Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'forest influence'

Category : Research article

article id 1267, category Research article
Caroline Mary Adrianne Franklin, Karen A Harper, Liam Kyte Murphy. (2015). Structural dynamics at boreal forest edges created by a spruce budworm outbreak. Silva Fennica vol. 49 no. 3 article id 1267. https://doi.org/10.14214/sf.1267
Keywords: edge influence; balsam fir; insect disturbance; structure; forest influence
Highlights: Insect outbreak edges were 10 m wide with different canopy cover, stem density and tree structural diversity than adjacent ecosystems; Although edge influence on forest structure was weak, forest influence was stronger and extended further, creating an edge zone skewed towards the disturbed area; After thirty years, high-contrast and structurally-diverse transition zones persist on the landscape.
Abstract | Full text in HTML | Full text in PDF | Author Info
Natural disturbances such as insect outbreaks create boundaries that influence vegetation patterns and ecological processes.  To better understand the effects of natural edge creation on relatively intact forests and adjacent disturbed areas, we investigated forest structure on both sides of 30 year-old forest edges created by a spruce budworm (Choristoneura fumiferana Clemens) outbreak in the boreal forest of Cape Breton Highlands National Park, Canada.  Our objectives were: 1) to determine edge influence (compared to interior forest) and forest influence (compared to disturbed areas) on vegetation structure, and 2) to gain insight into the structural development of the edges.  Canopy cover, tree density, radial growth and deadwood were sampled in 5 m x 20 m plots along 120 m transects across six edges.  Randomization tests were used to estimate the magnitude and distance of edge and forest influence.  Narrow transition zones approximately 10 m wide characterized the spruce budworm-induced edges.  Edge influence did not extend into the forest; however, forest influence on structure was detected up to 40 m from the edge into the disturbed area.  We found evidence of the insect outbreak in the form of reduced radial growth during the disturbance across the entire disturbed area-forest gradient, which indicates that spruce budworm activity may not have ceased directly at the edge.  Tree mortality caused by the insect outbreak resulted in snags, many of which have transformed into logs since the outbreak collapsed.  Spruce budworm outbreak-induced forest edges are narrow but dynamic boundaries separating two distinct vegetation communities in the boreal landscape.
  • Franklin, Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, T6G 2H1, Canada E-mail: cfrankli@ualberta.ca (email)
  • Harper, School for Resource and Environmental Studies, Dalhousie University, Suite 5010, 6100 University Ave., Halifax, Nova Scotia, B3H 3J5, Canada E-mail: Karen.Harper@dal.ca
  • Murphy, Department of Environmental Science, Saint Mary’s University, 923 Robie St., Halifax, Nova Scotia, B3H 3C3, Canada E-mail: liamkmurphy@gmail.com

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles