Current issue: 56(2)

Under compilation: 56(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
Acta Forestalia Fennica

Articles containing the keyword 'Populus tremula × P. tremuloides'

Category: Research article

article id 10612, category Research article
Daesung Lee, Jouni Siipilehto, Jari Hynynen. (2021). Models for diameter distribution and tree height in hybrid aspen plantations in southern Finland. Silva Fennica vol. 55 no. 5 article id 10612.
Keywords: Näslund’s height curve; Weibull distribution; parameter recovery; Populus tremula × P. tremuloides; clonal plantation; nonlinear mixed-effects model
Highlights: Parameter recovery method for the Weibull function fitted diameter distributions well by means of sum and mean forest stand characteristics for hybrid aspen plantations; Arithmetic and weighted mean diameters performed better for the recovery method than the corresponding median diameters; Two alternative Näslund’s height curve models with stand characteristics and tree dbh predictors provided unbiased tree height predictions.
Abstract | Full text in HTML | Full text in PDF | Author Info

Hybrid aspen (Populus tremula L. × P. tremuloides Michx.) is known with outstanding growth rate and some favourable wood characteristics, but models for stand management have not yet been prepared in northern Europe. This study introduces methods and models to predict tree dimensions, diameter at breast height (dbh) and tree height for a hybrid aspen plantation using data from repeatedly measured permanent sample plots established in clonal plantations in southern Finland. Dbh distributions using parameter recovery method for the Weibull function was used with Näslund’s height curve to model tree heights. According to the goodness-of-fit statistics of Kolmogorov-Smirnov and the Error Index, the arithmetic mean diameter (D) and basal area-weighted mean diameter (DG) provided more stable parameter recovery for the Weibull distribution than the median diameter (DM) and basal area-weighted median diameter (DGM), while DG showed the best overall fit. Thus, Näslund’s height curve was modelled using DG with Lorey’s height (HG), age, basal area (BA), and tree dbh (Model 1). Also, Model 2 was tested using all predictors of Model 1 with the number of trees per ha (TPH). All predictors were shown to be significant in both Models, showing slightly different behaviour. Model 1 was sensitive to the mean characteristics, DG and HG, while Model 2 was sensitive to stand density, including both BA and TPH as predictors. Model 1 was considered more reasonable to apply based on our results. Consequently, the parameter recovery method using DG and Näslund’s models were applicable for predicting tree diameter and height.

  • Lee, Natural Resources Institute Finland (Luke), Natural resources, Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID E-mail: (email)
  • Siipilehto, Natural Resources Institute Finland (Luke), Natural resources, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail:
  • Hynynen, Natural Resources Institute Finland (Luke), Natural resources, Vipusenkuja 5, FI-57200 Savonlinna, Finland ORCID E-mail:

Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles