Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Anssi Ahtikoski

Category : Research article

article id 10273, category Research article
Lasse Aro, Anssi Ahtikoski, Jyrki Hytönen. (2020). Profitability of growing Scots pine on cutaway peatlands. Silva Fennica vol. 54 no. 3 article id 10273. https://doi.org/10.14214/sf.10273
Keywords: Pinus sylvestris; afforestation; bare land value; financial performance; peat cutaway area; stand-level optimization
Highlights: The potential wood production on cutaway peatlands can be high; Afforestation with seeding or planting was profitable at 3% rate of interest; In northern Finland, the afforestation method, ditch spacing and fertilization affected the bare land value.
Abstract | Full text in HTML | Full text in PDF | Author Info

A major after-use option for former peat harvesting areas has been afforestation. The profitability of afforestation with Scots pine trees (Pinus sylvestris L.) was studied in two 31–32-year old experiments in southern and northern Finland. The stands were established by seeding and planting, and various fertilization treatments and drainage intensities were tested. The financial performance for each plot was assessed in three steps. First, the costs occurred during the measurement time were summed up according to their present value. Then, for the rest of the rotation (i.e., from the age of 31/32 onwards) the stand management was optimized in order to maximize the net present value (MaxNPV). Finally, bare land values (BLVs) were calculated by summing up the present value of costs and the MaxNPV and converting the sum of the series into infinity. The afforestation method did not affect the mean annual increment (MAI; 9.2–9.5 m3 ha–1 a–1) in the southern experiment. In the northern experiment the afforestation method, ditch spacing and fertilization had significant effects on the MAI of the stands. The average MAI of the planted pines was 8.9 m3 ha–1 a–1, and for seeded pines it was 7.5 m3 ha–1 a–1. The BLV at an interest rate of 3% was positive for all stands in both regions. In the northern region afforestation method, ditch spacing and fertilization also had a significant effect on the BLV. When the interest rate was 5%, almost two thirds of the stands had a negative BLV in both regions.

  • Aro, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Itäinen Pitkäkatu 4A, FI-20520 Turku, Finland E-mail: lasse.aro@luke.fi (email)
  • Ahtikoski, Natural Resources Institute Finland (Luke), Natural resources, Paavo Havaksentie 3, FI-90570 Oulu, Finland ORCID https://orcid.org/0000-0003-1658-3813 E-mail: anssi.ahtikoski@luke.fi
  • Hytönen, Natural Resources Institute Finland (Luke), Natural resources, Teknologiakatu 7, FI-67100 Kokkola, Finland ORCID http://orcid.org/0000-0001-8475-3568 E-mail: jyrki.hytonen@luke.fi
article id 5659, category Research article
Juha Laitila, Anssi Ahtikoski, Jaakko Repola, Johanna Routa. (2017). Pre-feasibility study of supply systems based on artificial drying of delimbed stem forest chips. Silva Fennica vol. 51 no. 4 article id 5659. https://doi.org/10.14214/sf.5659
Keywords: moisture content; heating value; procurement cost; young forests; dry matter loss
Highlights: With artificial drying and quick delivery, avoiding dry material losses of harvested timber, it could be possible to reduce the current costs of the prevailing procurement system based on natural drying of stored timber at roadside landings; The maximum cost for the prospective drying process of fresh chips corresponds to, e.g., organization costs or stumpage price of delimbed stems.
Abstract | Full text in HTML | Full text in PDF | Author Info

This study was aimed at determining the maximum cost level of artificial drying required for cost-efficient operation. This was done using a system analysis approach, in which the harvesting potential and procurement cost of alternative fuel chip production systems were compared at the stand and regional level. The accumulation and procurement cost of chipped delimbed stems from young forests were estimated within a 100 km transport distance from a hypothetical end use facility located in northern Finland. Logging and transportation costs, stumpage prices, tied up capital, dry matter losses and moisture content of harvested timber were considered in the study. Moisture content of artificially dried fuel chips made of fresh timber (55%) was set to 20%, 30% and 40% in the comparisons. Moisture content of fuel chips based on natural drying during storing was 40%. Transporting costs were calculated according to new higher permissible dimensions and weight limits for truck-trailers. The procurement cost calculations indicated that with artificial drying and by avoiding dry material losses of timber, it could be possible to reduce current costs of the prevailing procurement system based on natural drying of timber at roadside landings. The maximum cost level of artificial drying ranged between 1.2–3.2 € MWh–1 depending on the supply chain, moisture content and procurement volume of fuel chips. This cost margin corresponds to, e.g., organization, forwarding and transportation costs or stumpage price of delimbed stems.

  • Laitila, Natural Resources Institute Finland (Luke), Bio-based business and industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: juha.laitila@luke.fi (email)
  • Ahtikoski, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Paavo Havaksen tie 3, FI-90570 Oulu, Finland E-mail: anssi.ahtikoski@luke.fi
  • Repola, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Eteläranta 55, FI-96300 Rovaniemi, Finland E-mail: jaakko.repola@luke.fi
  • Routa, Natural Resources Institute Finland (Luke), Bio-based business and industry, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: johanna.routa@luke.fi
article id 2017, category Research article
Pentti Niemistö, Soili Kojola, Anssi Ahtikoski, Raija Laiho. (2017). From useless thickets to valuable resource? – Financial performance of downy birch management on drained peatlands. Silva Fennica vol. 51 no. 3 article id 2017. https://doi.org/10.14214/sf.2017
Keywords: forest management; Betula pubescens; thinning; energy wood; pulpwood; profitability; final cutting
Highlights: The most profitable management regimes for pulpwood and energy wood production in dense downy birch stands on drained peatlands include no thinnings, but final cutting at the stand age of 40–45 years as whole-tree harvesting, or as integrated harvesting of pulpwood and delimbed energy wood stems about 10 years later depending on applicable harvesting method; A competitive management regime is early precommercial thinning at 4 m dominant height to a density of 2500 stems per hectare and production of pulpwood with a rotation of 55–65 years. Equal profitability is achieved with or without traditional first thinning, which can thus be included for other reasons, for example to improve regeneration of spruce.
Abstract | Full text in HTML | Full text in PDF | Author Info

Downy birch (Betula pubescens Ehrh.) stands on drained peatlands are often considered useless because they typically do not yield good-quality sawn timber. However, covering an area of ca. 0.5 million hectares and with total yields of up to 250 m3 ha–1, downy birch stands on peatlands in Finland have a potential for pulpwood and/or energy wood production. We examined the financial performance of alternative management regimes (with or without thinnings, different thinning intensities, several rotation lengths) combined with alternative harvesting methods (pulpwood, energy wood, or integrated, energy wood being delimbed stems or whole trees). We used data from 19 experimental stands, monitored for 20–30 years. For harvesting removals we considered both actual thinning removals and final-cutting removals with alternative timings that were based on the monitoring data. We assessed the profitability as a combination of the net present value of the birch generation and the bare land value of future generations of Norway spruce (Picea abies (L.) Karst.). The most profitable management was growing without thinnings until whole-tree final cutting at the stand age of 40–45 years with an advanced multi-tree harvesting method. In contrast, the standard method in whole-tree final cutting resulted in the lowest profitability, and an integrated method with the energy wood as delimbed stems was the best of the standard methods. Thinnings were unprofitable especially when aiming to produce energy wood, whereas aiming for pulpwood, light precommercial thinning was competitive. Commercial thinning at the traditional “pulpwood stage” had little effect on profitability. The best stand age for final cutting was 40–65 years – earlier for very dense stands and whole-tree energy wood harvesting with advanced method, later for precommercially thinned stands and pulpwood harvesting.

  • Niemistö, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Kampusranta 9 C, 60320 Seinäjoki, Finland E-mail: pentti.niemisto@luke.fi (email)
  • Kojola, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Latokartanonkaari 9, 00790 Helsinki, Finland E-mail: soili.kojola@luke.fi
  • Ahtikoski, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Paavo Havaksentie 3, 90014 University of Oulu, Finland E-mail: anssi.ahtikoski@luke.fi
  • Laiho, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Latokartanonkaari 9, 00790 Helsinki, Finland E-mail: raija.laiho@luke.fi
article id 1301, category Research article
Mikko Moilanen, Jyrki Hytönen, Hannu Hökkä, Anssi Ahtikoski. (2015). Fertilization increased growth of Scots pine and financial performance of forest management in a drained peatland in Finland. Silva Fennica vol. 49 no. 3 article id 1301. https://doi.org/10.14214/sf.1301
Keywords: Pinus sylvestris; stand growth; peatlands; needle nutrients; P deficiency; K deficiency
Highlights: All fertilizers containing phosphorus and potassium improved the P and K status and the stem growth of Scots pine still 26 years from application; Wood ash, containing more nutrients than other fertilizers, gave the strongest stand growth response and the highest net present value; Ash fertilizer treatment outperformed other fertilizer treatments and control in net present value, regardless of the applied discount rate, 3%, 4% or 5%.
Abstract | Full text in HTML | Full text in PDF | Author Info

The long-term effects of fertilization on the needle nutrient concentrations, growth and financial performance of a Scots pine (Pinus sylvestris L.) stand was examined in a thick-peated drained peatland forest located in Central Finland. At the trial establishment in 1985, the trees were suffering from P and K deficiencies, but their N status was good. The fertilizer treatments were Control, PK (rock phosphate + potassium chloride), ApaBio (apatite phosphorus + biotite) and wood ash, applied both with and without N and replicated six times. All treatments containing phosphorus and potassium increased foliar P and K concentrations above the deficiency limits up to the end of the study period of 26 years. The effect of the fertilization on stand volume growth of Scots pine was strong and continued still at the end of the study period. The trees on ApaBio and PK plots grew nearly two-fold and those on Ash plots over two-fold compared with the control plots. In a thinning made at the end of the study period the total logging removal on fertilized plots was 1.5–2.2 times greater and included more saw logs than on the control plots. Ash fertilizer treatment outperformed other fertilizer treatments as well as the control. With a 5% discounted equivalent annual income (EAI) of Ash fertilizer treatment was statistically significantly (p=0.009) almost three times higher than that of control. As a conclusion, fertilization (either using PK fertilizers or Ash) in N-rich drained peatlands is a financially feasible method of management.

  • Moilanen, Natural Resources Institute Finland, Natural resources and bioproduction, Paavo Havaksen tie 3, FI-90014 Oulu, Finland E-mail: mikko.moilanen@luke.fi (email)
  • Hytönen, Natural Resources Institute Finland, Natural resources and bioproduction, Silmäjärventie 2, FI-69100 Kannus, Finland E-mail: jyrki.hytonen@luke.fi
  • Hökkä, Natural Resources Institute Finland, Natural resources and bioproduction, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail: hannu.hokka@luke.fi
  • Ahtikoski, Natural Resources Institute Finland, Natural resources and bioproduction, Paavo Havaksen tie 3, FI-90014 Oulu, Finland E-mail: anssi.ahtikoski@luke.fi
article id 220, category Research article
Jani Heikkilä, Matti Sirén, Anssi Ahtikoski, Jari Hynynen, Tiina Sauvula, Mika Lehtonen. (2009). Energy wood thinning as a part of stand management of Scots pine and Norway spruce. Silva Fennica vol. 43 no. 1 article id 220. https://doi.org/10.14214/sf.220
Keywords: energy wood thinning; stand management; MOTTI simulator
Abstract | View details | Full text in PDF | Author Info
The effects of combined production of industrial and energy wood on yield and harvesting incomes, as well as the feasibility of energy wood procurement, were studied. Data for 22 Scots pine (Pinus sylvestris L.) and 21 Norway spruce (Picea abies (L.) Karst.) juvenile stands in Central and Southern Finland were used to compare six combined production regimes to conventional industrial wood production. The study was based on simulations made by the MOTTI stand simulator, which produces growth predictions for alternative management regimes under various site and climatic conditions. The combined production regimes included precommercial thinning at 4–8 m dominant height to a density of 3000–4000 stems ha–1 and energy wood harvesting at 8, 10 or 12 m dominant height. Combined production did not decrease the total yield of industrial wood during the rotation period. Differences in the mean annual increment (MAI) were small, and the rotation periods varied only slightly between the alternatives. Combined production regime can be feasible for a forest owner if the price of energy wood is 3–5 EUR m–3 in pine stands, and 8–9 EUR m–3 in spruce stands. Energy wood procurement was not economically viable at the current energy price (12 EUR MWh–1) without state subsidies. Without subsidies a 15 EUR MWh–1 energy price would be needed. Our results imply that the combined production of industrial and energy wood could be a feasible stand management alternative.
  • Heikkilä, L&T Biowatti Oy, P.O. Box 738, FI-60101 Seinäjoki, Finland E-mail: jani.heikkila@biowatti.fi (email)
  • Sirén, Finnish Forest Research Institute, Vantaa Research Unit, P.O.Box 18, FI-01301 Vantaa, Finland E-mail: ms@nn.fi
  • Ahtikoski, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O.Box 16, FI-96301 Rovaniemi, Finland E-mail: aa@nn.fi
  • Hynynen, Finnish Forest Research Institute, Vantaa Research Unit, P.O.Box 18, FI-01301 Vantaa, Finland E-mail: jh@nn.fi
  • Sauvula, Seinäjoki University of Applied Sciences, School of Agriculture and Forestry, Tuomarniementie 55, FI-63700 Ähtäri, Finland E-mail: ts@nn.fi
  • Lehtonen, Finnish Forest Research Institute, Vantaa Research Unit, P.O.Box 18, FI-01301 Vantaa, Finland E-mail: ml@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles