Current issue: 58(5)
The study based on young Scots pine (Pinus sylvestris L.) of varying density showed that number of living branches per whorl and total number of living branches per tree were negatively correlated with stand density. On the contrary, the number of dead branches increased with increasing stand density. The diameter of living and dead branches decreased with increasing stand density. Consequently, the branchiness, i.e. the share of the branch cross-sectional area from the surface area of the stem, decreased in dense stands compared with the thin stands. At the densest stands the branchiness, however, levelled of indicating a greater decrease of the radial growth at stems than at branches. The 2/3 power law described relatively well the relationship between stand density and mean squared branch diameter of living branches.
The PDF includes a summary in English.
Two Japanese models regarding the within-stand competition have been reviewed on the basis of relevant literature. Competition-density and 3/2 th power models seem to be applicable also into tree stands. The latter model has been applied into the material obtained from literature. Computations showed consistancy with the results obtained elsewhere in the world. It is concluded that also in Finnish conditions the 3/2 th power law may have great potentials in describing the effects of stand density on tree size.
The PDF includes a summary in English.