Current issue: 58(4)
Effect of dolomite lime and wood ash (0, 0.5, 1, 2, 4, 8 and 16 kg m-3) on the chemical composition of low humified Sphagnum peat was studied. Germination of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.) and silver birch (Betula pendula Roth) and the subsequent growth of these seedlings were investigated in a greenhouse experiment. Nutrient concentrations in shoots and roots of pine seedlings were also analysed. The pH of peat increased asymptotically from 3.8 to about 7.0 with increasing lime regimen and to about 8.0 with increasing ash regimen. Wood ash linearly increased electrical conductivity and P, K, and Ca concentrations of peat. Rate of germination, within 7 days, of pine and spruce was best at low pH (<5) while birch seeds had a slightly higher pH optimum (4–6). Germination capacity, within 21 days, was not affected by pH or application regimen of either lime or ash. Pine and spruce seedlings grew best with lime and ash doses of 0.5–2.0 kg m-3, the pH of peat being 4–5. Lime and ash treatments did not affect the growth of birch seedlings, but wood ash increased nutrient concentration of pine seedlings.
The PDF includes an abstract in Finnish.
Seven hundred one-year-old Betula pendula Roth seedlings were given different concentrations of potassium fertilizer. Over the study period seedlings were subjected to artificial growing and dormant phases. Frost resistance of the seedlings was assessed by artificial freezing tests and electrical impedance measurements on stem cuttings. In general, high concentrations of potassium fertilizer reflected a low tolerance to frost. Pre-freezing impedance readings decreased with increasing potassium fertilizer dosages. Results from pre-freezing impedance measurements were found to be in broad agreement with the hypothesis that high impedance readings indicate a frost hardy tissue whereas low readings imply the opposite.
The PDF includes an abstract in Finnish.