The Finnish red list shows that the epiphytic lichen flora of Finnish forests is highly threatened and declining steeply. Red lists provide limited information on the habitat associations of threatened species, which could be relevant in informing management and conservation measures. We used documented empirical data and expert assessments to determine for each red-listed (IUCN categories Near Threatened, NT; Vulnerable, VU; Endangered, EN; Critically Endangered, CR; Regionally Extinct, RE) epiphytic lichen species of Finland the following key habitat associations: host tree species, substrate type, habitat type, geographical distribution, preferred microclimate, and minimum required forest and tree age. The most important host tree species were Picea abies (L.) H. Karst. and Populus tremula L. Other tree species of high importance included Sorbus aucuparia L. and Salix caprea L. One fourth of red-listed epiphytic lichens were primarily lignicolous. Most species required old-growth forests (required by 41% of species) or old trees (52%), but many species required only mature forests (36%) or trees (35%). The microclimatic preferences of most red-listed epiphytic lichens consisted of high or intermediate light availability and humidity. Most species whose status had deteriorated were dependent on deciduous trees. The continuous availability of old deciduous trees (especially Populus, Salix and Sorbus) requires special attention in both managed and protected forests. Red-listed epiphytic lichens would be aided by increased forest protection or transitioning to less intensive management regimes.
Herb-rich forests are often considered biodiversity hotspots in the boreal zone but their fungal assemblages, particularly those of wood-decaying fungi, remain poorly known. We studied herb-rich forests as habitats for polypores, a distinct group of wood-decaying fungi, and assessed the importance of tree- and stand-scale variables for polypore species richness, abundance, and diversity, including red-listed species. The data include 71 herb-rich forest stands in Finland and 4797 dead wood items, on which we made 2832 observations of 101 polypore species. Dead-wood diversity was the most important variable explaining polypore species richness and diversity, whereas increasing latitude had a negative effect. Red-listed species showed a positive response to the abundance of large-diameter dead wood, which, especially birch, supported also high general abundance of polypores. The composition of polypore assemblages reflected their host-tree species. The red-listed species did not show explicit patterns in the ordination space. Compared to old-growth spruce forests, herb-rich forests seem to host lower polypore species richness and less red-listed species. However, because of high proportion of deciduous trees in the dead wood profile, herb-rich forests have a clear complementary effect on polypore assemblages in boreal forest landscapes.