Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by José Tomé

Category : Research article

article id 32, category Research article
Susete Marques, Jordi Garcia-Gonzalo, José G. Borges, Brigite Botequim, M. Manuela Oliveira, José Tomé, Margarida Tomé. (2011). Developing post-fire Eucalyptus globulus stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fennica vol. 45 no. 1 article id 32. https://doi.org/10.14214/sf.32
Keywords: forest fires; forest management; Eucalyptus globulus Labill; damage model; post-fire mortality
Abstract | View details | Full text in PDF | Author Info
Forest and fire management planning activities are carried out mostly independently of each other. This paper discusses research aiming at the development of methods and tools that can be used for enhanced integration of forest and fire management planning activities. Specifically, fire damage models were developed for Eucalyptus globulus Labill stands in Portugal. Models are based on easily measurable forest characteristics so that forest managers may predict post-fire mortality based on forest structure. For this purpose, biometric data and fire-damage descriptors from 2005/2006 National Forest Inventory plots and other sample plots within 2006, 2007 and 2008 fire areas were used. A three-step modelling strategy based on logistic regression methods was used. In the first step, a model was developed to predict whether mortality occurs after a wildfire in a eucalypt stand. In the second step the degree of damage caused by wildfires in stands where mortality occurs is quantified (i.e. percentage of mortality). In the third step this mortality is distributed among trees. Data from over 85 plots and 1648 trees were used for modeling purposes. The damage models show that relative damage increases with stand basal area. Tree level mortality models indicate that trees with high diameters, in dominant positions and located in regular stands are less prone to die when a wildfire occurs.
  • Marques, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: smarques@isa.utl.pt (email)
  • Garcia-Gonzalo, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: jgg@nn.pt
  • Borges, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: jgb@nn.pt
  • Botequim, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: bb@nn.pt
  • Oliveira, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: mmo@nn.pt
  • Tomé, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: jt@nn.pt
  • Tomé, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: mt@nn.pt

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles