Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'distribution-free method'

Category : Research article

article id 620, category Research article
Annika Kangas, Matti Maltamo. (2000). Performance of percentile based diameter distribution prediction and Weibull method in independent data sets. Silva Fennica vol. 34 no. 4 article id 620. https://doi.org/10.14214/sf.620
Keywords: stand structure; calibration estimation; Weibull function; diameter distribution prediction; distribution-free method; nearest neighbour method
Abstract | View details | Full text in PDF | Author Info
Diameter distribution is used in most forest management planning packages for predicting stand volume, timber volume and stand growth. The prediction of diameter distribution can be based on parametric distribution functions, distribution-free parametric prediction methods or purely non-parametric methods. In the first case, the distribution is obtained by predicting the parameters of some probability density function. In a distribution-free percentile method, the diameters at certain percentiles of the distribution are predicted with models. In non-parametric methods, the predicted distribution is a linear combination of similar measured stands. In this study, the percentile based diameter distribution is compared to the results obtained with the Weibull method in four independent data sets. In the case of Scots pine, the other methods are also compared to k-nearest neighbour method. The comparison was made with respect to the accuracy of predicted stand volume, saw timber volume and number of stems. The predicted percentile and Weibull distributions were calibrated using number of stems measured from the stand. The information of minimum and maximum diameters were also used, for re-scaling the percentile based distribution or for parameter recovery of Weibull parameters. The accuracy of the predicted stand characteristics were also compared for calibrated distributions. The most reliable results were obtained using the percentile method with the model set including number of stems as a predictor. Calibration improved the results in most cases. However, using the minimum and maximum diameters for parameter recovery proved to be inefficient.
  • Kangas, Finnish Forest Research Institute, Kannus Research Station, P.O. Box 44, FIN-69101 Kannus, Finland E-mail: annika.kangas@metla.fi (email)
  • Maltamo, Finnish Forest Research Institute, Joensuu Research Station, P.O. Box 68, FIN-80101 Joensuu, Finland E-mail: mm@nn.fi
article id 619, category Research article
Annika Kangas, Matti Maltamo. (2000). Percentile based basal area diameter distribution models for Scots pine, Norway spruce and birch species. Silva Fennica vol. 34 no. 4 article id 619. https://doi.org/10.14214/sf.619
Keywords: stand structure; diameter distribution prediction; distribution-free method; rational spline
Abstract | View details | Full text in PDF | Author Info
Information about diameter distribution is used for predicting stand total volume, timber volume and stand growth for forest management planning. Often, the diameter distribution is obtained by predicting the parameters of some probability density function, using means and sums of tree characters as predictors. However, the results have not always been satisfactory: the predicted distributions practically always have a similar shape. Also, multimodal distributions cannot be obtained. However, diameter distribution can also be predicted using distribution-free methods. In the percentile method, the diameters at certain percentiles of the distribution are predicted with models. The empirical diameter distribution function is then obtained by interpolating between the predicted diameters. In this paper, models for diameters at 12 percentiles of stand basal area are presented for Scots pine, Norway spruce and birch species. Two sets of models are estimated: a set with and one without number of stems as a predictor. Including the number of stems as a predictor improved the volume and saw timber volume estimates for all species, but the improvements were especially high for number of stems estimates obtained from the predicted distribution. The use of number of stems as predictor in models is based on the possibility of including this characteristic to measured stand variables.
  • Kangas, Finnish Forest Research Institute, Kannus Research Station, P.O. Box 44, FIN-69101 Kannus, Finland E-mail: annika.kangas@metla.fi (email)
  • Maltamo, Finnish Forest Research Institute, Joensuu Research Station, P.O. Box 68, FIN-80101 Joensuu, Finland E-mail: mm@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles