Current issue: 58(4)
The matrix potential, measured with tensiometers, and its effect on the soil air-water ratio were examined during the production of bare-rooted Scots pine (Pinus sylvestris L.) seedlings in nursery fields. Soil water potential was monitored during the growing season of 1983 at three nurseries in Finland, and from fields growing various seedling types at depths of 10 and 20 cm. In 1986, soil core samples were collected in order to assess the water desorption characteristics of the soil. In addition, the effect of polypropylene gauze covering (Agryl P 17) on the soil water potential was examined during the growing season of 1985 at two nurseries in Finland at depths of 5, 10 and 15 cm.
The soil water potential was relatively high in all the fields studied. In fields growing one- and two-year-old seedlings, the median potential was higher than -10 kPa. The potential did not fall below the limit of the measured scale (ca. -85 kPa) of the tensiometers. Soil aeriation may have been periodically insufficient in the rooting zone, as a result of high water content. The favourable water potential is below -5 to – 6 kPa. The gauze covering slightly (1–4 kPa) increased the soil water potential, an effect which could be harmful if the soil air space is low. During the second growing season, the soil water potential was lower in the fields covered by the gauze during the first year than in the fields without the covering.
The PDF includes an abstract in English.
Five ploughed research areas from Finnish Norther Karelia were selected for comparison studies of plough ridges and untouched soil. Measurements were made at a depth of 10 cm in sample plots on both mineral and paludified mineral soil and peatland parts of these areas. In summer 1987 daily soil water matric potential was measured using tensiometers, and volumetric soil moisture content and density were determined from soil samples at two dates during the summer. Water characteristics of the core samples were also determined. On paludified mineral and peat soils the water table depth from the soil surface was measured.
The results indicated that in plough ridges matric potential was lowest. Plough ridges were also seen to dry and wet faster and to a greater degree than untouched soils. In untouched soils, soil water relations and aeration were not affected by the distance to the furrow. The effect of the plough ridge was smallest on peatland, where there was a good capillary connection from plough ridge to the ground water, if the ditches were not very effective. The soil in the ridges did not dry too much to restrict seedling growth. The untouched surface soil in poorly drained peat and paludified minear soil was, at least in a rainy growing season, often and also for long times so wet that 10% minimum air space required for good seedling root growth was not available.
The PDF includes an abstract in English.