Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'clearcutting'

Category : Article

article id 7671, category Article
Eero Kubin, Lauri Kemppainen. (1991). Effect of clearcutting of boreal spruce forest on air and soil temperature conditions. Acta Forestalia Fennica no. 225 article id 7671. https://doi.org/10.14214/aff.7671
Keywords: Norway spruce; Picea abies; clearcutting; soil temperature; air temperature; boreal spruce forest
Abstract | View details | Full text in PDF | Author Info

The present paper deals with the effects of clearcutting on soil and air temperature and the development of temperature conditions during the 12 growing seasons following clearcutting of a Norway spruce (Picea abies (L.) H. Karst.) stand on a Vaccinium-Myrtillus forest type in Kainuu, northeast Finland. The uncut control site had a growing stock of 140 m3/ha. The temperature measurements were carried out by means of thermographs, Grant measuring devices and minimum and maximum glass thermometers.

Clearcutting had no significant influence on temperatures measures at 2 m above the ground in a meteorological screen and no changes occurred in them during the period studied, while on the ground level and in the adjacent layer of air the daily maxima increased and the daily minima decreased as compared with uncut forest. The greatest difference was over 10°C between the maximum temperatures at 10 cm and almost 8°C between the minimum temperatures. Night frosts were considerably more common at 10 cm above the ground in the clearcut area than in uncut forests.

Temperature differences were smaller in the soil than close to ground level. Day temperatures were 2–3°C higher in the clearcut area than in uncut forests, and differences between night temperatures at this depth were even smaller. Correspondingly, temperatures were 3–5°C higher at depths of 50 cm and 100 cm in the clearcut area during the whole measuring period. The differences between the temperatures in the clearcut area and uncut forests did not diminish to any significant extent during the 12 years despite the stocking of the former area with seedlings.

The PDF includes a summary in Finnish.

