Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'biochemical model'

Category : Research article

article id 529, category Research article
Tuula Aalto, Pertti Hari, Timo Vesala. (2002). Comparison of an optimal stomatal regulation model and a biochemical model in explaining CO2 exchange in field conditions. Silva Fennica vol. 36 no. 3 article id 529. https://doi.org/10.14214/sf.529
Keywords: photosynthesis; Scots pine; optimization; Pinus sylvestris L.; CO2 exchange; biochemical model
Abstract | View details | Full text in PDF | Author Info
Gas exchange of Pinus sylvestris L. was studied in subarctic field conditions. Aspects on optimal control of the gas exchange were examined using approach by Hari et al. (Tree Phys. 2: 169–175, 1986). Biochemical model by Farquhar et al. (Planta 149: 78–90, 1980) was utilized to describe the photosynthetic production rate of needles. The model parameters were determined from field measurements. The results from the optimization approach and biochemical model were compared and their performance was found quite similar in terms of R2 calculated using measured exchange rates (0.89 for optimization model and 0.85 for biochemical model). Minor differences were found in relation to responses to intercellular carbon dioxide concentration and temperature.
  • Aalto, Finnish Meteorological Institute, Air Quality Research, Sahaajankatu 20 E, FIN-00810 Helsinki, Finland E-mail: tuula.aalto@fmi.fi (email)
  • Hari, University of Helsinki, Dept. of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland E-mail: ph@nn.fi
  • Vesala, University of Helsinki, Dept. of Physics, P.O. Box 64, FIN-00014 University of Helsinki, Finland E-mail: tv@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles