variation in wood properties was detected in juvenile wood than in mature wood, indicating that genetic improvements in the mechanical properties may be more effective for juvenile wood.
Abstract | Full text in HTML | Full text in PDF | Author Info

Genetic improvements in the mechanical properties of wood are important in forestry species used for lumber, such as Picea. The within-tree radial and among-family variations for the modulus of elasticity (MOE), modulus of rupture (MOR), and their related traits [i.e., microfibril angle (MFA) of the S2 layer in latewood tracheid and air-dry density (AD)] were evaluated in nine open-pollinated families of Picea glehnii (F. Schmidt) Mast. The radial variation in MOR was mainly affected by AD, whereas MOE was affected by MFA and AD. Higher F-values obtained by analysis of variance and coefficient of variation were observed for all properties at the 6th–15th annual ring, except for AD at the 6th–10th annual ring. This result suggests that the contribution of genetic effect is larger in these highly variable regions. In addition, positive correlation coefficients were obtained between wood properties at the 6th–15th annual ring and mean values of these properties. Therefore, genetic improvements for MOE, MOR, and their related traits in P. glehnii is likely to be more effective in juvenile wood, specifically at the 6th–15th annual ring from the pith.

  • Tanabe, Faculty of Education, Chiba University, Chiba, 263-8522, Japan E-mail: tanabe_j@chiba-u.jp (email)
  • Ishiguri, Faculty of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan E-mail: ishiguri@cc.utsunomiya-u.ac.jp
  • Tamura, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, 319-1301, Japan E-mail: akirat@affrc.go.jp
  • Takashima, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, 319-1301, Japan E-mail: ytakashima@ffpri.affrc.go.jp
  • Ohshima, Faculty of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan E-mail: joshima@cc.utsunomiya-u.ac.jp
  • Iizuka, Faculty of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan E-mail: kiizuka@cc.utsunomiya-u.ac.jp
  • Yokota, Faculty of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan E-mail: yokotas@cc.utsunomiya-u.ac.jp
article id 9902, category Research article
Perttu Anttila, Vesa Nivala, Olli Salminen, Markus Hurskainen, Janne Kärki, Tomi J. Lindroos, Antti Asikainen. (2018). Regional balance of forest chip supply and demand in Finland in 2030. Silva Fennica vol. 52 no. 2 article id 9902. https://doi.org/10.14214/sf.9902
Keywords: bioenergy; energy wood; GIS; availability; potential
Highlights: The impact of increasing forest chip demand in 2030 was analyzed in Finland; Demand of small trees may exceed potential at the national level; Surplus potential will remain in logging residues and stumps; Hot spots of demand call for efficient logistical solutions.
Abstract | Full text in HTML | Full text in PDF | Author Info

According to the National Energy and Climate Strategy of Finland in 2016, the demand for forest chips, that is, wood chips made of forest biomass directly for energy use, could even double by 2030 compared to the present situation. A spatially explicit impact analysis of regional supply and demand balances for forest chips was carried out. The balances were calculated as the difference between technical harvesting potentials and demand. First, the technical potentials were estimated based on the national forest inventory data. Secondly, three demand scenarios were defined for 2030 and subsequently deducted from the potentials. The results suggested that there would be increasing competition for feedstock in southern and western Finland, whereas in eastern and northern Finland there would still be surplus potential. Moreover, due to the remarkable deficit of small trees in southern Finland, there might be pressure towards using more pulpwood-sized and/or imported wood in energy production. The results also showed that, in particular, large new plants consuming substantial amounts of forest chips could have a significant effect on the regional availability of forest chips. Moreover, with increasing transport distances, new logistical solutions will be needed.

  • Anttila, Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland ORCID http://orcid.org/0000-0002-6131-392X E-mail: perttu.anttila@luke.fi (email)
  • Nivala, Natural Resources Institute Finland (Luke), Eteläranta 55, FI-96300 Rovaniemi, Finland E-mail: vesa.nivala@luke.fi
  • Salminen, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: olli.salminen@luke.fi
  • Hurskainen, VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, FI-40400 Jyväskylä, Finland E-mail: markus.hurskainen@vtt.fi
  • Kärki, VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, FI-40400 Jyväskylä, Finland E-mail: janne.karki@vtt.fi
  • Lindroos, VTT Technical Research Centre of Finland Ltd, Vuorimiehentie 3 (Espoo), P.O. Box 1000, FI-02044 VTT, Finland E-mail: tomi.j.lindroos@vtt.fi
  • Asikainen, Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: antti.asikainen@luke.fi
article id 7830, category Research article
Jari Lindblad, Johanna Routa, Johanna Ruotsalainen, Marja Kolström, Ari Isokangas, Lauri Sikanen. (2018). Weather based moisture content modelling of harvesting residues in the stand. Silva Fennica vol. 52 no. 2 article id 7830. https://doi.org/10.14214/sf.7830
Keywords: logging residues; harvesting residues; energy wood measurement; conversion factor
Highlights: Weather data used for estimating the moisture content of energy wood; The validation of the weather based models performed based on the field data.
Abstract | Full text in HTML | Full text in PDF | Author Info

Harvesting residues collected from the final cuttings of boreal forests are an important source of solid biofuel for energy production in Finland and Sweden. In the Finnish supply chain, the measurement of residues is performed by scales integrated in forwarders. The mass of residues is converted to volume by conversion factors. In this study, weather based models for defining the moisture content of residues were developed and validated. Models were also compared with the currently used fixed tables of conversion factors. The change of the moisture content of residues is complex, and an exact estimation was challenging. However, the model predicting moisture change for three hour periods was found to be the most accurate. The main improvement compared to fixed tables was the lack of a systematic error. It can be assumed that weather based models will give more reliable estimates for the moisture in varying climate conditions and the further development of models should be focused on obtaining more appropriate data from varying drying conditions in different geographical and microclimatological locations.

  • Lindblad, Natural Resources Institute Finland (Luke), Production systems, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: jari.lindblad@luke.fi (email)
  • Routa, Natural Resources Institute Finland (Luke), Production systems, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: johanna.routa@luke.fi
  • Ruotsalainen, Finnish Meteorological Institute, Aviation and Military Weather Services, P.O. Box 1627, FI-70211 Kuopio, Finland E-mail: johanna.ruotsalainen@fmi.fi
  • Kolström, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: marja.kolstrom@uef.fi
  • Isokangas, University of Oulu, Control Engineering, P.O. Box 8000, FI-90014 University of Oulu, Finland E-mail: ari.isokangas@oulu.fi
  • Sikanen, Natural Resources Institute Finland (Luke), Production systems, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: lauri.sikanen@luke.fi
article id 7816, category Research article
Pentti Niemistö, Harri Kilpeläinen, Eero Poutiainen. (2018). Effect of first thinning type and age on growth, stem quality and financial performance of a Scots pine stand in Finland. Silva Fennica vol. 52 no. 2 article id 7816. https://doi.org/10.14214/sf.7816
Keywords: bucking; growth and yield; external stem quality; profitability; Pinus silvestris; tree selection; saw log
Highlights: Early commercial first thinning at the top height of 11 m with tree selection targeting high quality of remaining stems was more profitable in a Scots pine stand than thinning from below at similar time or delayed thinning 10 years later; After early first thinning only one intermediate thinning was needed, but a late thinning at age of 60 years was feasible in connection with increased amount of high quality butt logs after artificial pruning; The optimal rotation period for a Scots pine stand using a lower interest rate of 1% was 80–85 years depending on the thinning pattern. With a higher rate of 4%, the optimal rotation took only 60 years.
Abstract | Full text in HTML | Full text in PDF | Author Info

The objective of the study was to ascertain the effects of tree selection (thinning from below, from above and according to stem quality) and timing of first commercial thinning (early and delayed) on the growth, yield and quality of trees in a Scots pine (Pinus sylvestris L.) stand. A long-term field experiment (25 years) was measured in 5-year periods and the further development was simulated with growth and yield models to final cuttings using alternative rotation periods of 55–85 years. The measurements included also the exact location and type of technical defects detected on all trees in the experimental plots. The measured volume increment per unit area during the study period, 25 years after the early thinning stage was the lowest in the plots thinned from below, and the highest in the plots thinned from above or in the delayed thinning plots. However, the largest volume of saw logs during the whole rotation of 80 years was yielded after early first thinning according to the quality. The largest volume of very high-quality butt logs was produced by pruning connected with early thinning from above, and a smaller volume after early thinning according to stem quality but no after thinning from below or delayed first thinning. Without pruning an early quality thinning with one intermediate thinning was the most profitable thinning treatment in the Scots pine stand regardless the rotation length or the interest rate used. By interest rates of 1% and 2%, the optimal rotations were 80–85 years and 70 years respectively. A late thinning at the age of 60 year with long rotation was profitable only for the pruned pine stands with a low interest rate.

  • Niemistö, Natural Resources Institute Finland (Luke), Natural resources, Kampusranta 9 C, FI-60320 Seinäjoki, Finland E-mail: pentti.niemisto@luke.fi (email)
  • Kilpeläinen, Natural Resources Institute Finland (Luke), Production systems, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: harri.kilpelainen@luke.fi
  • Poutiainen, Oulu E-mail: eero1.poutiainen@dnainternet.net
article id 7813, category Research article
Jaana Luoranen. (2018). Autumn versus spring planting: the initiation of root growth and subsequent field performance of Scots pine and Norway spruce seedlings. Silva Fennica vol. 52 no. 2 article id 7813. https://doi.org/10.14214/sf.7813
Keywords: bud burst; planting date; root growth; shoot growth
Highlights: Conifer seedlings planted after mid-September generally have poor rooting, which causes poor root egress during the following spring; Although Scots pine and Norway spruce seedlings planted in late autumn may have a slightly reduced growth, it is possible to plant them if weather conditions are favorable in late-autumn, without increased mortality.
Abstract | Full text in HTML | Full text in PDF | Author Info

There is a need to extend the planting season of conifer regeneration into periods where the soil remains unfrozen due to a lack of available labor and the mechanization of planting. This study investigated how the summer- (August) and autumn-, especially late autumn (mid-September to mid-October) plantings affect the field performance of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) container seedlings. This study examined the timing of root growth just after planting, shoot flush and the start of root growth the following spring, and subsequent field performance. Seedlings of both species were planted in a nursery field trial, and in a clearcut reforestation site from August to October and the following May. The root growth of planted seedlings declined in September and ceased after mid-September. In the following spring, seedlings which were planted in early-autumn started their root growth faster than late-autumn-planted seedlings in both species. There was no difference in the timing of shoot flush for various planting dates. During the initial two years after planting, the shoot growth of spring-planted seedlings was lower, compared to autumn-planted seedlings. In conclusion, it is possible to plant conifer seedlings in the boreal forest zone up to October under non-limiting field conditions.

  • Luoranen, Natural Resources Institute Finland (Luke), Production systems, FI-77600 Suonenjoki, Finland E-mail: jaana.luoranen@luke.fi (email)
article id 7772, category Research article
Curt Almqvist. (2018). Improving floral initiation in potted Picea abies by supplemental light treatment. Silva Fennica vol. 52 no. 2 article id 7772. https://doi.org/10.14214/sf.7772
Keywords: Norway spruce; seed production; flower stimulation; strobili initiation; indoor seed orchard
Highlights: Supplemental light treatment:
  • Increases the proportion of genotypes initiating reproductive buds.
  • Increases floral induction, especially of female floral buds.
  • Facilitates breeding programmes, and seed production of highly improved base material from new selections for vegetative production programmes, to be more efficient.
Abstract | Full text in HTML | Full text in PDF | Author Info

Light is an important environmental factor for all green plants. Its intensity, spectral composition and photoperiod can affect the regulatory pathways in plants that lead to floral initiation. In this report, results are presented from three experiments in which supplemental light with metal halide lamps (250 µmol m–2 s–1, 20 hours day–1, approx. 6 weeks) was tested as a complement to other flowering stimulation treatments (elevated temperature, treatment with gibberellin A4 and A 7 (GA4/7), restricted water supply) applied to potted Picea abies (L.) Karst. in the greenhouse. Flower stimulation in a greenhouse resulted in more floral initiation compared to flower stimulation outdoors. Supplemental light treatment increased floral initiation further, and to a larger extent in female than in male flowers. It also increased the proportion of trees and genotypes that induced reproductive buds. In a practical application of the supplemental light treatment to potted Picea abies breeding material, 90.6% of the clones produced either female or male flowers, or both. A subset of the same material kept outdoors, and thus subjected to natural light and temperatures, produced no flowers despite being treated with GA4/7 and receiving a restricted water supply. In conclusion, supplemental light treatment facilitates breeding programmes, and seed production of highly improved base material from new selections for vegetative production programmes, to be more efficient.

  • Almqvist, Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, 751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0001-5739-4854 E-mail: curt.almqvist@skogforsk.se (email)
article id 7740, category Research article
Jonas R. Coussement, Kathy Steppe, Peter Lootens, Isabel Roldán-Ruiz, Tom De Swaef. (2018). A flexible geometric model for leaf shape descriptions with high accuracy. Silva Fennica vol. 52 no. 2 article id 7740. https://doi.org/10.14214/sf.7740
Keywords: image processing; leaf contour; leaf shape; shape function; digitising; tree leaf shape
Highlights: A method for assessing leaf shape for 3D plant models is proposed; The model is highly flexible and fits a large variety of shapes; It allows analysis of shape differences within and between leaf datasets.
Abstract | Full text in HTML | Full text in PDF | Author Info

Accurate assessment of canopy structure is crucial in studying plant-environment interactions. The advancement of functional-structural plant models (FSPM), which incorporate the 3D structure of individual plants, increases the need for a method for accurate mathematical descriptions of leaf shape. A model was developed as an improvement of an existing leaf shape algorithm to describe a large variety of leaf shapes. Modelling accuracy was evaluated using a spatial segmentation method and shape differences were assessed using principal component analysis (PCA) on the optimised parameters. Furthermore, a method is presented to calculate the mean shape of a dataset, intended for obtaining a representative shape for modelling purposes. The presented model is able to accurately capture a large range of single, entire leaf shapes. PCA illustrated the interpretability of the parameter values and allowed evaluation of shape differences. The model parameters allow straightforward digital reconstruction of leaf shapes for modelling purposes such as FSPMs.

  • Coussement, Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, B-9090 Melle, Belgium; Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium E-mail: jonas.coussement@ilvo.vlaanderen.be
  • Steppe, Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium E-mail: kathy.steppe@ugent.be
  • Lootens, Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, B-9090 Melle, Belgium E-mail: peter.lootens@ilvo.vlaanderen.be
  • Roldán-Ruiz, Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, B-9090 Melle, Belgium; Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark Zwijnaarde 927, B-9052 Zwijnaarde, Belgium E-mail: isabel.roldan-ruiz@ilvo.vlaanderen.be
  • De Swaef, Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 39, B-9090 Melle, Belgium E-mail: tom.deswaef@ilvo.vlaanderen.be (email)
article id 7738, category Research article
Samuel Egbäck, Bo Karlsson, Karl-Anders Högberg, Kenneth Nyström, Mateusz Liziniewicz, Urban Nilsson. (2018). Effects of phenotypic selection on height-diameter ratio of Norway spruce and Scots pine in Sweden. Silva Fennica vol. 52 no. 2 article id 7738. https://doi.org/10.14214/sf.7738
Keywords: Pinus sylvestris; Picea abies; genetic correlations; heritability; Genetic selection; slenderness
Highlights: Swedish plus-tree selection promoted less slender Norway spruce trees and more slender Scots pine trees compared to neighboring trees; Similar results were also found for progeny trials which indicated that genetics played a prominent role in phenotypic appearance.
Abstract | Full text in HTML | Full text in PDF | Author Info

Genetically improved Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) are extensively used in operational Swedish forestry plantations. However, relatively little is known about the stem slenderness (height-diameter ratio) of genetically improved material. Thus, in this study we investigated effects of plus-tree selection on stem slenderness of Norway spruce and Scots pine in Sweden by evaluating both the plus-tree selection and a large number of progeny trials. Species-specific models for predicting the height-diameter ratio were estimated using regression and mixed model approach. Our results show that phenotypic plus-tree selection promoted less slender Norway spruce trees and more slender Scots pine trees compared to neighboring trees. Similar results were also found for the progeny trials which indicated that genetics played a prominent role in the phenotypic appearance. Compared to the progeny of neighboring trees, Norway spruce plus-tree progenies had a 5.3% lower height-diameter ratio, while Scots pine plus-tree progenies had a 1.5% greater height-diameter ratio. The narrow sense heritability for height-diameter ratio was 0.19 for Norway spruce and 0.11 for Scots pine, indicating that it is possible to modify the height-diameter ratio by breeding. Correlation coefficients between breeding values for height-diameter ratio and diameter were negative for Scots pine (–0.71) and Norway spruce (–0.85), indicating that selection for diameter only would result in less slender stems of both species. Similar correlations were also found between breeding values for height-diameter ratio and height of Scots pine (–0.34) and Norway spruce (–0.74).

  • Egbäck, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, 230 53 Alnarp, Sweden E-mail: samuel.egback@slu.se (email)
  • Karlsson, Skogforsk, Ekebo, 268 90 Svalöv, Sweden E-mail: bo.karlsson@skogforsk.se
  • Högberg, Skogforsk, Ekebo, 268 90 Svalöv, Sweden E-mail: karl-anders.hogberg@skogforsk.se
  • Nyström, Swedish University of Agricultural Sciences, Department of Forest Resource Management, Skogsmarksgränd, 901 83 Umeå, Sweden E-mail: kenneth.nystrom@slu.se
  • Liziniewicz, Skogforsk, Ekebo, 268 90 Svalöv, Sweden E-mail: Mateusz.Liziniewicz@skogforsk.se
  • Nilsson, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, 230 53 Alnarp, Sweden E-mail: urban.nilsson@slu.se
article id 7699, category Research article
Dalytė Matulevičiūtė, Jurga Motiejunaite, Domas Uogintas, Ričardas Taraškevičius, Mindaugas Dagys, Valerijus Rašomavičius. (2018). Decline of a protected coastal pine forest under impact of a colony of great cormorants and the rate of vegetation change under ornithogenic influence. Silva Fennica vol. 52 no. 2 article id 7699. https://doi.org/10.14214/sf.7699
Keywords: coniferous forests; piscivorous birds; Baltic Sea; habitats
Highlights: We studied vegetation and its changes in a pine forest affected by a colony of great cormorants; Vegetation in the colony varied according to the period of bird influence and the stand elevation above sea level; Considerable vegetation changes occur in several years after bird colony establishment; Pine forest ecosystem cease to exist following a decade of bird activity.
Abstract | Full text in HTML | Full text in PDF | Author Info

We investigated the impact of a colony of great cormorants on the vegetation of the old growth Pinus sylvestris L. forest on the Curonian Spit peninsula, Lithuania. We studied the characteristics and rates of plant cover changes under varying length and intensity of bird influence. Plant species numbers, as well as the coverage of plants with different ecological requirements, varied according to the period of bird influence, but the resulting vegetation also depended upon the stand elevation above sea level. In our study, the initial increase in plant species richness at the start of bird nesting was not obvious and was of a transient character, due to the weak invasion of non-forest species and the rapid decline of forest plants. The colony area showed obvious and rapid vegetation changes during the investigation period. According to the calculated colony expansion rates, after 6–7 years of impact from birds the tree layer decreased by about four fold; the shrub layer decreased by about two fold; the field layer decreased by about 15 fold; and the dwarf shrub and bottom layers disappeared. The coverage by oligotrophic species decreased by more than four fold, while the coverage by eutrophic species increased by more than 60 fold. After 9–10 years of ornithogenic impact, all the trees were dead, and the protected coniferous forest ecosystem, with its characteristic plant species, had ceased to exist as such.

  • Matulevičiūtė, Institute of Botany, Nature Research Centre, Žaliųjų ežerų Str. 49, LT-08406 Vilnius, Lithuania ORCID http://orcid.org/0000-0001-7550-1860 E-mail: dalyte.matuleviciute@botanika.lt (email)
  • Motiejunaite, Institute of Botany, Nature Research Centre, Žaliųjų ežerų Str. 49, LT-08406 Vilnius, Lithuania ORCID http://orcid.org/0000-0002-6949-1990 E-mail: jurga.motiejunaite@botanika.lt
  • Uogintas, Institute of Botany, Nature Research Centre, Žaliųjų ežerų Str. 49, LT-08406 Vilnius, Lithuania ORCID http://orcid.org/0000-0002-3937-1218 E-mail: domas.uogintas@botanika.lt
  • Taraškevičius, Geology and Geography Institute, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania ORCID http://orcid.org/0000-0002-5110-6142 E-mail: taraskevicius@geo.lt
  • Dagys, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania ORCID http://orcid.org/0000-0001-9342-3464 E-mail: dagys@ekoi.lt
  • Rašomavičius, Institute of Botany, Nature Research Centre, Žaliųjų ežerų Str. 49, LT-08406 Vilnius, Lithuania ORCID http://orcid.org/0000-0003-1314-4356 E-mail: valerijus.rasomavicius@botanika.lt

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles