Lichens are sensitive to competition from vascular plants, intensive silviculture, pollution and reindeer and caribou grazing, and can therefore serve as indicators of environmental changes. Hyperspectral remote sensing data has been proved promising for estimation of plant diversity, but its potential for forest floor lichen cover estimation has not yet been studied. In this study, we investigated the use of hyperspectral data in estimating ground lichen cover in boreal forest stands in Finland. We acquired airborne and in situ hyperspectral data of lichen-covered forest plots, and applied multiple endmember spectral mixture analysis to estimate the fractional cover of ground lichens in these plots. Estimation of lichen cover based on in situ spectral data was very accurate (coefficient of determination (r2) 0.95, root mean square error (RMSE) 6.2). Estimation of lichen cover based on airborne data, on the other hand, was fairly good (r2 0.77, RMSE 11.7), but depended on the choice of spectral bands. When the hyperspectral data were resampled to the spectral resolution of Sentinel-2, slightly weaker results were obtained. Tree canopy cover near the flight plots was weakly related to the difference between estimated and measured lichen cover. The results also implied that the presence of dwarf shrubs could influence the lichen cover estimates.
Spectral mixture analysis was used to estimate the contribution of woody elements to tree level reflectance from airborne hyperspectral data in boreal forest stands in Finland. Knowledge of the contribution of woody elements to tree or forest reflectance is important in the context of lea area index (LAI) estimation and, e.g., in the estimation of defoliation due to insect outbreaks, from remote sensing data. Field measurements from four Scots pine (Pinus sylvestris L.), five Norway spruce (Picea abies (L.) Karst.) and four birch (Betula pendula Roth and Betula pubescens Ehrh.) dominated plots, spectral measurements of needles, leaves, bark, and forest floor, airborne hyperspectral as well as airborne laser scanning data were used together with a physically-based forest reflectance model. We compared the results based on simple linear combinations of measured bark and needle/leaf spectra to those obtained by accounting for multiple scattering of radiation within the canopy using a physically-based forest reflectance model. The contribution of forest floor to reflectance was additionally considered. The resulted mean woody element contribution estimates varied from 0.140 to 0.186 for Scots pine, from 0.116 to 0.196 for birches and from 0.090 to 0.095 for Norway spruce, depending on the model used. The contribution of woody elements to tree reflectance had a weak connection to plot level forest variables.