  • Kubin, E-mail: ek@mm.unknown (email)
  • Kemppainen, E-mail: lk@mm.unknown

Category : Research article

article id 1265, category Research article
Eva Ring, Lars Högbom, Hans-Örjan Nohrstedt, Staffan Jacobson. (2015). Soil and soil-water chemistry below different amounts of logging residues at two harvested forest sites in Sweden. Silva Fennica vol. 49 no. 4 article id 1265. https://doi.org/10.14214/sf.1265
Keywords: clearcutting; final felling; bio fuel; conifer; fuel-adapted felling; nutrient; soil solution
Highlights: Soil-water chemistry, ground vegetation cover and water flux were affected by the amounts of logging residues stored on the ground after harvest; A strong response on soil-water chemistry was recorded at only one of the two sites; At the site showing a weak response, less residue remained after seven years in the treatments giving the most pronounced effects.
Abstract | Full text in HTML | Full text in PDF | Author Info
Logging residues (LR), i.e. tops, branches, and needles, are increasingly being harvested for energy production in Fennoscandia. These residues are temporarily piled on site awaiting transport. This study was undertaken to investigate effects on the soil and soil-water chemistry below different amounts of LR at two recently harvested coniferous sites in Sweden. Seven treatments were included and the studied amounts of LR ranged from no LR left on the ground to four times the estimated LR amount of the harvested stands. Two treatments included eight times the estimated LR amount of the harvested stands but here the LR were removed after 7 or 20 weeks. Soil-water samples were collected during the first six or seven growing seasons. Effects of treatment were detected in the soil water for 11 chemical variables at the northern site, and for the NO3- and Cl- concentrations at the southern site. The strongest response was generally found in the treatment with four times the estimated LR amount, for which the highest concentrations were recorded in most cases. In the first three seasons, the water flux through the LR decreased with an increasing amount of residue. Effects on the exchangeable store of Ca2+ in the mor layer and the upper 20 cm of the mineral soil was detected at both sites. At the northern site, the weight of the remaining LR, ground vegetation and all other material above the mor layer in the treatments with two and four times the estimated LR amount was roughly twice the corresponding weights at the southern site seven years after treatment. Although strong effects on the soil-solution chemistry were detected at one of the study sites, in the treatments corresponding to two and four times the estimated logging residue amount, the effect on the leaching from an entire regeneration area is likely to be relatively small given the percentage of the area hosting these logging residue amounts (ca. 20% after stem-only harvesting and 9% after fuel-adapted felling).
  • Ring, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: eva.ring@skogforsk.se (email)
  • Högbom, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: lars.hogbom@skogforsk.se
  • Nohrstedt, Swedish University of Agricultural Sciences, Department of Soil and Environment, P.O. Box 7014, SE-750 07 Uppsala, Sweden E-mail: hans-orjan.nohrstedt@slu.se
  • Jacobson, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: staffan.jacobson@skogforsk.se
article id 1219, category Research article
Thomas P. Sullivan, Druscilla S. Sullivan. (2014). Diversifying clearcuts with green-tree retention and woody debris structures: conservation of mammals across forest ecological zones. Silva Fennica vol. 48 no. 5 article id 1219. https://doi.org/10.14214/sf.1219
Keywords: clearcutting; green-tree retention; small mammals; coniferous forests; ecological zones; Myodes gapperi; population dynamics; red-backed voles; woody debris structures
Highlights: Species diversity of small mammals increased with structural complexity left on clearcut sites; Productivity of red-backed vole populations was higher in sites with green-tree retention (GTR) and windrows of woody debris; GTR and windrows may provide additive effect for providing habitat to conserve mammals on clearcuts.
Abstract | Full text in HTML | Full text in PDF | Author Info
We tested the hypotheses (H) that on newly clearcut-harvested sites, (H1) abundance and species diversity of the forest-floor small mammal community, and (H2) abundance, reproduction, and recruitment of red-backed voles (Myodes gapperi Vigors), would increase with higher levels of structural retention via green-tree retention (GTR) and woody debris (dispersed and constructed into windrows). Study areas were located in three forest ecological zones in southern British Columbia, Canada. For H1, mean total abundance did generally increase with the gradient of retained habitat structure. Mean species richness and diversity were similar among treatment sites but did show an increasing gradient with structural compexity. For H2, mean abundance, reproduction, and recruitment of M. gapperi were higher in GTR and windrow sites than those without retained structures. There was a positive relationship between mean abundance of M. gapperi and total volume of woody debris across treatments. This study is the first investigation of the responses of forest-floor small mammals to an increasing gradient of retained habitat structure via GTR and woody debris on clearcuts. Our assessment of a combination of these two interventions suggested a potentially strong additive effect that could be cautiously extrapolated across three forest ecological zones. With the advent of low levels of GTR on clearcuts, woody debris structures should help provide some habitat to conserve forest mammals on harvest openings.
  • Sullivan, Department of Forest and Conservation Sciences, Faculty of Forestry, University of BC, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 E-mail: tom.sullivan@ubc.ca (email)
  • Sullivan, Applied Mammal Research Institute, 11010 Mitchell Avenue, Summerland, BC, Canada V0H 1Z8 E-mail: dru.sullivan@appliedmammal.com
article id 122, category Research article
Benoit Lafleur, Nicole J. Fenton, David Paré, Martin Simard, Yves Bergeron. (2010). Contrasting effects of season and method of harvest on soil properties and the growth of black spruce regeneration in the boreal forested peatlands of eastern Canada. Silva Fennica vol. 44 no. 5 article id 122. https://doi.org/10.14214/sf.122
Keywords: soil disturbance; peatland; Picea mariana; careful logging; clearcutting; paludification; forest productivity
Abstract | View details | Full text in PDF | Author Info
It has been suggested that without sufficient soil disturbance, harvest in boreal forested peatlands may accelerate paludification and reduce forest productivity. The objectives of this study were to compare the effects of harvest methods (clearcutting vs. careful logging) and season (summer vs. winter harvest) on black spruce regeneration and growth in boreal forested peatlands of eastern Canada, and to identify the soil variables that favour tree growth following harvest. Moreover, we sought to determine how stand growth following harvest compared with that observed following fire. The average tree height of summer clearcuts was greater than that of summer carefully logged stands and that of all winter harvested sites. Summer clearcutting also resulted in a higher density of trees > 3 m and > 4 m tall and in a 50% reduction in Rhododendron groenlandicum cover, a species associated with reduced black spruce growth. Height growth of sample trees was related to foliar N and P concentrations, and to soil total N, pH and available Ca and Mg but not to harvest method or season. Our results also indicate that summer clearcutting could produce stand productivity levels comparable to those observed after high-severity soil burns. These results suggest that summer clearcutting could be used to restore forest productivity following harvest in forested peatlands, and offer further support to the idea that sufficient levels of soil disturbance may be required to restore productivity in ecosystems undergoing paludification.
  • Lafleur, NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada E-mail: benoit.lafleur@uqat.ca (email)
  • Fenton, NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada E-mail: njf@nn.ca
  • Paré, Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, QC G1V 4C7, Canada E-mail: dp@nn.ca
  • Simard, Département de Géographie, Université Laval, Pavillon Abitibi-Price, 2405 rue de la Terrasse, Québec, QC G1V 0A6, Canada E-mail: ms@nn.ca
  • Bergeron, NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada E-mail: yb@nn.ca

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles