Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Qibin Yu

Category : Research article

article id 591, category Research article
Qibin Yu. (2001). Can physiological and anatomical characters be used for selecting high yielding hybrid aspen clones? Silva Fennica vol. 35 no. 2 article id 591. https://doi.org/10.14214/sf.591
Keywords: photosynthesis; growth; leaf; stomatal characters
Abstract | View details | Full text in PDF | Author Info
Stomatal, CO2 exchange parameters and several leaf and growth traits were recorded in a five-year-old hybrid aspen clone trial. The field trial consisted of four aspen hybrid clones (Populus tremula L. x P. tremuloides Michx.) and one local Populus tremula seedling source. The mean estimated height of hybrid aspen clones was 1.6 times higher than for P. tremula. Similarly, basal diameter was 1.5 times and breast diameter 1.8 times higher in the hybrids. Differences were observed for physiological and growth traits among hybrid clones and P. tremula, but, only stomatal characters of hybrid clones differed significantly from those in P. tremula. Hybrid clones had larger guard cells (22.9 mm) than P. tremula (19.2 mm), whereas P. tremula had a higher stomatal density (211.3/mm2) than the hybrid clones (164.4/mm2). Among four hybrid clones, net photosynthesis was strongly correlated with foliar nitrogen. Height correlated significantly with foliar nitrogen, but negatively with leaf fresh weight, leaf dry weight and stomatal density. The results suggested that yield components could be controlled by many genes, specific to each clone. No single gas exchange or morphological variable can provide a reliable indicator of yield potential.
  • Yu, Department of Plant Biology, P.O. Box 27, FIN-00014 University of Helsinki, Finland E-mail: qibin.yu@helsinki.fi (email)
article id 600, category Research article
Qibin Yu, P. M. A. Tigerstedt, Matti Haapanen. (2001). Growth and phenology of hybrid aspen clones (Populus tremula L. x Populus tremuloides Michx.). Silva Fennica vol. 35 no. 1 article id 600. https://doi.org/10.14214/sf.600
Keywords: phenology; growth rate; hybrid aspen; growth pattern
Abstract | View details | Full text in PDF | Author Info
Height, basal diameter, diameter at breast height, bud burst, and leaf development were recorded in a 5-year-old hybrid aspen clonal trial. The field trial consisted of four aspen hybrid clones (Populus tremula x Populus tremuloides) and one local P. tremula seedling source. Phenological traits were observed in the 3rd year. Growth patterns were recorded during the 3rd and 4th years. Phenological traits were explored in relation to hybrid vigor expressed as growth traits. Differences were observed for phenological and growth traits among hybrid clones and P. tremula. The growth period varied from 143–158 days for the four hybrid clones, and was 112 days for P. tremula. The correlation between growth period and yield was highly significant. The annual growth rate of height for the hybrids was 4.2 cm per 7 days (2.4 for P. tremula) in the 3rd year and 6.4 cm per 7 days (2.9 for P. tremula) in the 4th year. After 5 years, mean estimated stem volume of the hybrids was 3.9 times that of P. tremula. Significant clone by year interaction was observed for height, diameter, and volume growth. The hybrid vigor seems to be mainly attributable to a longer growth period.
  • Yu, Department of Plant Biology, P.O. Box 27, FIN-00014 University of Helsinki, Finland E-mail: qibin.yu@helsinki.fi (email)
  • Tigerstedt, Department of Plant Biology, P.O. Box 27, FIN-00014 University of Helsinki, Finland E-mail: pmat@nn.fi
  • Haapanen, Finnish Forest Research Institute, P.O. Box 18, FIN-01301 Vantaa, Finland E-mail: mh@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles