Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Thierry Fourcaud

Category : Article

article id 5627, category Article
Philippe de Reffye, Daniel Barthélémy, Frédéric Blaise, Thierry Fourcaud, François Houllier. (1997). A functional model of tree growth and tree architecture. Silva Fennica vol. 31 no. 3 article id 5627. https://doi.org/10.14214/sf.a8529
Keywords: growth; water transport; ecophysiology; plant architecture; assimilate production; mathemetical models; computer simulations; growth simulation
Abstract | View details | Full text in PDF | Author Info

A new approach for modelling plant growth using the software AMAPpara is presented. This software takes into consideration knowledge about plant architecture which has been accumulated at the Plant Modelling Unit of CIRAD for several years, and introduces physiological concepts in order to simulate the dynamic functioning of trees. The plant is considered as a serial connection of vegetative organs which conduct water from the roots to the leaves. Another simple description of the plant as a network of parallel pipes is also presented which allows an analytical formulation of growth to be written. This recurring formula is used for very simple architectures and is useful to understand the role of each organ in water transport and assimilate production. Growth simulations are presented which show the influence of modifications in architecture on plant development.

  • de Reffye, E-mail: pd@mm.unknown (email)
  • Barthélémy, E-mail: db@mm.unknown
  • Blaise, E-mail: fb@mm.unknown
  • Fourcaud, E-mail: tf@mm.unknown
  • Houllier, E-mail: fh@mm.unknown

Category : Research article

article id 201, category Research article
Rui Qi, Véronique Letort, Mengzhen Kang, Paul-Henry Cournède, Philippe de Reffye, Thierry Fourcaud. (2009). Application of the GreenLab model to simulate and optimize wood production and tree stability: a theoretical study. Silva Fennica vol. 43 no. 3 article id 201. https://doi.org/10.14214/sf.201
Keywords: wood quality; optimization; biomechanics; FSPM; Particle Swarm Optimization; source-sink dynamics; biomass allocation
Abstract | View details | Full text in PDF | Author Info
The GreenLab model was used to study the interaction between source-sink dynamics at the whole tree level, wood production and distribution within the stem, and tree mechanical stability through simulation and optimization. In this first promising numerical attempt, two GreenLab parameters were considered in order to maximize wood production: the sink strength for cambial growth and a coefficient that determines the way the biomass assigned to cambial growth is allocated to each metamer, through optimization and simulation respectively. The optimization procedure that has been used is based on a heuristic optimization algorithm called Particle Swarm Optimization (PSO). In the first part of the paper, wood production was maximized without considering the effect of wood distribution on tree mechanical stability. Contrary to common idea that increasing sink strength for cambial growth leads to increasing wood production, an optimal value can be found. The optimization results implied that an optimal source and sink balance should be considered to optimize wood production. In a further step, the mechanical stability of trees submitted to their self weight was taken into account based on simplified mechanical assumptions. Simulation results revealed that the allocation of wood at the stem base strongly influenced its global deformation. Such basic mechanical criterion can be an indicator of wood quality if we consider further the active biomechanical processes involved in tree gravitropic responses, e.g. formation of reaction wood.
  • Qi, Ecole Centrale Paris, Laboratory of Applied Mathematics, Grande Voie des Vignes, 92295 Chatenay-Malabry, France; Institute of Automation, Chinese Academy of Sciences, LIAMA/NLPR, P.O.Box 2728, Beijing, China E-mail: qiruitree@gmail.com (email)
  • Letort, Ecole Centrale Paris, Laboratory of Applied Mathematics, Grande Voie des Vignes, 92295 Chatenay-Malabry, France E-mail: vl@nn.fr
  • Kang, Institute of Automation, Chinese Academy of Sciences, LIAMA/NLPR, P.O.Box 2728, Beijing, China E-mail: mk@nn.cn
  • Cournède, Ecole Centrale Paris, Laboratory of Applied Mathematics, Grande Voie des Vignes, 92295 Chatenay-Malabry, France; INRIA saclay Ile-de-France, EPI Digiplant, Parc Orsay Université, 91893 Orsay cedex, France E-mail: phc@nn.fr
  • Reffye, INRIA saclay Ile-de-France, EPI Digiplant, Parc Orsay Université, 91893 Orsay cedex, France; CIRAD, UMR AMAP, Montpellier, F-34000 France E-mail: pdr@nn.fr
  • Fourcaud, CIRAD, UMR AMAP, Montpellier, F-34000 France E-mail: tf@nn.fr

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles