Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Nils Fahlvik

Category : Research article

article id 10512, category Research article
Mateusz Liziniewicz, Ignacio Barbeito, Andis Zvirgzdins, Lars-Göran Stener, Pentti Niemistö, Nils Fahlvik, Ulf Johansson, Bo Karlsson, Urban Nilsson. (2022). Production of genetically improved silver birch plantations in southern and central Sweden. Silva Fennica vol. 56 no. 1 article id 10512. https://doi.org/10.14214/sf.10512
Keywords: Betula pendula; planting; generalized algebraic difference approach; genetic gain; stand basal area starting function
Highlights: The basal area development of genetically improved birch in Sweden was modeled using a generalized algebraic difference approach; The best model fit, both graphically and statistically was delivered by the Korf base model; The analysis of realized gain trial showed a stability of relative differences in basal area between tested genotypes.
Abstract | Full text in HTML | Full text in PDF | Author Info

Investing in planting genetically improved silver birch (Betula pendula Roth) in Swedish plantations requires understanding how birch stands will develop over their entire rotation. Previous studies have indicated relatively low production of birch compared to Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). This could result from using unrepresentative basic data, collected from unimproved, naturally-regenerated birch (Betula spp.) growing on inventory plots often located in coniferous stands. The objective of this study was to develop a basal area development function of improved silver birch and evaluate production over a full rotation period. We used data from 52 experiments including planted silver birch of different genetic breeding levels in southern and central Sweden. The experimental plots were established on fertile forest sites and on former agricultural lands, and were managed with different numbers of thinnings and basal area removal regimes. The model best describing total stand basal area development was a dynamic equation derived from the Korf base model. The analysis of the realized gain trial for birch showed a good stability of the early calculated relative differences in basal area between tested genotypes over time. Thus, the relative difference in basal area might be with cautious used as representation of the realized genetic gain. On average forest sites in southern Sweden, improved and planted silver birch could produce between 6–10.5 m3 ha–1 year–1, while on fertile agriculture land the average productivity might be higher, especially with material coming from the improvement program. The performed analysis provided a first step toward predicting the effects of genetic improvement on total volume production and profitability of silver birch. However, more experiments are needed to set up the relative differences between different improved material.

  • Liziniewicz, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: mateusz.liziniewicz@skogforsk.se
  • Barbeito, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden; Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France E-mail: ignacio.barbeito@slu.se
  • Zvirgzdins, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 23053 Alnarp, Sweden E-mail: andis.zvirgzdins@slu.se (email)
  • Stener, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: lg.stener@telia.com
  • Niemistö, Natural Resources In-stitute Finland (Luke), Natural resources, Seinäjoki, Finland E-mail: pentti.niemisto@luke.fi
  • Fahlvik, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: nils.fahlvik@skogforsk.se
  • Johansson, Tönnersjöheden Experimental Forest, SLU, Simlångsdalen, Sweden E-mail: ulf.johansson@slu.se
  • Karlsson, The Forestry Research Institute of Sweden, Ekebo, SE-268 90 Svalöv, Sweden E-mail: curly.birch@gmail.com
  • Nilsson, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 23053 Alnarp, Sweden E-mail: urban.nilsson@slu.se
article id 10485, category Research article
Felicia Dahlgren Lidman, Emma Holmström, Tomas Lundmark, Nils Fahlvik. (2021). Management of spontaneously regenerated mixed stands of birch and Norway spruce in Sweden. Silva Fennica vol. 55 no. 4 article id 10485. https://doi.org/10.14214/sf.10485
Keywords: Betula pendula; Picea abies; Betula pubescens; natural regeneration; mixed forest; land expectation value
Highlights: The absence of forest management does not always mean economic loss; With dense spontaneous regeneration of birch and Norway spruce, the first competition release can have a high impact on future stem development; Significantly different effects on stand volume production and diameter development of Norway spruce can be expected with different biomass harvest strategies.
Abstract | Full text in HTML | Full text in PDF | Author Info

Timber production and profitability were evaluated for spontaneously-regenerated mixtures on two formerly clearcut areas. The abandoned areas developed into birch-dominated (Betula pendula Roth and Betula pubescens Ehrh.) stands with successional ingrowth of Norway spruce (Picea abies (L.) H. Karst.). An experiment with randomized treatments within blocks was established, using three management strategies and one unthinned control, resulting in variation in optimal rotation age, merchantable volume and species composition. The management strategies were evaluated based on total production (volume) by using measured growth data 42 years after clearcutting and the modelled future stand development. The long-term effects of spontaneous regeneration and management strategies were evaluated based on land expectation value (LEV) and compared with a fifth management strategy using artificial regeneration and intense thinnings. 12 years after treatment, at a stand age of 42 years, the unthinned control had produced the highest total stem volume. At interest rates of 2% or higher, the unmanaged forest was an economically viable strategy, even compared to an intensive management strategy with a preferred merchantable timber species. Interest rates clearly impacted the profitability of the different management strategies. This study shows that when spontaneous regeneration is successful and dense, the first competition release can have a high impact on the development of future crop trees and on the species mixture.

article id 5662, category Research article
Samuel Egbäck, Urban Nilsson, Kenneth Nyström, Karl-Anders Högberg, Nils Fahlvik. (2017). Modeling early height growth in trials of genetically improved Norway spruce and Scots pine in southern Sweden. Silva Fennica vol. 51 no. 3 article id 5662. https://doi.org/10.14214/sf.5662
Keywords: Pinus sylvestris; Picea abies; individual tree growth model; genetic component; genetic multiplier; unimproved material; improved material
Highlights: The developed height growth model based on unimproved material predicted the development relatively well for genetically improved Norway spruce; For genetically improved Scots pine, however, the model needed to be modified; By incorporating a genetic component into the Scots pine model, the prediction errors were reduced.
Abstract | Full text in HTML | Full text in PDF | Author Info

Genetically improved Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) are used extensively in operational Swedish forestry plantations to increase production. Depending on the genetic status of the plant material, the current estimated genetic gain in growth is in the range 10–20% for these species and this is expected to increase further in the near future. However, growth models derived solely from data relating to genetically improved material in Sweden are still lacking. In this study we investigated whether an individual tree growth model based on data from unimproved material could be used to predict the height increment in young trials of genetically improved Norway spruce and Scots pine. Data from 11 genetic experiments with large genetic variation, ranging from offspring of plus-trees selected in the late 1940s to highly improved clonal materials selected from well performing provenances were used. The data set included initial heights at the age of 7–15 years and 5-year increments for almost 2000 genetic entries and more than 20 000 trees. The evaluation indicated that the model based on unimproved trees predicted height development relatively well for genetically improved Norway spruce and there was no need to incorporate a genetic component. However, for Scots pine, the model needed to be modified. A genetic component was developed based on the genetic difference recorded within each trial, using mixed linear models and methods from quantitative genetics. By incorporating the genetic component, the prediction errors were significantly reduced for Scots pine. This study provides the first step to incorporate genetic gains into Swedish growth models and forest management planning systems.

  • Egbäck, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, 230 53 Alnarp, Sweden E-mail: samuel.egback@slu.se (email)
  • Nilsson, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, 230 53 Alnarp, Sweden E-mail: urban.nilsson@slu.se
  • Nyström, Swedish University of Agricultural Sciences, Department of Forest Resource Management, Skogsmarksgränd, 901 83 Umeå, Sweden E-mail: kenneth.nystrom@slu.se
  • Högberg, Skogforsk, Ekebo, 268 90 Svalöv, Sweden E-mail: karl-anders.hogberg@skogforsk.se
  • Fahlvik, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, 230 53 Alnarp, Sweden E-mail: nils.fahlvik@slu.se
article id 1302, category Research article
Nils Fahlvik, Per Magnus Ekö, Nils Petersson. (2015). Effects of precommercial thinning strategies on stand structure and growth in a mixed even-aged stand of Scots pine, Norway spruce and birch in southern Sweden. Silva Fennica vol. 49 no. 3 article id 1302. https://doi.org/10.14214/sf.1302
Keywords: yield; cleaning; heterogeneous forest; dimension distribution; growth simulator
Highlights: Precommercial thinning (PCT) was a useful tool to influence the stand structure in accordance to silvicultural goals; PCT had a great impact on tree species composition; The seemingly great potential to influence the structure of a heterogeneous, mixed stand was restrained by natural settings and unconditional considerations at PCT (e.g. tree vitality, stem quality, regular spacing).
Abstract | Full text in HTML | Full text in PDF | Author Info
Four different management strategies were applied to a young mixed stand of Scots pine (Pinus sylvestris L.), Norway spruce (Pices abies (L.) Karst.) and birch (Betula pendula Roth and Betula pubescens Ehrh.) in southern Sweden. All strategies included an initial precommercial thinning to ca. 2400 stems ha–1. The different aims were: (i) a conifer-dominated stand with focus on high productivity; (ii) a conifer-dominated stand with high quality timber; (iii) keeping a stem-wise species mixture; (iv) a mosaic-wise species mixture. Stem selection according to the different strategies were simulated with a starting point from plots with a 5 m radius. All strategies were applied to all of the plots. A growth simulator was used to simulate the stand development up to final felling. This study illustrates the possibilities for influencing the structure of a mixed stand through precommercial thinning. The study also illustrates the long-term effects on stand structure and volume yield by consequently applying a management strategy from precommercial thinning until final felling. Precommercial thinning was found to be a useful tool to influence the stand structure in accordance to the aims set. However, the opportunities for influencing the stand by precommercial thinning were restricted by natural settings and unconditional considerations (e.g. tree vitality, stem quality, regular spacing), beyond what could be judged from stand average data. The stem volume production during a rotation was 6% lower for (iii) and (iv) compared to (i) and (ii), mainly due to a greater proportion of birch in the former strategies.
  • Fahlvik, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: nils.fahlvik@slu.se (email)
  • Ekö, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: per.magnus.eko@slu.se
  • Petersson, StoraEnso Skog AB, Åsgatan 22, SE-791 80 Falun, Sweden E-mail: nils.petersson@storaenso.com
article id 1013, category Research article
Nils Fahlvik, Björn Elfving, Peder Wikström. (2014). Evaluation of growth functions used in the Swedish Forest Planning System Heureka. Silva Fennica vol. 48 no. 2 article id 1013. https://doi.org/10.14214/sf.1013
Keywords: basal area; simulation; validation; volume; empirical
Highlights: Growth models based on historical growth data gave reliable growth predictions up to the century shift; Detailed single tree growth models had lower precision for estimation of total growth than one single stand-based model; The prediction error was in average about 15% and did not increase with extended prediction period.
Abstract | Full text in HTML | Full text in PDF | Author Info
The performance of growth models implemented in the Swedish Forest Planning System Heureka was evaluated. Four basal area growth models were evaluated by comparing their predictions to data from five-year growth records for 1711 permanent sample plots of the National Forest Inventory (NFI-data). Also, two alternative implementations of Heureka, including a combined stand- and tree-level basal area growth model and a single tree-level model, respectively, were evaluated using data from 57 blocks in a thinning experiment (GG-data) involving Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst) in which the trees were monitored for 30 years after the first thinning. The predicted volume growth was also compared to observed values. Growth models based on data from 1970’s and 1980’s overestimated growth in the NFI test plots from the early 2000’s by about 3%. Stand-level models had larger precision than tree-level models. Basal area growth was underestimated in dense NFI-plots and overestimated in non-thinned GG-plots, illustrating an un-solved modelling problem. Basal area growth was overestimated by 2–5% also in the GG-plots over the whole observation period. Volume growth was however accurately predicted for pine and underestimated by 2% for spruce. The relative prediction error did not increase with increasing length of prediction period. Thinning response models calibrated with GG-data worked well in the total application and produced growth levels for different thinning alternatives in line with observations.
  • Fahlvik, Department of Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: nils.fahlvik@slu.se (email)
  • Elfving, Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden E-mail: bjorn.elfving@slu.se
  • Wikström, Peder Wikström Skogsanalys AB, c/o Peder Wikström, Huldrans väg 1, SE-907 52 Umeå, Sweden E-mail: peder.wikstrom@slu.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles