Current issue: 58(4)
Photogrammetric point clouds obtained with unmanned aircraft systems (UAS) have emerged as an alternative source of remotely sensed data for small area forest management inventories (FMI). Nonetheless, it is often overlooked that small area FMI require considerable field data in addition to UAS data, to support the modelling of forest attributes. In this study, we propose a method whereby tree volumes by species are predicted with photogrammetric UAS data and Sentinel-2 images, using models fitted with airborne laser scanning data. The study area is in a managed boreal forest area in Eastern Finland. First, we predicted total volume with UAS point cloud metrics using a prior regression model fitted in another area with ALS data. Tree species proportions were then predicted by k nearest neighbor (k-NN) imputation based on bi-seasonal Sentinel-2 images without measuring new field plot data. Species-specific volumes were then obtained by multiplying the total volume by species proportions. The relative root mean square error (RMSE) values for total and species-specific volume predictions at the validation plot level (30 m × 30 m) were 9.0%, and 33.4–62.6%, respectively. Our approach appears promising for species-specific small area FMI in Finland and in comparable forest conditions in which suitable field plots are available.
Information on forest trafficability (i.e. carrying capacity of the forest floor) is required before harvesting operations in Southern Boreal forest conditions. It describes the seasons when harvesting operations may take place without causing substantial damage to the forest soil using standard logging machinery. The available trafficability information have been based on subjective observations made during the wood procurement planning. For supporting forest operations, an open access map product has been developed to provide information on trafficability of forests. The forest stands are distributed into classes that characterize different harvesting seasons based on topographic wetness index, amount of vegetation, ground water height and ditch depth. The main goal of this case study was to evaluate the information of the static forest trafficability map in relation to the detected rutting within logging tracks measured in the field. The analysis concentrated on thinning stands since the effect of rutting is significant on the growth of the remaining trees. The results showed that the static trafficability map provided reliable and slightly conservative estimation of the forest trafficability. The majority (91.7%) of the evaluated stands were harvested without causing significant damage if harvesting was timed correctly compared to the trafficability information. However, it should be pointed out that the weather history at small scale, the skills of a driver, and effects of used machinery are not considered in the map product although they can have a considerable impact on the rutting.