Current issue: 58(4)
Model-based information systems have proved valuable planning tools for analysing the production possibilities of forests as well as for understanding forest resources dynamics, stand management practices and forest economics. Computerized forest models implemented in the users’ information systems facilitate the transfer and application of research results in practical forestry.
Conclusions and visions concerning modelling are drawn from experiences in developing the MELA system and its application in solving timber production problems on both the national and forest holding level in Finland. The precondition for predicting forest resource dynamics and for planning the utilization of forests is to accept conditions, uncertainties and a restricted period of time.
The interactive process of forest resource, growth and drain monitoring, and forest management planning supported by forest research and modelling, are the means to enable an operational information base for a dynamic regulation and adaptation strategy for forest resource management under changing conditions and uncertainty.
The PDF includes an abstract in Finnish.
Europe’s forest area has increased 5 million ha since the late 1960s. The growing stock has increased 43% and the net annual increment 55% in exploitable forests since 1950. A part of the reported increase is caused by sampling inventories, which have been made in greater part of the countries. Sampling inventories have corrected earlier underestimates of the growing stock and the increment.
The difference between the annual net increment and fellings has increased since 1950. The net increment, 584 million m3, exceeded fellings, 408 million m3, by 176 million m3, in exploitable forests in 1990. If fellings could be increased to equal the increment, Europe would be an exporter of forest products.
A greater increase in the density, in the age and in the mean volume of forests per hectare threaten the biological stability of the growing stock. Degrading of the stock, increasing natural losses and deteriorating environmental qualities of forests can only be prevented by increased fellings and by forest regeneration.
The PDF includes an abstract in Finnish.
A range of different indices are available for assessing the health of trees in forests. An even larger range can be used for the assessment of the health of forest ecosystems. Most studies made in connection with ”forest decline” and the impact of air pollution and other environmental stresses on forests have concentrated on the assessment of crown transparency and crown discoloration in individual trees. These are non-specific indicators which are now known to be sometimes of relatively little value when determining the health of a forest ecosystem. Numerous problems exist with both, and the standardisation of assessments between and even within countries has not been achieved. Consequently, studies claiming to compare ”defoliation” between different countries cannot be substantiated. The emphasis on crown transparency and crown discoloration has resulted in the neglect of a number of other indices that could be of considerable value. These include a variety of visual measures of crown condition and also several non-visual bioindicators. Some of these techniques are objective, reducing the present reliance on observed standardization. A large number of potential techniques are currently at the research stage and have yet to be adequately tested in field trials. This represent an area where a substantial amount of further research is required.
Moose (Alces alces L.) browsing was studied in young Scots pine (Pinus sylvestris L.) stands mixed with deciduous trees in high-density winter ranges. The proportional use of twig biomass decreased as the availability increased. The total as well as proportional biomass consumption were higher on the moist than on the dry type of forest. The per tree consumption of pine was higher on the moist type, where the availability of pine was lower. Deciduous trees were more consumed on the moist type, where their availability was relatively high. The consumption of pine saplings increased as the availability of birch increased. Pine stem breakages were most numerous when birch occurred as overgrowth above pine and at high birch densities. The availability of other deciduous tree species did not correlate with browsing intensity of Scots pine. Moose browsing had seriously inhibited the development of Scots pines in 6% of the stands, over 60% of available biomass having been removed. Rowan and aspen were commonly over-browsed and their height growth was inhibited, which occurred rarely by birch. There was no difference in the proportion of young stands in forest areas with high and low moose density. A high proportion of peatland forests was found to indicate relatively good feeding habitats in the high-density areas.
The PDF includes an abstract in Finnish.
Measurements of wind and subsequent swaying of two Scots pines (Pinus sylvestris L.) were made at stand edge conditions. The horizontal windspeed was measured ten meters outside of the stand edge for four heights using cup anemometers. The compass directions were determined using a directional vane placed above the canopy. Tree swaying was measured by accelerometers at xy-coordinates. The shape of the wind profile at the stand edge varied to some degree depending on windspeed, but the form was a logarithmic one. Swaying of trees increased along with increasing windspeed. Furthermore, swaying was more or less irregular in relation to xy-coordinates, but it occurred, however, mainly perpendicularly to the direction of mean windspeed. The maximum bending of trees to the direction of mean windspeed varied also only little for various gusting windspeeds (average windspeed of 20 seconds) and dynamic wind loads. The maximum bending of trees was also in most cases less or equal to those predicted on the basis of static wind loads, when the mean windspeed for static load is taken as equal to the gusting windspeed.
The PDF includes an abstract in Finnish.
A model for the mechanism of windfall and stem breakage was constructed for single Scots pine (Pinus sylvestris L.) at the stand edge. The total turning moment arising from the wind drag and from the bending of stem and crown was calculated along with the breaking stress of the stem. Similarly, the support given by the root -soil plate anchorage was calculated. Windspeed variation within the crown and the vertical distribution of stem and crown weight were taken into account. Model computations showed that trees having a large height to diameter ratio were subjected to greater risk of falling down or breaking than trees with a small height to diameter ratio. The windspeed required to blow down a tree or break the stem of a tree decreased if the height to diameter ratio or the crown to stem ratio of trees increased.
The PDF includes an abstract in Finnish.
The water retention characteristics and their variation in tree nurseries and related physical properties were determined for commercially produced growth media made of light slightly humified Sphagnum peat. A total of 100 samples of peat media were collected from filled seedling trays in the greenhouses of four Finnish nurseries in 1990. In addition, the physical properties were determined for two growth media made of compressed peat sheets and chips. The variation in water retention characteristics in nurseries was described using linear models with fixed and random effects. The sources of variation in the mixed linear models were producer, grade, batch (greenhouse) and sample (tray).
The water retention of the peat media at different matric potentials was comparable to that given in the literature. The media shrank an average of 0–16% during desorption. The peat grades were finer than the Nordic quality standards for peat growth media. Particles < 1 mm increased and particles 1–5 mm decreased the water retention characteristics measured. The greatest total variation in water retention was at -1 kPa. The water retention of the peat media differed least at -5 and -10 kPa. The water retention characteristics of media from different producers usually differed significantly. The grades, on the other hand, did not differ from each other in their water retention characteristics nor were there significant interactions between producer and grade. The batch effect was marked but was lower than the effect within batches, where the sample (tray) effect was greater than the effect due to random measurement error. At -10 kPa, the measurement error was, however, clearly greater than the sample effect. The random measurement error was comparable to the batch effect. Aeration of the growth media is dependent on the water content retained between saturation and -1 kPa. The water availability to seedlings at the nursery phase is affected mainly by water retention between -1 and -10 kPa.
The PDF includes an abstract in Finnish.