Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'dbh and height distribution'

Category : Research article

article id 617, category Research article
Jouni Siipilehto. (2000). A comparison of two parameter prediction methods for stand structure in Finland. Silva Fennica vol. 34 no. 4 article id 617. https://doi.org/10.14214/sf.617
Keywords: Pinus sylvestris; Picea abies; parameter prediction; dbh and height distribution; Johnson’s SBB distribution; Näslund’s height curve
Abstract | View details | Full text in PDF | Author Info
The objective of this paper was to predict a model for describing stand structure of tree heights (h) and diameters at breast height (dbh). The research material consisted of data collected from 64 stands of Norway spruce (Picea abies Karst.) and 91 stands of Scots pine (Pinus sylvestris L.) located in southern Finland. Both stand types contained birch (Betula pendula Roth and B. pubescent Ehrh.) admixtures. The traditional univariate approach (Model I) of using the dbh distribution (Johnson’s SB) together with a height curve (Näslund’s function) was compared against the bivariate approaches, Johnson’s SBB distribution (Model II) and Model Ie. In Model Ie within-dbh-class h-variation was included by transforming a normally distributed homogenous error of linearized Näslund’s function to concern real heights. Basal-area-weighted distributions were estimated using the maximum likelihood (ML) method. Species-specific prediction models were derived using linear regression analysis. The models were compared with Kolmogorov-Smirnov tests for marginal distributions, accuracy of stand variables and the dbh-h relationship of individual trees. The differences in the stand characteristics between the models were marginal. Model I gave a slightly better fit for spruce, but Model II was better for pine stands. The univariate Model I resulted in clearly too narrow marginal h-distribution for pine. It is recommended applying of a constrained ML method for reasonable dbh-h relationship instead of using a pure ML method when fitting the SBB model.
  • Siipilehto, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FIN-01301 Vantaa, Finland E-mail: jouni.siipilehto@metla.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles