Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Xiangwen Xiao

Category : Research article

article id 224, category Research article
Xiangwen Xiao, Xiao Xu, Fan Yang. (2008). Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica vol. 42 no. 5 article id 224. https://doi.org/10.14214/sf.224
Keywords: antioxidant enzymes; free proline; malondialdehyde; soluble sugars; drought tolerance; Populus cathayana
Abstract | View details | Full text in PDF | Author Info
The young, vegetatively propagated cuttings of Populus cathayana Rehder were exposed to a progressive drought stress for 12 weeks in a greenhouse to characterize the physiological and biochemical basis of drought adaptation in woody plants. Two contrasting populations were employed in our study, which were from the wet and dry climate regions in western China, respectively. The results showed that the adaptive responses of P. cathayana to drought were affected by drought intensity and poplar genotype (population). The progressive drought stress significantly inhibited plant growth, increased carotenoid contents and, at the same time, accumulated soluble sugars and free proline in the plants of both populations tested. On the other hand, the gradually increasing drought also induced antioxidative systems including the increase of the activities of superoxide dismutase (SOD) and guaiacol peroxidase (POD). Moreover, there were different responses to progressive drought stress between the two contrasting populations. Compared with the wet climate population, the dry climate population had lower shoot height and growth rate, higher free proline content, and more efficient photoprotective system (such as higher carotenoid content and Car/Chl) and antioxidant system (such as higher POD activity), as a result of drought stress. These results suggest that the dry climate population possesses better drought tolerance than the wet climate population. The differences in drought tolerance may be closely related with efficient photoprotective system, accumulation of the osmoprotectant proline as well as the increased capacity of the antioxidative system to scavenge reactive oxygen species, and the consequent suppressed level of lipid peroxidation under drought conditions.
  • Xiao, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, P. R. China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China E-mail: xiaoxw@cib.ac.cn (email)
  • Xu, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, P. R. China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China E-mail: xx@nn.cn
  • Yang, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, P. R. China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China E-mail: fy@nn.cn

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles